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Di�erential-Di�erence Games of Pursuit

Ðîçãëÿäà¹òüñÿ çàäà÷à âçà¹ìîäi¨ ïåðåñëiäóâà÷à òà âòiêà÷à. Ó ïðîöåñi ãðè êîæåí ãðàâåöü
îáèðà¹ ñâî¨ êåðóâàííÿ ó âèãëÿäi äåÿêèõ ôóíêöié. Ìåòà ïåðåñëiäóâà÷à - âèâåñòè òðà¹êòîðiþ
ïðîöåñó íà òåðìiíàëüíó ìíîæèíó çà íàéêîðîòøèé ÷àñ, ìåòà âòiêà÷à - âiäõèëèòè òðà¹êòîðiþ
ïðîöåñó âiä çóñòði÷i ç òåðìiíàëüíîþ ìíîæèíîþ íà âñüîìó íàïiâíåïåðåðâíîìó iíòåðâàëi ÷àñó
t ≥ 0 àáî, ÿêùî öå íåìîæëèâî, òî ìàêñèìàëüíî âiäòÿãíóòè ìîìåíò çóñòði÷i.

Äëÿ ïåðåñëiäóâà÷à äîñëiäæåíi äîñòàòíi óìîâè íà ïàðàìåòðè ïðîöåñó äëÿ ïðèâåäåííÿ òðà¹-
êòîði¨ íà òåðìiíàëüíó ìíîæèíó ç áóäü-ÿêîãî ïî÷àòêîâîãî ïîëîæåííÿ çà äåÿêèé ãàðàíòîâàíèé
÷àñ ïðè áóäü-ÿêèõ êåðóâàííÿõ âòiêà÷à. Ðåçóëüòàòè îòðèìàíi Ìåòîäîì Ðîçâ'ÿçóþ÷èõ Ôóíêöié
ïîðiâíÿíî ç Ïåðøèì Ïðÿìèì Ìåòîäîì Ïîíòðÿãiíà.

We consider the pursuit problem for 2-person con�ict-controlled process with single pursuer
and single evader. The problem is given by a system of di�erential-di�erence equations with time
lag. The players pursuing their own goals and choose controls in the form of certain functions. The
goal of the pursuer is to catch the evader in the shortest possible time. The goal of the evader is
to avoid the meeting of the players' trajectories on a whole semiin�nite interval of time or if it is
impossible to postpone maximally the moment of meeting. For such a con�ict-controlled process
we present conditions on its parameters and initial state, which are su�cient for the trajectories of
the players to meet no later than a certain moment of time for any counteractions of the evader.
Results obtained by the Method of Resolving Functions for such con�ict-controlled process we also
compare to Pontryagin's First Direct Method.

1 Introduction

A variety of interesting examples stimulated
the development of the Dynamic Games
Theory. Fundamental results in Di�erential
Games Theory were obtained by Isaacs (1965),
Pontryagin et al. (1962), and Krasovskii
(1973). The basis for R.Isaacs' investigati-
ons was the Method of Dynamic Programmi-
ng for Isaacs-Bellman equation. The classi-
cal Isaacs' scheme was later intensi�ed by
L.S.Pontryagin (Pontryagin 1965). Pontryagi-
n's First Direct Method is the simplest and the
most e�cient method for solution of speci�c
pursuit problems. This method a�ord conveni-
ently checkable su�cient conditions for pursuit
termination. Due to its versatility Pontryagin's
First Direct Method gave rise to a number of
extensions (Pshenichnyi and Chikrii (1977)).

Further development of Pontryagin's ideas
resulted in the Method of Resolving Functions,
one of the most powerful methods of dynamic
game theory, which justi�es, in particular, the
rule of pursuit along straight ray and the classi-

cal rule of parallel approach, well-known to
rocket designers and controllers (Chikrii 1992;
Eidel'man and Chikrii 2000; Chikrii et al. 2007;
Chikrii and Rappoport 2012; Chikrii 2014).

The essence of the Method of Resolvi-
ng Functions is in the construction of some
numeric resolving function of the known
parameters of the process. The resolving
function outlines the course of the process. At
the moment at which its integral turns into
unit, the trajectory of the process hits the
terminal set.

It is necessary to apply ordinary di�erential
equations to the investigation of mathemati-
cal models of di�erent physical and techni-
cal objects. But this is not enough. Appli-
cation of functional di�erential equations is
more appropriate in such situations. The
development of functional di�erential equation
theory is connected with Bellman and Cooke
(1963), Hale (1977), and Halanay (1966).

Baranovskaya (1999) obtained a general
scheme of the Method of Resolving Functions
for local convergence problems with �xed time,
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which are described by a system of di�erential-
di�erence equations of delay-type

ż(t) = Az(t) +Bz(t− τ) + φ(u, v),

z ∈ Rn, u ∈ U, v ∈ V,

where A,B are square matrices of order n×n,
φ(u, v), φ : U×V → Rn is a jointly continuous
function, U ∈ K(Rn), V ∈ K(Rn), τ = const
> 0.

In this paper, we investigate the local
convergence problem with �xed time, whi-
ch is described by a system of di�erential-
di�erence equations of delay-type in the form
of Riemann-Stieltjes integrals. Necessary and
su�cient conditions for solvability of such
problems are established. Results obtained by
the Method of Resolving Functions for such
con�ict-controlled process also compared to
Pontryagin's First Direct Method.

Section 2 discusses some results from
di�erential-di�erence equations theory and
presents Cauchy's formula for a system of
di�erential-di�erence equations with time lag.

Section 3 presents several auxiliary results
from the theory of set-valued maps given in a
form convenient for further implementation.

Section 4 is dedicated to solving of local
convergence problem with �xed time for
di�erential-di�erence games.

Section 5 presents a connection between
results obtained by the Method of Resolvi-
ng Functions with Pontryagin's First Direct
Method.
2 Di�erential-Di�erence Equations wi-

th Time Delay
The facts exposed in this section deal with a
situation with one actor, only. We need them
later in the game setting. Let us consider a
system of di�erential-di�erence equations of
delay-type studied by Halanay (1966) (p. 362)

ẋ(t) =

0∫
−∞

x(t+ s)dsη(t, s) + f(t), (1)

where

(a) ηij(t, s) are de�ned for t ≥ 0, −∞ ≤ s ≤
∞, ηij(t, s) = 0 for s ≥ 0;

(b) there exist functions τij(t) > 0, Vij(t) > 0,
bounded for t ≥ 0 such that

ηij(t, s) ≡ ηij(t,−τij(t)) for s ≤ −τij(t),

∨s=0
s=−τij(t)ηij(t, s) ≤ Vij(t),

where, as usual, ∨s=βs=αf(s) means the total
variation of function f in [α, β]. We set τ =
supi,j,tτij(t);

(c) ηij(t, s) are continuous in t, uniformly with
respect to s.

The adjoint system will be

d

dα
[y(α)+

0∫
−τ

η(α−β, β)y(α−β)dβ] = 0. (2)

System (2) may also be represented as

y(α) +

0∫
−τ

η(α− β, β)y(α− β)dβ = const

or

y(α) +

α+τ∫
α

η(γ, α− γ)y(γ)dγ = const.

Then, for a �xed σ we have

y(α) +
α+τ∫
α

η(γ, α− γ)y(γ)dγ =

= y(σ) +
σ+τ∫
σ

η(γ, σ − γ)y(γ)dγ

or

y(α) +
σ∫
α

η(γ, α− γ)y(γ)dγ =

= y(σ) +
σ+τ∫
σ

η(γ, σ − γ)y(γ)dγ −

−
α+τ∫
σ

η(γ, α− γ)y(γ)dγ.

If the function y is de�ned on [σ, σ + τ ], then
for σ − τ ≤ α ≤ σ the function

y(σ) +
σ+τ∫
σ

η(γ, σ − γ)y(γ)dγ −
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−
α+τ∫
σ

η(γ, α− γ)y(γ)dγ

is well de�ned and y(α) can be de�ned for
values of α from the interval [σ − τ, σ]. If y
is well de�ned on [σ− τ, σ] we can de�ne it by
the same procedure on [σ−2τ, σ−τ ], and thus
through the step-by-step method ([σ− 2τ, σ−
τ ] → [σ − 3τ, σ − 2τ ] and so on) we can deri-
ve a theorem of the existence and uniqueness
for equation (2). If the initial function de�ned
on [σ, σ + τ ] is of bounded variation then the
solution de�ned by it is of bounded variation,
and if the initial function is continuous, the
solution is continuous as well.

Let us consider the matrix solution
of equation (2) de�ned by the condition
Y (α, σ) = 0 for σ < α ≤ σ + τ, Y (σ, σ) = E.
Then

Y (α, σ) +

α+τ∫
α

η(γ, α− γ)Y (γ, σ)dγ = E.

Let x(t) be an arbitrary solution of system
(1) and y(t) be an arbitrary solution of system
(2).

We consider
t∫
σ

ẋ(α)y(α)dα +
t∫
σ

x(α)dy(α) =

= x(t)y(t)− x(σ)y(σ).

The left hand side of the equation, after the
substitution of (1) and (2), can be represented
as

t∫
σ

[
0∫
−τ
x(α + s)dsη(α, s)]y(α)dα−

−
t∫
σ

x(α)dα
α+τ∫
α

η(γ, α− γ)y(γ)dγ +

+
t∫
σ

f(α)y(α)dα =

=
t∫
σ

[
α∫

α−τ
x(s)dsη(α, s− α)]y(α)dα−

−
t∫
σ

x(α)dα
α+τ∫
α

η(γ, α− γ)y(γ)dγ +

+
t∫
σ

f(α)y(α)dα.

Considering that

ds
r(s)∫
p(s)

φ(s, α)dα = [φ(s, r(s))(r(s))′ −

−φ(s, p(s))(p(s))′ +
r(s)∫
p(s)

φ′s(s, α)dα]ds

we can change integral bounds according to the
Fig. 1.

Fig. 1. Integral bounds;

Then we obtain

x(t)y(t)− x(σ)y(σ) =

=

σ∫
σ−τ

x(s)ds

s+τ∫
σ

η(α, s− α)y(α)dα−

−
σ∫

σ−τ

x(s)η(α,−τ)y(s+ τ)ds+


A

+

t−τ∫
σ

x(s)ds

s+τ∫
s

η(α, s− α)y(α)dα−

−
t−τ∫
σ

x(s)η(α,−τ)y(s+ τ)ds+


B

+

t∫
t−τ

x(s)ds

t∫
s

η(α, s− α)y(α)dα

︸ ︷︷ ︸
C

−
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−
t∫

σ

x(s)ds

s+τ∫
s

η(α, s− α)y(α)dα+

+

t∫
σ

f(α)y(α)dα.

From this we derive

x(t)y(t)− x(σ)y(σ) =

=
σ∫

σ−τ
x(s)ds

s+τ∫
σ

η(α, s− α)y(α)dα−

−
t∫

t−τ
x(s)ds

s+τ∫
s

η(α, s− α)y(α)dα−

−
t∫

t−τ
x(s)ds

s∫
t

η(α, s− α)y(α)dα−

−
t∫
σ

x(s− τ)η(α,−τ)y(s)ds+

+
t∫
σ

f(α)y(α)dα.

This equation also can be written as

x(t)y(t)− x(σ)y(σ) =

=
σ∫

σ−τ
x(s)ds

s+τ∫
σ

η(α, s− α)y(α)dα−

−
t∫

t−τ
x(s)ds

s+τ∫
t

η(α, s− α)y(α)dα−

−
t∫
σ

x(s− τ)η(α,−τ)y(s)ds+

+
t∫
σ

f(α)y(α)dα.

Therefore,

x(t)y(t) +
t∫

t−τ
x(s)ds

s+τ∫
t

η(α, s− α)y(α)dα =

= x(σ)y(σ) +
σ∫

σ−τ
x(s)ds

s+τ∫
σ

η(α, s− α)y(α)dα−

−
t∫
σ

x(s− τ)η(α,−τ)y(s)ds+

+
t∫
σ

f(α)y(α)dα.

Using the same procedure for the solution x(t)
of system (1) and the matrix solution Y (α, σ)
of system (2) we have

x(t)Y (t, t)− x(σ)Y (σ, t) =

=
σ∫

σ−τ
x(s)ds

s+τ∫
σ

η(α, s− α)Y (α, t)dα +

+
t∫

t−τ
x(s)ds

t∫
s

η(α, s− α)Y (α, t)dα +

+
t−τ∫
σ

x(s)ds
s+τ∫
s

η(α, s− α)Y (α, t)dα−

−
t∫
σ

η(α,−τ)x(s− τ)Y (s, t)ds+

+
t∫
σ

f(α)Y (α, t)dα.

From this we obtain

x(t) = x(σ)Y (σ, t) +

+
σ∫

σ−τ
x(s)ds

s+τ∫
σ

η(α, s− α)Y (α, t)dα +

+
t∫
σ

f(α)Y (α, t)dα−

−
t∫
σ

η(α,−τ)x(s− τ)Y (s, t)ds+

+
t∫
σ

x(α)dα[Y (α, t) +

+
α+τ∫
α

η(β, α− β)Y (β, t)dβ].

Considering that

Y (α, t) +

α+τ∫
α

η(β, α− β)Y (β, t)dβ = E,

where E is the unit matrix, we get

x(t) = x(σ)Y (σ, t) +

+
σ∫

σ−τ
x(s)ds

s+τ∫
σ

η(α, s− α)Y (α, t)dα−

−
t∫
σ

η(α,−τ)x(s− τ)Y (s, t)ds+

+
t∫
σ

f(α)Y (α, t)dα.
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Let X(t, σ) be the matrix whose rows for
t > σ are solutions of a homogeneous system,
X(t, σ) = 0 for t < σ, X(σ, σ) = E. It will
then follow that X(t, σ) = Y (σ, t).

Thus we �nally obtain

x(t) = x(σ)X(t, σ) +

+
σ∫

σ−τ
x(s)ds

s+τ∫
σ

η(α, s− α)X(t, α)dα−

−
t∫
σ

η(α,−τ)x(s− τ)X(t, s)ds+

+
t∫
σ

f(α)X(t, α)dα.

In the following remark points (a), (b), (c)
look almost like points (a), (b), (c) at the begi-
nning of Section 2. The only di�erences are
ηij(t, s) = ηij(t, 0) at point (a) and ηij(t, s) ≡ 0
at point (b).

Remark 1. For the system of di�erential-
di�erence equations of delay-type

ẋ(t) =

0∫
−∞

x(t+ s)dsη(t, s) + f(t),

where

(a) ηij(t, s) are de�ned for t ≥ 0, −∞ ≤ s ≤
∞, ηij(t, s) = ηij(t, 0) for s ≥ 0;

(b) there exist functions τij(t) > 0, Vij(t) > 0,
bounded for t ≥ 0 such that

ηij(t, s) ≡ 0 for s ≤ −τij(t),

∨s=0
s=−τij(t)ηij(t, s) ≤ Vij(t),

where, as usual, ∨s=βs=αf(s) means the total
variation of the function f on [α, β]. We
set τ = supi,j,tτij(t);

(c) ηij(t, s) are continuous in t, uniformly with
respect to s.

the solution can be represented in the form [
Halanay (1966) (p. 366)]

x(t) = x(σ)X(t, σ) +

+
σ∫

σ−τ
x(s)ds

s+τ∫
σ

η(α, s− α)X(t, α)dα +

+
t∫
σ

f(α)X(t, α)dα,

where X(t, s) is the matrix whose rows for t >
s are solutions of the homogeneous system and
has the following properties:

1. X(t, s) ≡ 0, for t < s;

2. X(t, t) = E, E - unit matrix;

Example 1. We consider the system of
di�erential-di�erence equations

ẋ(t) =

0∫
−∞

x(t+s)dsη(t, s) + φ(t), x ∈ Rn,

(3)
where

η(t, s) =


0, s ∈ (−∞,−τ ],
B, s ∈ (−τ, 0),
A+B, s ∈ [0,+∞),

τ(t) = τ = const.

Then system (3) can be represented in the
form

ẋ(t) =
0∫
−∞

x(t+ s)dsη(t, s) + φ(t) =

= Ax(t) + Bx(t− τ) + φ(t).

The solution of system (3) can be written in
the form (Remark 1)

x(t) = x0(0)X(t, 0) +

+
0∫
−τ
x(s)ds

s+τ∫
0

η(α, s− α)X(t, α)dα +

+
t∫
0

φ(s)X(t, s)ds,

For 0 ≤ α ≤ s+ τ we have −τ ≤ s− α ≤
s ≤ 0. I.e.

η(α, s− α) = B for −τ ≤ s− α ≤ 0.
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Thus we have �nally obtained

x(t) = x0(0)X(t, 0) +

+B
0∫
−τ
x(s)X(t, s+ τ)ds+

+
t∫
0

φ(s)X(t, s)ds,

which is Cauchy's formula for the system of
di�erential-di�erence equations of delay type
with constant delay [ Bellman and Cooke
(1963) (p. 201) ].

3 Auxiliary Mathematical Results
We will need the following nine lemmas for the
proof of Theorem 1 in Section 4.

Lemma 1. Let the map F (x, y), F : X ×Y →
K(Rn), X, Y ∈ K(Rn) be continuous. Then the
map G(x) =

∩
y∈Y

F (x, y) is upper semiconti-

nuous on the set X ∩ domG. [Chikrii (1997)
(p.14)]

Lemma 2. Let X ∈ K(Rn), F (x), F : X →
K(Rn) be a measurable (Borel) map. Then the
selection

f(x) = lex min F (x), x ∈ X,

is measurable (Borel). [Chikrii (1997) (p.15)]

Lemma 3. Let X ∈ K(Rn), T > 0, f(t, x) :
[0, T ] ×X → R be a bounded, measurable in t
and upper semicontinuous in x function. Then
the function f(t) = inf

x∈X
f(t, x) is measurable

on [0, T ]. [Io�e and Tihomirov (1979) (p. 345)]

Lemma 4. Let X, Y, Z ∈ K(Rn), a functi-
on f(x), f : X → Y be Lebesgue measurable
(Borel), function g(y), g : Y → Z, -
Borel (upper semicontinuous). Then the functi-
on h(x) = g(f(x)), h : X → Z is
Lebesgue measurable (Borel) [Io�e and Ti-
homirov (1979) (p. 345)].

Lemma 5. Let X, Y,M ∈ K(Rn) and
F (x, y), F : X × Y → K(Rn) be upper semi-
continuous set-valued map, f(x), f : X → Rn

be continuous, f(X) ∩ M = ∅ and con(M −
f(x)) ∩ F (x, y) ̸= ∅ for all x ∈ X, y ∈ Y .

Then the function α : X × Y → R, de�ned by
the formula

α(x, y) = max{α ≥ 0 :

α(M − f(x)) ∩ F (x, y) ̸= ∅}

is upper semicontinuous on the set X×Y . [Chi-
krii (1997) (p.17)]

Lemma 6. Let X ∈ K(Rn), f(s, x), f :
[0, T ] × X → R be a measurable in s and
continuous in x function, uniformly bounded
on [0, T ]×X. Then

inf
x(·)∈Ωx

T∫
0

f(s, x(s))ds =

T∫
0

inf
x∈X

f(s, x)ds,

where Ωx = {x(·) : x(t) ∈ X, t ≥
0, x(t) is measurable}. [Io�e and Tihomirov
(1979) (p. 356)]

Lemma 7. Let X ∈ K(Rn), λ(x), λ : Rn →
R be an upper semicontinuous (measurable)
function. Then the map λ(x) · X is Borel
(measurable). [Chikrii (1997) (p.15)]

Lemma 8. Let X ∈ K(Rn), set-valued maps
F (x), F : X → K(Rn) and G(x), G :
X → K(Rn) be meadurable (Borel), functi-
on f(x, y), x ∈ X, y ∈ Y, f(x, y) ∈ Rn be
measurable (Borel) in x ∈ X and continuous
in y ∈ Y . Then the set-valued map

H(x) = {y ∈ G(x) : f(x, y) ∈ F (x)}

is measurable (Borel). [Chikrii (1992) (p.26)]

Lemma 9. Let X ∈ K(Rn), α(s), α : [0,∞)→
R be a nonnegative bounded measurable functi-
on. Then

T∫
0

α(s)Xds =

T∫
0

α(s)ds · coX, T > 0.

[Io�e and Tihomirov (1979) (p. 349)]

4 Di�erential-Di�erence Games of
Delay-Type with Variable Delay

We consider a pursuit problem given by the
system of the di�erential-di�erence equations
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of delay-type studied by Halanay (1966) (p.
362)

ż(t) =
0∫
−∞

z(t+ s)dsη(t, s) + φ(u, v),

z ∈ Rn, u ∈ U, v ∈ V, (4)

where

(a) ηij(t, s) are de�ned for t ≥ 0, −∞ ≤ s ≤
∞, ηij(t, s) = ηij(t, 0) for s ≥ 0;

(b) there exist functions τij(t) > 0, Vij(t) > 0,
bounded for t ≥ 0 such that

ηij(t, s) ≡ 0 for s ≤ −τij(t),

∨s=0
s=−τij(t)ηij(t, s) ≤ Vij(t),

where, as usual, ∨s=βs=αf(s) means the total
variation of a function f on [α, β]. We set
τ = supi,j,tτij(t);

(c) ηij(t, s) are continuous in t, uniformly with
respect to s.

φ(u, v), φ : U×V → Rn is a jointly continuous
function, U ∈ K(Rn), V ∈ K(Rn).

The initial state of system (4) is an
absolutely continuous function

z(t) = z0(t), t ∈ [−τ, 0].
At a moment t we have

zt(·) = {z(t+ s),−τ ≤ s ≤ 0}.
The terminal set is cylindrical and will be

denoted by

M∗ =M0 +M (5)

where M0 is a linear subspace of Rn, M
is a nonempty compact in the orthogonal
complement L toM0 in Rn. We consider a local
convergence problem with a �xed time. We wi-
ll use the symbol π to denote the orthogonal
projection from Rn to L. Let us denote the set-
valued maps

W (t, s, v) = πX(t, s)φ(U, v),

W (t, s) =
∩
v∈V

W (t, s, v), t ≥ 0

where X(t, σ) is the matrix whose rows for
t > σ are solutions of homogeneous system
X(t, σ) = 0, for t < σ X(σ, σ) = E.

Condition 1. (Pontryagin's condition)
W (t, 0) ̸= ∅ for all t ≥ 0.

As the matrix X(t, s) is continuous, the set-
valued mapW (t, s, v) is also continuous on the
set [0,+∞) × V . Consequently, when condi-
tion 1 is performed, by Lemma 1 W (t, 0) is
upper semicontinuous and therefore a Borel
map. Hence, by Lemma 2, there exists at least
one Borel selection γ(t, s), γ(t, s) ∈ W (t, 0),
t ≥ 0.

From now on, Γ = {γ(·, ·) ∈ Γ, t ≥ 0}
denotes the set of all Borel selections of the
set-valued map W (t, 0). Fix some γ(·, ·) ∈ Γ,
put

ξ(t, z0(·), γ(·, ·)) = πX(t, 0)z0(0) +

+
0∫
−τ
πz0(s)ds

s+τ∫
0

η(α, s− α)X(t, α)dα +

+
t∫
0

γ(t, s)ds (6)

and look at the following resolving function

α(t, s, z0(·), v, γ(·, ·)) =
sup{α ≥ 0 : [W (t, s, v)− γ(t, s)] ∩
∩α[M − ξ(t, z0(·), γ(·, ·))] ̸= ∅} (7)

where 0 ≤ s ≤ t, z ∈ Rn, v ∈ V .

Since 0 ∈ W (t, s, v) − γ(t, s) for all v ∈
V, 0 ≤ s ≤ t, for ξ(t, z0(·), γ(·, ·)) ∈M we have
that the function α(t, s, z0(·), v, γ(·, ·)) = +∞
for all s ∈ [0, t], v ∈ V . If ξ(t, z0(·), γ(·, ·)) /∈M
then resolving function (7) takes �nite values
which are uniformly bounded jointly in s ∈
[0, t], v ∈ V .

Let us de�ne the function

T (z0(·), γ(·, ·)) = inf{t ≥ 0 :
t∫
0

inf
v∈V

α(t, s, z0(·), v, γ(·, ·))ds ≥ 1},

γ ∈ Γ. (8)

If the inequality in the braces does not hold
for all t ≥ 0, then we set T (z0(·), γ(·, ·)) = +∞.
If ξ(t, z0(·), γ(·, ·)) /∈ M then by Lemma 3
the function inf

v∈V
α(t, s, z0(·), v, γ(·, ·))

is measurable in s. The function
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α(t, s, z0(·), v, γ(·, ·)) is a jointly Borel function
by Lemma 4 and is uniformly bounded in s, v
by Lemma 5. Consequently, by Lemma 6 the
function inf

v∈V
α(t, s, z0(·), v, γ(·, ·)) is integrable

on [0, t]. If ξ(t, z0(·), γ(·, ·)) ∈ M then
inf
v∈V

α(t, s, z0(·), v, γ(·, ·)) = +∞, s ∈ [0, t], and

it is natural to set the integral equal to +∞,
therefore the inequality in the de�nition of
function T (z0(·), γ(·, ·)) holds automatically.

Theorem 1. Let Condition 1 hold for the
con�ict-controlled process (4), (5), M be a
convex set, T (z0(·), γ0(·, ·)) < +∞ for initi-
al position z0(·), and some selection γ0(·, ·) ∈
Γ. Then the trajectory of process (4) can be
brought from the initial position z0(·) to the
terminal set at moment T (z0(·), γ0(·, ·)).

Outline of the proof.
We consider two cases: ξ(t, z0(·), γ0(·, ·)) /∈

M and ξ(t, z0(·), γ0(·, ·)) ∈ M . For the case
ξ(t, z0(·), γ0(·, ·)) /∈ M we set the pursuer's
control on two intervals: active [0, t∗] and passi-
ve [t∗, T ]. For the case ξ(t, z0(·), γ0(·, ·)) ∈ M
we choose the pursuer's control on a whole
interval [0, T ). According to Cauchy's formula
and taking into account the pursuer's control
law we obtain the desired results.
5 Connection with Pontryagin's First

Direct Method
Theorem 2. (Pontryagin's theorem) Let
Condition 1 hold for the con�ict-controlled
process (4), (5) and for some initial state z0(·)
: P (z0(·)) < +∞, where

P (z0(·)) = min{t ≥ 0 : πX(t, 0)z0(0) +

+
0∫
−τ
πz0(s)ds

s+τ∫
0

η(α, s− α)X(t, α)dα ∈

∈M −
t∫
0

W (t, s)ds}. (9)

Then the trajectory of process (4) can be
brought from the initial position z0(·) to the
terminal set at moment P (z0(·)).

Proof.
Denote P0 = P (z0(·)). Then

πX(t, 0)z0(0) +

+
0∫
−τ
πz0(s)ds

s+τ∫
0

η(α, s− α)X(t, α)dα ∈

∈M −
t∫
0

W (t, s)ds.

This means there exist m ∈M and a selection
γ(·, ·) ∈ Γ such that

πX(t, 0)z0(0) +

+
0∫
−τ
πz0(s)ds

s+τ∫
0

η(α, s− α)X(t, α)dα =

= m−
t∫
0

γ(t, s)ds.

Let us consider the set-valued map

U(s, v) = {u ∈ U : πX(P0, s)φ(u, v)−
−γ0(P0, s) = 0}, s ∈ [0, P0], v ∈ V. (10)

It is Borel jointly in s, v. The selection

u(s, v) = lexminU(s, v)

is a Borel function jointly in s, v by Lemma 2.
We set the pursuer's control on the interval
[0, P0] equal to

u(s) = u(s, v(s)).

According to (10), in view of (9), we get

πz(P0) = πX(P0, 0)z
0(0) +

+
0∫
−τ
πz0(s)ds

s+τ∫
0

η(α, s− α)X(P0, α)dα +

+
P0∫
0

πX(P0, s)φ(u(s), v(s))ds =

= m ∈M. (11)

This completes the proof of the theorem.

Theorem 3. Suppose Condition 1 hold for
con�ict-controlled process (4), (5). Then for
any initial state z0(·) there exists a selection
γ0(·, ·) ∈ Γ such that

T (z0(·), γ0(·, ·)) ≤ P (z0(·)).

Proof.
Let T = T (z0(·), γ0(·, ·)) be the moment of

the end of the game. Considering

T (z0(·), γ0(·, ·)) = inf{t ≥ 0 :
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t∫
0

infv∈V α(t, s, z
0(·), v, γ0(·, ·))ds ≥ 1}

we suppose that at moment t∗ the integral of
the resolving function is equal 1, that means
t∗∫
0

α(t, s, z0(·), v, γ0(·, ·))ds = 1, and on the

interval [t∗, T ] it is natural to set α = 0. That

means that
t∫
0

α(t, s, z0(·), v, γ0(·, ·))ds ≤ 1 for

t ∈ [0, T ]. Thus α(t, s, z0(·), v, γ0(·, ·)) ̸=∞ for
all t ∈ [0, T ]. Since for ξ(t, z0(·), γ0(·, ·)) ∈ M
we have α(t, s, z0(·), v, γ0(·, ·)) = +∞, one gets
ξ(t, z0(·), γ0(·, ·)) /∈ M ∀t ∈ [0, T ]. Therefore
∀t ∈ [0, T ] @m ∈M such that

πX(t, 0)z0(0) +

+
0∫
−τ
πz0(s)ds

s+τ∫
0

η(α, s− α)X(t, α)dα +

+
t∫
0

γ(t, s)ds = m.

I.e. for all t ∈ [0, T ]

πX(t, 0)z0(0) +

+
0∫
−τ
πz0(s)ds

s+τ∫
0

η(α, s− α)X(t, α)dα /∈

/∈M −
t∫
0

W (t, s)ds.

This means that on the interval [0, T ]
Pontryagin's theorem does not hold and there
is no P (z0(·)) such that the trajectory of
process (4) can be brought from the initial
position z0(·) to the terminal set.

If P (z0(·)) is the moment of the end of
the game then, by the virtue of Pontryagin's
theorem,

πX(t, 0)z0(0) +

+
0∫
−τ
πz0(s)ds

s+τ∫
0

η(α, s− α)X(t, α)dα ∈

∈M −
t∫
0

W (t, s)ds.

Therefore there are m ∈ M and a selection
γ0(·, ·) ∈ Γ such that

πX(t, 0)z0(0) +

+
0∫
−τ
πz0(s)ds

s+τ∫
0

η(α, s− α)X(t, α)dα =

= m−
t∫
0

γ0(t, s)ds

or
ξ(t, z0(·), γ0(·, ·)) = m ∈M.

It follows that if the resolving function
satis�es α(t, s, z0(·), v, γ0(·, ·)) = +∞, then
t∫
0

α(t, s, z0(·), v, γ(·, ·))ds = +∞ > 1. Thus

by the Method of Resolving Functions we
can �nish the game at the moment T =
T (z0(·), γ0(·, ·)). It follows that if the resolvi-
ng function satis�es

T (z0(·), γ0(·, ·)) ≤ P (z0(·)).

This completes the proof of the theorem.
6 Conclusions
In this article we present a general scheme
of the Method of Resolving Functions for
the local convergence problem with �xed ti-
me. The con�ict-controlled process is described
by a system of di�erential-di�erence equati-
ons of delay-type with variable delay. The
performance of these su�cient conditions of
Theorem 1 is enough for capturing the evader
at a �xed moment of time. If the evader makes
mistakes then in the course of pursuit there
is a moment of switching from the Method
of Resolving Functions to Pontryagin's First
Direct Method. As the result, the process hi-
ts the terminal set at the predetermined ti-
me. Analyzing Theorem 2 one can also get
su�cient conditions for capturing the evader
at a �xed moment of time. Results obtai-
ned by the Method of Resolving Functions for
such con�ict-controlled process we compare to
Pontryagin's First Direct Method.
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