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Differential-Difference Games of Pursuit

Posrnanaerbea 3amada B3aEMO/Iil mepecmigyBada Ta BTiKada. ¥y MPOIeEci TpPU KOKEH I'PaBellb
obupae CBOI KepyBaHHS y BUIIAAL Hedknx (pyHKi. Mera mepecaimyBada - BUBECTH TPAEKTOPIO
poItecy Ha TepMiHAJLHY MHOMKHUHY 3a HAUKOPOTIIUH Yac, MeTa BTIKada - BIAXUIATH TPAEKTOPIIO
TIPOITECy Bif 3yCTpidi 3 TepMiHAILHOIO MHOXKWHOIO Ha BCHOMY HaIliBHETIEPEPBHOMY IHTEPBAJI dacCy
t > 0 abo, AKIIO 116 HEMOXKJIMBO, TO MAKCAMAIBHO BIATATHYTH MOMEHT 3yCTPidi.

s iepecitigyBada JOCTIIKEHI JOCTATHI YMOBH Ha MAPaMETPH MPOIIECY /s MPUBEIEHHS TPAE-
KTODIi Ha TepMiHATBLHY MHOKUHY 3 Oy/Ib-IKOTO MOYATKOBOTO MOJIOKEHHS 34 AesdKuil rapaHTOBaHMA
qac mpu Oyab-IKUX KepyBaHHAX Brikada. Pesyabratu orpumani Meronom Po3s’s3ywounx @yukiiii
nopiBagaHo 3 Ilepmmm ITpavum Metonom IlorTparina.

We consider the pursuit problem for 2-person conflict-controlled process with single pursuer
and single evader. The problem is given by a system of differential-difference equations with time
lag. The players pursuing their own goals and choose controls in the form of certain functions. The
goal of the pursuer is to catch the evader in the shortest possible time. The goal of the evader is
to avoid the meeting of the players’ trajectories on a whole semiinfinite interval of time or if it is
impossible to postpone maximally the moment of meeting. For such a conflict-controlled process
we present conditions on its parameters and initial state, which are sufficient for the trajectories of
the players to meet no later than a certain moment of time for any counteractions of the evader.
Results obtained by the Method of Resolving Functions for such conflict-controlled process we also

compare to Pontryagin’s First Direct Method.

1 Introduction

A variety of interesting examples stimulated
the development of the Dynamic Games
Theory. Fundamental results in Differential
Games Theory were obtained by Isaacs (1965),
Pontryagin et al. (1962), and Krasovskii
(1973). The basis for R.Isaacs’ investigati-
ons was the Method of Dynamic Programmi-
ng for Isaacs-Bellman equation. The classi-
cal Isaacs’ scheme was later intensified by
L.S.Pontryagin (Pontryagin 1965). Pontryagi-
n’s First Direct Method is the simplest and the
most efficient method for solution of specific
pursuit problems. This method afford conveni-
ently checkable sufficient conditions for pursuit
termination. Due to its versatility Pontryagin’s
First Direct Method gave rise to a number of
extensions (Pshenichnyi and Chikrii (1977)).

Further development of Pontryagin’s ideas
resulted in the Method of Resolving Functions,
one of the most powerful methods of dynamic
game theory, which justifies, in particular, the
rule of pursuit along straight ray and the classi-
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cal rule of parallel approach, well-known to
rocket designers and controllers (Chikrii 1992;
Eidel’man and Chikrii 2000; Chikrii et al. 2007;
Chikrii and Rappoport 2012; Chikrii 2014).

The essence of the Method of Resolvi-
ng Functions is in the construction of some
numeric resolving function of the known
parameters of the process. The resolving
function outlines the course of the process. At
the moment at which its integral turns into
unit, the trajectory of the process hits the
terminal set.

It is necessary to apply ordinary differential
equations to the investigation of mathemati-
cal models of different physical and techni-
cal objects. But this is not enough. Appli-
cation of functional differential equations is
more appropriate in such situations. The
development of functional differential equation
theory is connected with Bellman and Cooke
(1963), Hale (1977), and Halanay (1966).

Baranovskaya (1999) obtained a general
scheme of the Method of Resolving Functions
for local convergence problems with fixed time,
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which are described by a system of differential-
difference equations of delay-type

2(t) = Az(t) + Bz(t — 1) + ¢(u,v),
zeR" uelUnwvelV,

where A, B are square matrices of order n x n,
o(u,v),p: UxV — R"is a jointly continuous
function, U € K(R"),V € K(R"), 7 = const
> 0.

In this paper, we investigate the local
convergence problem with fixed time, whi-
ch is described by a system of differential-
difference equations of delay-type in the form
of Riemann-Stieltjes integrals. Necessary and
sufficient conditions for solvability of such
problems are established. Results obtained by
the Method of Resolving Functions for such
conflict-controlled process also compared to
Pontryagin’s First Direct Method.

Section 2 discusses some results from
differential-difference equations theory and
presents Cauchy’s formula for a system of
differential-difference equations with time lag.

Section 3 presents several auxiliary results
from the theory of set-valued maps given in a
form convenient for further implementation.

Section 4 is dedicated to solving of local
convergence problem with fixed time for
differential-difference games.

Section 5 presents a connection between
results obtained by the Method of Resolvi-
ng Functions with Pontryagin’s First Direct
Method.

2 Differential-Difference Equations wi-
th Time Delay

The facts exposed in this section deal with a

situation with one actor, only. We need them

later in the game setting. Let us consider a

system of differential-difference equations of

delay-type studied by Halanay (1966) (p. 362)

0

/x@+@¢ma® A0, )

—0o0

() =

where

(a) m;;(t,s) are defined for ¢ > 0, —oo < s <
00, 1;(t,s) = 0 for s > 0;
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(b) there exist functions 7;;(t) > 0, V;;(t) > 0,
bounded for ¢ > 0 such that

i (t, 8) = mij(t, —735(t)) for s < —75(2),

where, as usual, V4= f(s) means the total
variation of function f in [a, 8]. We set 7 =

sup; ji7ij (t);
(¢) mij(t, s) are continuous in t, uniformly with
respect to s.
The adjoint system will be
0
@)+ [ n(a =595 0.

System (2) may also be represented as

yM)ﬁ/ma—&me—BMﬁzamﬂ

or
a+T1
y(a) + / n(vy,a —y)y(y)dy = const.
Then, for a fixed o we have
a—+T1

y(a)+ [ nlv,a—)y(y)dy =

=y(o) + Tn(% o —7)y(y)dy

or

y(a) + fﬁ(% a—7)y(y)dy =

=y(o) + (Tn(% o —7)y(y)dy —

o
a-+T1

— [ n(v.a=v)y()dy.

g

If the function y is defined on [0, 0 + 7], then
for o0 — 7 < a < ¢ the function

y(o) + | nlrv.o —)y(y)dy
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a+T
— [ nly.a—=)y(y)dy

is well defined and y(«) can be defined for
values of a from the interval [0 — 7,0]. If y
is well defined on [0 — 7, 0] we can define it by
the same procedure on [0 — 27,0 — 7], and thus
through the step-by-step method ([0 — 27,0 —
7] = [0 — 37,0 — 27] and so on) we can deri-
ve a theorem of the existence and uniqueness
for equation (2). If the initial function defined
on [o,0 + 7] is of bounded variation then the
solution defined by it is of bounded variation,
and if the initial function is continuous, the
solution is continuous as well.

Let wus consider the matrix solution
of equation (2) defined by the condition
Y(a,0) =0foro <a<o+r1Y(00) =E.
Then

a+T1

Y@J%%/nma—wYWJMWZE

«

Let x(t) be an arbitrary solution of system
(1) and y(t) be an arbitrary solution of system
(2).

We consider

t

[ #(a)y(a)da + ft:c a)dy(a) =

T a0l - e(o)lo).

The left hand side of the equation, after the
substitution of (1) and (2), can be represented
as

[ o+ s)dn(e s)lyfa)da -

| a)da afn(% a —y)y(y)dy +
+jf(a)y(a)da =

] a(s)dn(as = a)ly(a)da -

w(@)de [ n(y,a—~)y(y)dy +

[ fla)y()da
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Considering that

r(s)
)+ [ #i(s,a)dalds
)

p(s

EIJ

—p(s,p(s))

we can change integral bounds according to the
Fig. 1.
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Fig. 1. Integral bounds;

Then we obtain

z(t)y(t) — z(o)y(o) =

ij@%72@ﬁ—®ﬂ®m—\
R E—

+ 7:13(8)6& 7T?7(oe s — a)y( )da—\
[ ——

Ve

/ / a,s —a)y(a)da —

C
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t s+T

- [#()d. [ nia.s — a)yla)da+

+/tf(04)y(04)d04

From this we derive

z()y(t) — 2(o)y(o) =

z(s)ds [ n(a,s —a)y(a)da —

s+T
J x(s)ds [ n(e, s —a)y(a)da —
- j x(s)dsfsn(a,s —a)y(a)da —

t—7 t

x(s — 17)n(a, —7)y(s)ds +

|
Qe o

+ [ fle@)y(a)da.

o

This equation also can be written as

z(t)y(t) — z(o)y(o) =

= _f x(s)ds szn(a, s — a)y(a)da —
—t_ft x(s)ds ?Tn(oz, s — a)y(a)da —

+ [ f@)y(a)da
Therefore
000+ [ d. [ n(es = aplald

o s+T

—2(o)y(0) + | a(s)d, [ mlays—ayla)da— + |

— [@(s = T)nla, —7)y(s)ds +

oz

+ [ f(a)y(a)da.

g
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Using the same procedure for the solution z(t)
of system (1) and the matrix solution Y («a, o)
of system (2) we have

()

~
—~
+

~+

—z(0)Y(0,1) =

J]%Q
8
—~
w
SN—
IS
v

n(a,s — )Y (a,t)do +

+ftf(a)Y(oz,t)doz.

From this we obtain

z(t) = x(0)Y (0,t) +

o S+T
+ [ x(s)ds [ n(a,s — )Y (o, t)da +

t

+ [ f@)Y (a,t)da —

t

— [n(a, —7)z(s — 7)Y (s, t)ds +

Considering that

a+T

Y(at) + / n(B,0— B)Y (B, 1)df = E,

«

where F is the unit matrix, we get

z(t) = x(0)Y (0,t) +
s+7

J z(s)ds [ nla,s — )Y (a,t)da —

— jn(a, —7)x(s — 7)Y (s,t)ds +

+ [ (@)Y (a, t)da.

g
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Let X(t,0) be the matrix whose rows for
t > o are solutions of a homogeneous system,
X(t,o) =0 fort < o, X(0,0) = E. It will
then follow that X (¢,0) = Y (o,1).

Thus we finally obtain

+ ]7 z(s)ds Tn(oz, s — o)X (t,a)da —

— ftn(a, —7)x(s — 1) X(t,s)ds +

+ [ fla)X(t, )dar.

(e

In the following remark points (a), (b), (¢)
look almost like points (a), (b), (¢) at the begi-
nning of Section 2. The only differences are

ni;(t, s) = n;;(¢,0) at point (a) and n;;(t,s) =0
at point (b).

Remark 1. For the system of differential-
difference equations of delay-type

0

/ﬂﬁmwmwﬁ ),

— 00

i(t) =

where

(a) nij(t,s) are defined for t > 0, —oo < s <
00, 1;5(t, s) = n;;(t,0) for s > 0;

(b) there exist functions 1;;(t) > 0, Vi;(t) > 0,
bounded fort > 0 such that
Th‘j(t, S) = O fO’f‘ S S —Tz‘j(t),

\/izgﬁj(t)nij(t7 S) < V;J<t)’

where, as usual, V=5 f(s) means the total
variation of the function f on [a,]. We
set T = supi’j’tnj(t);

(c) mij(t,s) are continuous in t, uniformly with
respect to s.

the solution can be represented in the form [

Halanay (1966) (p. 366)]
z(t) = x(0)X(t,0) +
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o S+T
z(s)ds [ nla,s—a)X(t, a)do+

o—T

+ j: fl@)X(t,a)da,

where X (t,s) is the matriz whose rows for t >
s are solutions of the homogeneous system and
has the following properties:

1. X(t,s) =0, fort <s;
2. X(t,t) = FE, E - unit matriz;

Example 1. We consider the system of
differential-difference equations

0

aw:/Q@Hmm@g + o), TERY

(3)
where
0, s € (—o0, —7],
n(t75> = Ba s € (_T7 0)7
A+ B, s€l0,+00),

7(t) = T = const.
Then system (3) can be represented in the

form

| alt + s)dun(t, s) + o(t) =

—00

#(t) =
= Az(t) + Bx(t — 7) + ().

The solution of system (3) can be written in

the form (Remark 1)

z(t) = 2°(0) X (¢,0) +
+,f x(s)ds SO]rTn(oz, s —a)X(t,a)da +
—l—oftcp(s)X(t,s)ds,

For 0<a<s+ 7 we have
s <0. Le.

—T17<s—a<

nla,s —a) =B for —1<s—a<0.
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Thus we have finally obtained
z(t) = 2°(0) X (¢,0) +
0
+B [ x(s)X(t, s+ 7)ds +
t

+ of o(s)X

(t,s)ds,

which is Cauchy’s formula for the system of
differential-difference equations of delay type
with constant delay | Bellman and Cooke

(1963) (p. 201) |.

3 Auxiliary Mathematical Results

We will need the following nine lemmas for the
proof of Theorem 1 in Section 4.

Lemma 1. Let the map F(z,y),F: X XY —
KR"), X, Y € K(R"™) be continuous. Then the

map G(z) = [\ F(z,y) is upper semiconti-
yey
nuous on the set X N domG. [Chikrii (1997)

(p-14)]

Lemma 2. Let X € K(R"),F(x),F : X —
K(R™) be a measurable (Borel) map. Then the
selection

f(z)
is measurable (Borel). [Chikrii (1997) (p.15)]

= lex min F(z), xz€ X,

Lemma 3. Let X € K(R"),T > 0, f(t,x) :
[0,7] x X — R be a bounded, measurable in t
and upper semicontinuous in x function. Then
the function f(t) = ;g}f(f(t,x) is measurable

on [0, T]. [Toffe and Tihomirov (1979) (p. 345)]

Lemma 4. Let X,Y,7Z € K(R"), a functi-
on f(z), f: X — Y be Lebesgue measurable
(Borel), function ¢(y), g Y — Z, -
Borel (upper semicontinuous). Then the functi-
on h(zx) = g(f(z)), h X = Z is
Lebesgue measurable (Borel) [Ioffe and Ti-
homirov (1979) (p. 345)].

Lemma 5. Let XYM € K(R") and
F(z,y), F: X xY — K(R") be upper semi-
continuous set-valued map, f(z), f: X — R"
be continuous, f(X)NM = 0 and con(M —
f@)NF(z,y) # 0 forallz € X, y €Y.
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Then the function o : X XY — R, defined by
the formula

a(z,y) = max{a >0 :

a(M — f(x)) N F(z,y) # 0}

is upper semicontinuous on the set X xY . [Chi-
krii (1997) (p.17)]

Lemma 6. Let X € K(R"), f(s,z), f :
[0,7] x X — R be a measurable in s and
continuous in x function, uniformly bounded

on [0,T] x X. Then
T T
i, [ ftsatis = [ g sio.aris
0 0
(t)

where Q, = {z() e Xt >
0,z(t) is measurable}. [loffe and Tihomirov
(1979) (p. 356)]

Lemma 7. Let X € K(R"),\(z),\A : R* —
R be an upper semicontinuous (measurable)
function. Then the map A(x) - X is Borel
(measurable). [Chikrii (1997) (p.15)]

Lemma 8. Let X € K(R"™), set-valued maps
F(z), F X — KR and G(z),G
X — K(R"™) be meadurable (Borel), functi-
on f(z,y),z € X,y € Y, f(z,y) € R" be
measurable (Borel) in v € X and continuous
my €Y. Then the set-valued map

H(z) ={y € G(x) : f(z,y) € F(x)}
is measurable (Borel). [Chikrii (1992) (p.26)]

Lemma 9. Let X € K(R"),a(s),a : [0,00) —
R be a nonnegative bounded measurable functi-

on. Then
T
/a Yds - coX, T >0.
0

/ s)Xds =

[Toffe and Tihomirov (1979) (p. 349)]

4 Differential-Difference Games of

Delay-Type with Variable Delay

We consider a pursuit problem given by the
system of the differential-difference equations
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of delay-type studied by Halanay (1966) (p.
362)

0

=

—00

zeR"uelUwvelV,

z(t+ s)dgn(t,s) + o(u,v),

(4)
where

(a) m;;(t,s) are defined for ¢ > 0, —oo < s <
00, 1;(t, s) = n;;(t,0) for s > 0;

(b) there exist functions 7;;(¢t) > 0, V;;(¢) > 0,
bounded for ¢ > 0 such that

—Tij (t)a
LMty s) < Vi (1),

ni;(t,s) =0 for s <

=0

VL,
where, as usual, V=¥ f(s) means the total
variation of a functlon f on [a, 5]. We set

T = sup; j7i;(t);

(¢) mi;(t, s) are continuous in t, uniformly with
respect to s.

o(u,v),p: UxV — R"is a jointly continuous
function, U € K(R"),V € K(R").

The initial state of system (4) is an
absolutely continuous function

2(t) = 2°(t), te[-70].
At a moment ¢t we have
Z()={z(t+s), -7 <s <0}

The terminal set is cylindrical and will be
denoted by

M* = My+ M (5)

where M, is a linear subspace of R", M
is a nonempty compact in the orthogonal
complement L to M, in R". We consider a local
convergence problem with a fixed time. We wi-
1l use the symbol 7 to denote the orthogonal
projection from R™ to L. Let us denote the set-
valued maps

Wi(t,s,v) =7nX(t,s)p(U,v),

= m W(t,s,v),

veV
where X(t,0) is the matrix whose rows for

t > o are solutions of homogeneous system
X(t,o) =0, fort <o X(o,0) = E.

t>0
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Condition 1. (Pontryagin’s  condition)

W(t,0)#0  forall t>0.

As the matrix X (¢, s) is continuous, the set-
valued map W (t, s, v) is also continuous on the
set [0,+00) x V. Consequently, when condi-
tion 1 is performed, by Lemma 1 W (t,0) is
upper semicontinuous and therefore a Borel
map. Hence, by Lemma 2, there exists at least
one Borel selection v(¢,s), v(t,s) € W(t,0),
t>0.

From now on, I' = {y(-,-) € I, t > 0}
denotes the set of all Borel selections of the
set-valued map W (t,0). Fix some ~v(-,-) € T
put

§(t,2°(), 7)) = mX(2,0)2°(0) +

S+T

+ fO 72°(s)d, gﬂ n(a, s — a)X(t, a)do +

-7

(6)

t
+ [~(t, s)ds
0

and look at the following resolving function

aft,s,2°(),v,7(, ) =
sup{a > 0: [W(t,s,v) —y(t,s)] N
Na[M = &(t,2°(), ()] # 0}

ze€R" wveV.

(7)

where 0 < s <'t,

Since 0 € W(t,s,v) — 7y(t,s) for all v €
V, 0 <s <t for &(t,2°(), v(-, ))EMwehave
that the function alt, s, 2°(-),v,7(-,+)) = +oo
forall s € [0,t], v e V.IfE(t, 2 () v(, ) € M
then resolving function (7) takes finite values
which are uniformly bounded jointly in s &
0,t], ve V.

Let us define the function

T2 (, ) = inf{t > 0
f inf a(t, s, 2°(-),v,v(,-))ds > 1},

OveV
vyel.

(8)

If the inequality in the braces does not hold
for all ¢ > 0, then we set T'(2°(-), y(+,-)) = +o0.
If £(¢,2°(-),7(-,-)) ¢ M then by Lemma 3
the function 31615’_@(@ 5,2°(),v,7(+,+))

is measurable in s. The  function
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alt, s, 2°(-),v,v(-,-)) is a jointly Borel function
by Lemma 4 and is uniformly bounded in s, v
by Lemma 5. Consequently, by Lemma 6 the
function vig‘f/a(t, s,2°(+),v,7v(,)) is integrable

on [0,t]. If &(¢2°(),7v(,-)) € M then
1£1‘f/ alt, s, 2°(-),v,7(-,+)) = +o0, s € [0,¢], and

it is natural to set the integral equal to 400,
therefore the inequality in the definition of
function T'(2°(+),~v(-,-)) holds automatically.

Theorem 1. Let Condition 1 hold for the
conflict-controlled process (4),(5), M be a
convez set, T(2°(-),7°(-,+)) < +oo for initi-
al position 2°(-), and some selection 7°(-,-) €
['. Then the trajectory of process (4) can be
brought from the initial position 2°(-) to the
terminal set at moment T(2°(-),~°(-,-)).

Outline of the proof.

We consider two cases: £(t,2°(+),7°(-, 7)) ¢
M and &(t,2°(),7°(-,-)) € M. For the case
£(t,2°(-),7°(-,+)) ¢ M we set the pursuer’s
control on two intervals: active [0, ¢,] and passi-
ve [t.,T]. For the case £(t,2°(-),7°(-,+)) € M
we choose the pursuer’s control on a whole
interval [0, 7). According to Cauchy’s formula
and taking into account the pursuer’s control
law we obtain the desired results.

5 Connection with Pontryagin’s First
Direct Method

Theorem 2. (Pontryagin’s theorem) Let

Condition 1 hold for the conflict-controlled

process (4),(5) and for some initial state 2°(-)

: P(2°()) < 400, where

P(2°(+)) = min{t > 0: 7X(¢,0)2°(0) +
+ fo 72%(s)d, ?Tn(a, s—a)X(t,a)da €

—T

e M— jW(t, s)ds}. 9)

Then the trajectory of process (4) can be
brought from the initial position 2°(-) to the
terminal set at moment P(2°(-)).

Proof.
Denote Py = P(2°(+)). Then

X (t,0)2°(0) +
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0 s+T
+ [ 722s)ds [ n(a,s —a)X (¢, a)da €
0

—T

t
e M— [W(t,s)ds.
0

This means there exist m € M and a selection
v(+,+) € I' such that

7X(t,0)2°(0) +
+,f 72%(s)d, SO]LTT](Q, s —a)X(t,a)da =

t
=m— [~(t,s)ds.
0

Let us consider the set-valued map

U(s,v) ={u e U :nX(Fy,s)p(u,v) —

—°(Py, s) = 0},5 € [0, Bp),v € V. (10)

It is Borel jointly in s, v. The selection
u(s,v) = lexminU (s, v)

is a Borel function jointly in s, v by Lemma 2.
We set the pursuer’s control on the interval
[0, o] equal to

u(s) = u(s,v(s)).
According to (10), in view of (9), we get

m2(Py) = X (P, 0)2°(0) +
+,f 7Tzo<s)ds Sggrn(a, s — oz)X(P(]? a)da +

T .OTOWX(PO; s)p(u(s), v(s))ds =

=m e M.

(11)
This completes the proof of the theorem.

Theorem 3. Suppose Condition 1 hold for
conflict-controlled process (4),(5). Then for
any initial state 2°(-) there ewists a selection
7°(-,+) € T such that

T(2°():7°C,)) < P(Z°()).

Proof.
Let T = T(2°(-),7°(,)) be the moment of
the end of the game. Considering

T(°(-),7°(,-) = inf{t > 0
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t

bfmfveva(t 5,2°(-),0,7°(-,-))ds > 1}

we suppose that at moment ¢, the integral of

the resolving function is equal 1, that means
t

Ja(t, s, 2°(),v,7°(,-))ds = 1, and on the
0
interval [t,, T it is natural to set @ = 0. That

))ds < 1 for
1)) # oo for

t
means that [ a(t,s,2°(-),v,7°(:,

0
t € [0, T). Thus a(t, s, 2°(-), v, 7°(,

all t € [0,7]. Sinceforf(tz() 0(,)eM 9
Wehavea(t s,2°(), v, 7°(, )):+oo one gets
E(t,2°(-),7°(-,+)) ¢ MVt € [0,T]. Therefore
vt € [0, T] iﬂm € M such that
7X (t,0)2°(0) +
+jq7TZ )ds San s —a) X (t,a)da +

—i—f’y(t, s)ds = m.
0
Le. for all t € [0, 7]
X (t,0)2°(0) +

+ fo 72°(s)d, ?777(@, s—a)X(t,a)da ¢

-7

¢ M — ftW(t,s)ds.

This means that on the interval [0,T]
Pontryagin’s theorem does not hold and there
is no P(2°(-)) such that the trajectory of
process (4) can be brought from the initial
position z°() to the terminal set.

If P(2°(-)) is the moment of the end of
the game then, by the virtue of Pontryagin’s
theorem,

7X(t,0)z°

S+T

dfn

(0) +

0
+f7rz

-7

s — o)X (t,a)da €

e M — fW(t,s)ds.
0
Therefore there are m € M and a selection
7°(-,+) € T such that
X (t,0)2°(0) +
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+ fO 72°(s)d, ?T'f}(a

—T

s —a) X (t, a)da =

=m — bfvo(t s)ds

or
=m e M.

resolving function
©)) = 400, then

+00 > 1. Thus

f(tazo(.)”yo('a.))
It follows that if the

satisfies «(t, s, 2°(-),v,7°(-,
t

f (t,5,2°(),0,9(,))ds =

by the Method of Resolving Functions we
can finish the game at the moment T =
T(2°(-),~7°(,-)). It follows that if the resolvi-
ng function satisfies

T(2°(-),7"(,-)) < P(°()).
This completes the proof of the theorem.

6 Conclusions

In this article we present a general scheme
of the Method of Resolving Functions for
the local convergence problem with fixed ti-
me. The conflict-controlled process is described
by a system of differential-difference equati-
ons of delay-type with variable delay. The
performance of these sufficient conditions of
Theorem 1 is enough for capturing the evader
at a fixed moment of time. If the evader makes
mistakes then in the course of pursuit there
is a moment of switching from the Method
of Resolving Functions to Pontryagin’s First
Direct Method. As the result, the process hi-
ts the terminal set at the predetermined ti-
me. Analyzing Theorem 2 one can also get
sufficient conditions for capturing the evader
at a fixed moment of time. Results obtai-
ned by the Method of Resolving Functions for
such conflict-controlled process we compare to
Pontryagin’s First Direct Method.
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