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A NONLOCAL MULTIPOINT PROBLEM FOR A DIFFERENTIAL
OPERATOR EQUATION OF SECOND ORDER

Âñòàíîâëåíî ðîçâ'ÿçíiñòü íåëîêàëüíî¨ áàãàòîòî÷êîâî¨ çàäà÷i äëÿ åâîëþöiéíîãî ðiâíÿííÿ
äðóãîãî ïîðÿäêó âiäíîñíî ÷àñîâî¨ çìiííî¨ ç îïåðàòîðîì, ñïåêòð ÿêîãî äèñêðåòíèé. Íåëîêàëü-
íà óìîâà çàäîâîëüíÿ¹òüñÿ â ñëàáêîìó ðîçóìiííi ó ïðîñòîði ôîðìàëüíèõ ðÿäiâ Ôóð'¹, ÿêi
îòîòîæíþþòüñÿ ç ëiíiéíèìè íåïåðåðâíèìè ôóíêöiîíàëàìè (óçàãàëüíåíèìè åëåìåíòàìè íà
ïðîñòîði, ïîâ'ÿçàíîìó ç äàíèì îïåðàòîðîì).

We establish the solvability of a nonlocal multipoint problem for a second order evolution
equation with respect to time variable with an operator having discrete spectrum. A nonlocal
condition is considered to be satis�ed in the weak sense in the space of formal Fourier series that
are identi�ed with continuous linear functionals (generalized elements) on some space connected
with a given operator.

1. Introduction

The theory of nonlocal boundary value
problems, as a part of general partial boundary
value problems theory, has been extensively
developed from the 70th of the previous
century. The study of such problems is due
to a number of applications in mechanics,
physics, chemistry, biology, ecology and other
natural sciences that appear in mathematical
modeling of di�erent processes [1�7]. Dezin [8]
was the �rst who pointed out on the advi-
sability to use nonlocal conditions in view
of general boundary value problems theory.
He has been investigated solvable extensions
of di�erential operators generated by a di-
�erentiation operation with constant coe�ci-
ents. He has shown that, in order to set a
well posed boundary value problem, one has
to use both local and nonlocal conditions.
Afterwards, the investigations started by Dezin
have been developed by Romanko [9], Junusov
[10], Mamyan [11], Makarov [12] and others.

Nonlocal boundary value problems in di-
�erent contexts have been investigated by
many mathematicians, who have used di-
�erent methods and approaches (Nakhushev
[13], Samarsky [14], Ptashnyk [15], Chesalin
[16], Skubachevsky [17] and others). They
have obtained important results concerning
the setting, well solvability and constructi-

on of solutions, investigated dependence of
the solvability type on the behavior of
operation symbols, stated the regularity and
non-regularity conditions of boundary value
problems for essential types of di�erential-
operator equations. As a problem of the kind,
one can consider a nonlocal multipoint with
respect to time problem which generalizes a
Cauchy problem, where the initial condition
u(t, ·)|t=0 = f is replaced with the following
one

m∑
k=0

αku(t, ·)|t=tk = f, (1)

t0 = 0, {t1, . . . , tm} ⊂ (0, T ],

where {α0, α1, . . . , αm} ⊂ R and m ∈ N are
�xed numbers (if α0 = 1, α1 = α2 = · · · =
αm = 0 then we obtain a Cauchy problem).

In this paper we study a nonlocal multi-
point problem with condition (1) for a second
order di�erential-operator equation with a
nonnegative self-adjoint operator on a Hilbert
space with discrete spectrum. The positive
and negative spaces corresponding to such an
operator are contained in the space of the
formal Fourier series that are identi�ed with
certain continuous linear functionals (generali-
zed elements). We de�ne an abstract convoluti-
on operator on the space of formal Fourier seri-
es via which the above self-adjoint operator is
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considered as a convolution operator. On the
base of such an approach we prove the solvabi-
lity of a nonlocal multipoint problem, build
a fundamental solution G(t), t ∈ (0, T ] and
study its properties and structure. A solution
u(t) is represented as the convolution G(t) ∗ g,
where g is a continuous linear functional on a
suitable subspace X of main elements (X ⊂
H ⊂ X ′, H a Hilbert space, X ′ is the topologi-
cally conjugate space to X). Remark that u(t),
G(t) ∈ X for all t ∈ (0, T ], however (1) is
satis�ed for u(t) in the weak sense, that is,
m∑
k=0

αk lim
t→tk

u(t) = f , f ∈ X ′, where the limits

are taken in the space X ′ which is, in certain
sense, �maximal� space of elements (continuous
linear functionals) for setting of a nonlocal
multipoint problem, every solution of which
has the same properties as the fundamental
solution.
2. Spaces of main and generalized

elements. Formal Fourier series
Let H be an in�nite dimensional separable

Hilbert space with an inner product (·, ·)
and norm ∥ · ∥, A a nonnegative self-adjoint
operator with a dense in H domain D(A)
and discrete spectrum, (λk)∞k=1 a nondecreasi-
ng sequence of eigenvalues of A, λk ≥ 0,
lim

k→+∞
λk = +∞, in this case the condition∑

k:λk ̸=0

λ−p
k <∞ with some p > 0 is true; (ek)∞k=1

the orthonormal basis of H consisting of the
corresponding eigenvectors of A.

We set

Φm =
{
φ ∈ H : φ =

m∑
k=1

ck,φek, ck,φ ∈ C
}
,

Φ = lim
m→∞

indΦm

(the subspace Φ is dense in H and invariant
with respect to A). Denote by Φ′ the space of
all anti-linear continuous functionals on Φ with
the weak convergence(

Φ′ ∋ fn
Φ′
−→
n→∞

f ∈ Φ′
)
⇔(

⟨fn, φ⟩ −→
n→∞

⟨f, φ⟩, ∀φ ∈ Φ
)

(the symbol over the arrow denotes the space
in which the convergence is considered, ⟨f, φ⟩
means the action of f at an element φ).

By the correspondence

H ∋ φ −→ fφ ∈ Φ′ : ⟨fφ, ψ⟩ = (φ, ψ),

∀ψ ∈ Φ,

we de�ne an embedding H ⊂ Φ′. Thus, Φ ⊂
H ⊂ Φ′ with dense continuous embeddings.
Elements of Φ′ are called generalized elements.

Let s be the space of all numerical sequences
(ck)

∞
k=1, ck ∈ C, with the coordinate-wise

convergence. The isomorphism

F : Φ′ ∋ f → (ck = ⟨f, ek⟩)∞k=1 ∈ s

of Φ′ onto s sends Φ onto the set of all �nitely
nonzero sequences from s, and H onto ℓ2. By
means of the above isomorphism, the operator
A induces the operation (ck)

∞
k=1 → (λkck)

∞
k=1,

and we can extend A on Φ′ to a continuous
operator Â by Âf = F−1(λkck)

∞
k=1, Φ

′ ∋ f =
∞∑
k=1

ckek [18, p. 8�22].

Let f ∈ Φ′. The series
∞∑
k=1

ckek, where

ck = ⟨f, ek⟩, is called the Fourier series of
the element f , and the numbers ck the Fourier
coe�cients of f . For any f ∈ Φ′, the Fourier
series of f converges in Φ′ to f , and conversely,

every series
∞∑
k=1

ckek which converges in Φ′ to

some elements f ∈ Φ′ coincides with the Fouri-
er series of f [18]. Hence, the space Φ′ can be
considered as the space of formal series of the

form
∞∑
k=1

ckek.

We introduce some classes of elements
connected to the operator A. Consider an
increasing sequence (mn)n∈Z+ , m0 = 1 of posi-
tive numbers possessing the following properti-
es [18]:

1) ∀α > 0 ∃cα > 0 ∀n ∈ Z+: mn ≥ cα · αn;
2) ∃M > 0 ∃h > 0 ∀n ∈ Z+: mn+1 ≤

Mhnmn.
Examples of such sequences are Gevrey
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sequences of the form mn = (n!)β, mn = nnβ,
n ∈ Z+, where β > 0 is a �xed parameter.

Set

H∞(A) := lim
α→∞

prHα(A), Hα(A) = D(Aα) =

{
φ ∈ H

∣∣∣ ∞∑
k=1

λ2αk |ck(φ)|2 <∞
}
,

Aαφ =
∞∑
k=1

λαk ck(φ)ek, φ ∈ D(Aα), α > 0,

Hα⟨mn⟩ := {φ ∈ H∞(A)
∣∣∣∃c > 0 :

∥Anφ∥ ≤ cαnmn, n ∈ Z+}, α > 0.

Then the space Hα⟨mn⟩ ⊃ Φ is a Banach
space with respect to the norm ∥φ∥Hα⟨mn⟩ =
sup
n∈Z+

(∥Anφ∥/(αnmn)). We denote H∞⟨mn⟩ :=

lim
α→∞

indHα⟨mn⟩. Then Φ ⊂ H∞⟨mn⟩ ⊂
H∞(A) ⊂ H, and all the embeddings are
dense and continuous [18]. If by H ′

∞(A) and
H ′

∞⟨mn⟩ one denotes the spaces of anti-
linear continuous functionals on H∞(A) and
H∞⟨mn⟩ respectively then by [18], we obtain
the chain of dense continuous embeddingsH ⊂
H ′

∞(A) ⊂ H ′
∞⟨mn⟩ ⊂ Φ′. MoreoverH ′

∞⟨mn⟩ =
lim
α→∞

prH ′
α⟨mn⟩.

The spaces G{β}(A) := H∞⟨nnβ⟩, β > 0, are
called the Gevrey spaces of order β, generated
by the operator A; G{1}(A) equals the set of
analytic vectors of A [18].

Let

ρ0(λ) = sup
n∈Z+

(λn/mn), λ ∈ [1,+∞);

ρ(λ) =

{
1, λ ∈ [0, 1),
ρ0(λ), λ ∈ [1,+∞).

By the properties of the sequence (mn)n∈Z+ ,
the function ρ is continuous on [0,∞),
increases on [1,+∞) faster than any power of
λ [18].

The space H∞⟨mn⟩ coincides (see [18]) with
the inductive limit of the Hilbert spaces

H{α} =
{
f ∈ Φ′

∣∣∣ ∞∑
k=1

|ck(f)|2ρ2
(λk
α

)
<∞,

ck(f) = ⟨f, ek⟩
}
, α > 0,

with the inner product

(f, g)H{α} =
∞∑
k=1

ck(f)ck(g)ρ
2
(λk
α

)
,

{f, g} ⊂ H{α}.

In view of the behavior of the Fourier coe�ci-
ents of the elements, the spaces H∞⟨mn⟩ and
H ′

∞⟨mn⟩ are described as follows [18]:

(f ∈ H∞⟨mn⟩) ⇔ (∃µ > 0 ∃c > 0 ∀k ∈ N :
(A)

|ck(f)| ≤ cρ−1(µλk));

(f ∈ H ′
∞⟨mn⟩) ⇔ (∀µ > 0 ∃c = c(µ) > 0

(B)
∀k ∈ N : |ck(f)| ≤ cρ(µλk)).

If mn = nnβ, β > 0 then ρ0(λ) ∼ exp{λ1/β},
λ ∈ [1,+∞), so in this case for any f ∈ Φ′ one
has

(f ∈ G{β}(A)) ⇔ (∃µ > 0 ∃c > 0 ∀k ∈ N :

|ck(f)| ≤ c exp{−µλ1/βk });
(f ∈ G′

{β}(A)) ⇔ (∀µ > 0∃c = c(µ) > 0 ∀k ∈ N :

|ck(f)| ≤ c exp{µλ1/βk }).
3. Nonnegative self-adjoint operators

as convolutions operators

Let {f1, f2} ⊂ Φ′, f1 =
∞∑
k=1

ck(f1)ek, f2 =

∞∑
k=1

ck(f2)ek.

We de�ne an operation ∗ on the space
Φ′ called the abstract convolution or just
convolution by setting

f1 ∗f2 :=
∞∑
k=1

ck(f1)ck(f2)ek ≡
∞∑
k=1

ck(f1 ∗f2)ek,

so, f1 ∗ f2 is a generalized element of Φ′, the
Fourier coe�cients of which are connected with
the ones of the generalized elements f1 and f2
by ck(f1 ∗ f2) = ck(f1)ck(f2), k ∈ N.

Consider a sequence (mn)n∈Z+ generating
the spaces Hα⟨mn⟩ and H∞⟨mn⟩ of a special
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kind mn = n!ρn, where (ρn)n∈Z+ , ρ0 = 1, is a
sequence of nonnegative numbers which is: a)
decreasing; b) ∃ω > 1 ∀n ≥ 1: ρn−1/ρn ≤ ωn;
c) lim

n→∞
n
√
ρn = 0. In [19] it was proved that the

sequence (n!ρn) has properties 1), 2). As an
example of a sequence (ρn) with properties a)
� c) one can take the sequence ρn = (nβ)−nβ,
ρ0 = ρ1 = ρ2 = 1, where β ∈ (0, 1) is a �xed
parameter ( [19, p. 57]).

If mn = n!ρn then the function ρ de�ned by
that sequence is di�erentiable on [0,∞) [19],
and moreover,

∀{x1, x2} ⊂ [1,∞) : ρ(x1)ρ(x2) ≤ ρ(x1 + x2)

which is equivalent to

∀{x1, x2} ⊂ [1,+∞) :

ln ρ(x1) + ln ρ(x2) ≤ ln ρ(x1 + x2). (2)

Inequality (2) we will call the convexity
inequality for a function ln ρ.

Notice that the sequence (n!ρn) possesses
the condition lim

n→∞
n
√
n!ρn/n = 0 which implies

(see [20]) that ρ0(λ) ≥ c0e
cλ, λ ∈ [1,+∞) with

some constants c0, c > 0.
Lemma 1.

a) If {f1, f2} ⊂ H ′
∞⟨mn⟩ then f1 ∗ f2 ∈

H ′
∞⟨mn⟩.

b) For all φ ∈ H∞⟨mn⟩ and f ∈ H ′
∞⟨mn⟩

the convolution f ∗ φ belongs to the space
H∞⟨mn⟩.

Proof. a) It is enough to prove that the
Fourier coe�cients of ck(f1 ∗ f2) satisfy (B).

If {f1, f2} ⊂ H ′
∞⟨mn⟩, then (see (B))

∀µ1 > 0 ∃c1 = c1(µ1) > 0 ∀k ∈ N :

|ck(f1)| ≤ c1ρ(µ1λk),

∀µ2 > 0 ∃c2 = c2(µ2) > 0 ∀k ∈ N :

|ck(f2)| ≤ c2ρ(µ2λk).

Then, taking into account convexity inequality
(2) for ln ρ one has

|ck(f1 ∗ f2)| = |ck(f1)| · |ck(f2)| ≤

≤ c1c2ρ(µ1λk)ρ(µ2λk) =

= c1c2e
ln ρ(µ1λk)+ln ρ(µ2λk) ≤ c1c2e

ln ρ((µ1+µ2)λk) =

= cρ(µλk), c = c1c2, µ = µ1 + µ2.

Thus, f1 ∗ f2 ∈ H ′
∞⟨mn⟩.

b) Since φ ∈ H∞⟨mn⟩, we obtain (see (A))

∃µ > 0 ∃c > 0 ∀k ∈ N : |ck(φ)| ≤ cρ−1(µλk).

By (B) for µ1 = µ/2 there is c1 = c1(µ1) > 0
such that |ck(f)| ≤ c1ρ(µ1λk), k ∈ N. Then
convexity inequality (2) yields

ln ρ(µ1λk)− ln ρ(µλk) ≤ − ln ρ((µ− µ1)λk) ≡

≡ − ln ρ
(µ
2
λk

)
, k ∈ N.

Hence,

ρ(µ1λk)ρ
−1(µλk) = eln ρ(µ1λk)−ln ρ(µλk) ≤

≤ e
− ln ρ

(
µ
2
λk

)
= ρ−1

(µ
2
λk

)
, k ∈ N.

Thus, for the Fourier coe�cients of the
convolution f ∗ φ the following estimates hold

|ck(f ∗ φ)| ≤ c̃ρ−1(µ̃λk),

c̃ = c1c2, µ̃ = µ/2, k ∈ N,

that is, f ∗ φ ∈ H∞⟨mn⟩.
Let f : [0,∞) → [0,∞) be an increasing

continuous on [0,∞) function, lim
λ→+∞

f(λ) =

+∞. Then using the function f and the
operator A we de�ne the operator f(A) by

f(A)φ =

∞∫
0

f(λ)dEλφ, φ ∈ D(f(A)), (3)

where Eλ, λ ≥ 0 is the spectral function of the
operator A with the domain

D(f(A)) =
{
φ ∈ H

∣∣∣ ∞∫
0

f 2(λ)d(Eλφ, φ) <∞
}
,

D(f(A)) = H.

The operator f(A) is nonnegative self-adjoint
on H as well. The integral in the right hand
side of (3) actually is taken just over the
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spectrum σ(A) of A, which in our case is di-
screte and has a unique limited point at in�-
nity: σ(A) = {λk, k ∈ N}. The spectral functi-
on Eλ, λ ≥ 0 is piece-wise constant and is
discontinuous only at the points λk, k ∈ N.
Moreover, Eλk+0 − Eλk

is the projection onto
the subspace spanned by the eigenvalues of
A that correspond to the eigenvalue λk. The
corresponding eigenvalues ek, k ∈ N, form an
orthonormal basis of H, and hence

(Eλk+0 − Eλk
)φ = (φ, ek)ek ≡ ck(φ)ek, φ ∈ H.

The spectral function Eλ, λ ≥ 0 in this case
has the form

Eλφ =
∑
λk<λ

ck(φ)ek, φ ∈ H,

and integral (3) equals

f(A)φ =
∞∑
k=1

f(λk)ck(φ)ek, φ ∈ D(f(A)),

where f(λk), k ∈ N are the eigenvalues of f(A).
In the sequel, we shall use the notation

f(A) := Af .
The operator f(A) we extend to the conti-

nuous operator f̂(A) on Φ′ by

f̂(A)φ = F−1(f(λk)ck(φ))
∞
k=1,

Φ′ ∋ φ =
∞∑
k=1

ck(φ)ek.

Consider the generalized element Gf =
∞∑
k=1

f(λk)ek of the space Φ′ constructed by

a function f . Then f̂(A) is a convolution
operator which acts in the space Φ′ by setti-
ng

f̂(A)φ = Gf ∗ φ =
∞∑
k=1

f(λk)ck(φ)ek.

We de�ne the operator f(A) ≡ Af to be the
restriction of the operator f̂(A) to the subspace
H∞⟨mn⟩.
Lemma 2. An operator Af is continuous

on the space H∞⟨mn⟩ if and only if Gf ∈
H ′

∞⟨mn⟩.

Proof. Assume Gf ∈ H ′
∞⟨mn⟩. Then

∀µ > 0 ∃c = c(µ) > 0 ∀k ∈ N :

f(λk) ≤ cρ(µλk). (4)

By Lemma 1, Gf ∗ φ ∈ H∞⟨mn⟩ for all φ ∈
H∞⟨mn⟩. Hence, in this case the operator Af

is mapped the space H∞⟨mn⟩ into itself. We
show that Af in continuous on H∞⟨mn⟩, that
is, Af sends bounded subsets of this subspace
to bounded subsets (remark that the set of all
continuous operators on H∞⟨mn⟩ coincides wi-
th the set of all bounded operators [21]).

Let L be a bounded subset of H∞⟨mn⟩. Si-
nce H∞⟨mn⟩ =

∪
α>0

H{α}, the set L is bounded

in some Hilbert space H{α0}, i.e.

∃b > 0∀ψ ∈ L : ∥ψ∥2H{α0}
=

∞∑
k=1

|ck(ψ)|2ρ2
(λk
α0

)
≤ b,

or equivalently

∃b1 > 0 ∀ψ ∈ L : ∥ck(ψ)∥ ≤ b1ρ
−1
(λk
α0

)
, k ∈ N.

We set µ = (2α0)
−1 to inequality (4). Then

from (2) we deduce that

|ck(Afψ)|=f(λk)|ck(ψ)|≤cb1ρ−1
(( 1

α0

−µ
)
λk

)
=

= b2ρ
−1
(λk
α0

)
, k ∈ N,

where b2 = cb1. Taking into account (2), we
obtain

|ck(Afψ)| · ρ
( λk
4α0

)
≤ b2ρ

−1
( λk
2α0

)
ρ
( λk
4α0

)
=

= b2 exp
(
− ln ρ

( λk
2α0

)
+ ln ρ

( λk
4α0

))
≤

≤ b2 exp
(
− ln ρ

( λk
4α0

))
= b2ρ

−1
( λk
4α0

)
.

Since the function ρ(λ) grows on [1,+∞) faster
than any power of λ, by the above and by∑
k:λk ̸=0

λ−p
k < ∞ for some p > 0 the following

series converges
∞∑
k=1

|ck(Afψ)|2ρ2
( λk
4α0

)
.
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Thus, the set AfL is bounded in H{4α0}, and
therefore in H∞⟨mn⟩.

The converse statement is proved
analogously using convexity inequalities
(2).
Remark 1. The condition Gf ∈ H ′

∞⟨mn⟩
is equivalent to the following condition on f

∀µ > 0∃c = c(µ) > 0 :

f(λ) ≤ cρ(µλ), λ ∈ [0,∞). (5)

4. Nonlocal multipoint problem
Consider the following di�erential-operator

equation

u′′(t) = Afu(t), t ∈ (0, T ], 0 < T <∞, (6)

where Af is the operator constructed in Secti-
on , which is linear and continuous on the space
H∞⟨mn⟩. In what follows, we assume also that
the function f has the following property

∃µ0 > 0 ∃c0 > 0 : f(λ) ≥ c0 ln
2 ρ(µ0λ), (7)

λ ∈ [0,∞).
By a solution of equation (6) we mean a

function u: (0, T ] → H∞⟨mn⟩, twice strongly
di�erentiable on H, which ful�lls equation (6).

Theorem 1. For every ψ =
∞∑
k=1

ck(ψ)ek ∈

H ′
∞⟨mn⟩ the function

γ(t) =
∞∑
k=1

exp(−t
√
f(λk))ck(ψ)ek (8)

is a solution of (6).
Proof. We prove that γ(t) ∈ H∞⟨mn⟩ for

all t > 0. Since ψ ∈ H ′
∞⟨mn⟩,

∀µ > 0∃c = c(µ) > 0 : |ck(ψ)| ≤ cρ(µλk),
(9)

k ∈ N.
Taking into account (7), (9) and ck(γ(t)) =

ck(ψ) exp(−t
√
f(λk)) we obtain

|ck(γ(t))| ≤ cρ(µλk) exp(−t
√
f(λk)) ≤

≤ cρ(µλk) exp(−c1t ln ρ(µ0λk)),

where c1 =
√
c0 and c0 is the constant from (7).

The function ln ρ is convex on [0,∞), hence if

0 < c1t < 1 (for a �xed t) then the following
inequality holds

c1t ln ρ(µ0λk) ≥ ln ρ(c1tµ0λk) ≡ ln ρ(µ̃0λk),

where µ̃0 = c1tµ0. If for a �xed t ∈ (0, T ] one
has c1t > 1 then c1t = [c1t] + {c1t}. Hence

exp(−c1t ln ρ(µ0λk)) =

= exp(−{c1t} ln ρ(µ0λk)− [c1t] ln ρ(µ0λk)) ≤
≤ exp(−{c1t} ln ρ(µ0λk)).

Since 0 < {c1t} < 1, the present case is
reduced to the previous one. Thus, for every
t ∈ (0, T ]

|ck(γ(t))| ≤ c exp(ln ρ(µλk)− ln ρ(˜̃µ0λk)),

where ˜̃µ0 = µ̃0 or ˜̃µ0 = {c1t}µ0 (here t is �xed).
Take µ = ˜̃µ0/2 and use inequality (2) for ln ρ.
Then

|ck(γ(t))| ≤ c exp
(
− ln ρ

( ˜̃µ0

2
λk

))
=

= cρ−1
( ˜̃µ0

2
λk

)
, k ∈ N.

Thus, we have proved that u(t) ∈ H∞⟨mn⟩ for
all t > 0.

Now we prove the strong di�erentiability of
γ(t) on (0, T ]. To do this, it is enough to prove
that

Φt(∆t) =
∥∥∥γ(t+∆t)− γ(t)

∆t
− ω(t)

∥∥∥→ 0,

∆t→ 0,

where t ∈ (0, T ] is any �xed point and

ω(t) = −
∞∑
k=1

√
f(λk) exp(−t

√
f(λk))ckek.

Direct calculations show that Φ2
t (∆t) =

∞∑
k=1

a2k(∆t)|ck|2, where

|ak(∆t)| =
∣∣∣ 1
∆t

[exp(−(t+∆t)
√
f(λk))−

− exp(−t
√
f(λk))]+

√
f(λk) exp(−t

√
f(λk))

∣∣∣ =
=
√
f(λk)| exp(−t

√
f(λk))−
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− exp(−τ
√
f(λk))| =

= f(λk) exp(−τ1
√
f(λk))θ|∆t|,

τ = t+θ∆t, 0 < θ < 1, τ1 = t+θ1∆t, 0 < θ1 < 1.

If ∆t > 0, then taking into account (5) and
(7) we obtain

|ak(∆t)| ≤ f(λk) exp(−t
√
f(λk))∆t ≤

≤ cρ(µλk) exp(−tc1 ln ρ(µ0λk))∆t,

where c1 =
√
c0 and µ > 0 is an arbitrary �xed

parameter, c = c(µ) > 0.
Hence,

|ak(∆t)| ≤ c exp(ln ρ(µλk)− tc1 ln ρ(µ0λk))∆t.

Reasoning like above, we show that

exp(−tc ln ρ(µ0λk)) ≤ exp(− ln ρ(˜̃µ0λk)),

where ˜̃µ0 = c1tµ0 for 0 < c1t < 1 and ˜̃µ0 =
{c1t}µ0 for c1t > 1. Setting µ = ˜̃µ0/2 and using
the convexity inequality for the function ln ρ,
we obtain the next estimates

|ak(∆t)| ≤ c exp(ln ρ(µλk)− ln ρ(˜̃µ0λk))∆t ≤

≤ c exp(− ln ρ(˜̃µ0 − µ)λk)∆t =

= c exp
(
− ln ρ

( ˜̃µ0

2
λk

))
∆t =

= cρ−1
( ˜̃µ0

2
λk

)
∆t, k ∈ N. (10)

Since ψ ∈ H ′
∞⟨mn⟩, estimates (9) and (10)

(using also (2)) imply

|ak(∆t)| · |ck| ≤ c̃ρ−1(µ1λk), µ1 = ˜̃µ0/4, k ∈ N.

Hence, Φ2
t (∆t) ≤ ˜̃c∆t, where

˜̃c = c̃2
∞∑
k=1

ρ−1(µ1λk) ≤ b

∞∑
k=1

e−αλk <∞,

b, α > 0

(here we used that ρ(λ) ≥ c0e
cλ, λ ∈ [1,+∞)).

Thus we obtain the limit relation Φt(∆t) → 0,
∆t→ 0 for a �xed t ∈ (0, T ].

If ∆t < 0 then we choose ∆t to satisfy
τ = t + θ∆t ≥ t/2. Then we show that
Φt(∆t) → 0 for ∆t → 0 and a �xed t > 0.

From here we deduce the strong di�erentiabi-
lity of γ(t) on (0, T ]. Analogously we prove the
strong di�erentiability of γ′(t) on (0, T ]. Hence,
γ(t) ∈ C2((0, T ], H∞⟨mn⟩).

Observe that ω(t) ∈ H∞⟨mn⟩ for all t > 0.
The proof of this property uses the properties
of f , ln ρ and estimate (9) of the coe�cients
ck(ψ).

The function γ(t) ful�lls equation (6).
Indeed,

Af (γ(t)) ≡ f(A)γ(t) =
∞∑
k=1

f(λk)ck(γ(t))ek =

=
∞∑
k=1

f(λk) exp(−t
√
f(λk))ckek.

On the other hand, when proving the di-
�erentiability properties of γ(t) we established
that

γ′′(t) =
∞∑
k=1

f(λk) exp(−t
√
f(λk))ckek.

Thus, γ(t) is a solution of (6).
Remark 2. We introduce the following

notation

G̃(t) =
∞∑
k=1

exp(−t
√
f(λk))ek.

By the properties of f , we have that G̃(t) ∈
H∞⟨mn⟩ for all t > 0. Moreover, γ(t) =
G̃(t) ∗ ψ ∈ H∞⟨mn⟩, ∀ψ ∈ H ′

∞⟨mn⟩.
Hence the convolution operator G̃(t) ∗ · sends
every element of the space H ′

∞⟨mn⟩ (in parti-
cular, every element of the space H∞⟨mn⟩ ⊂
H ′

∞⟨mn⟩) to a solution of (6).
Setting problem: �nd a solution of equati-

on (6) of type (8) possessing the condition

µu(0)−
m∑

n=1

µnu(tn) = g, g ∈ H, (11)

where m ∈ N, {µ, µ1, . . . , µm} ⊂ (0,∞),
{t1, . . . , tm} ⊂ (0, T ] are �xed numbers, µ >
m∑

n=1

µn, t1 < t2 < · · · < tm. Here u(0) means

lim
t→+0

u(t), where the limit is considered in the
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space H (i.e. we assume that there is u0 ∈ H
such that ∥u(t) − u0∥ → 0, t → +0; u0 =
u(0)). The above problem we call the multi-
point problem for equation (6). Theorem and
Remark imply that problem (6), (11) can be
equivalently reposed as follows: �nd an element
ψ in the class H ′

∞⟨mn⟩ the convolution of whi-
ch by G̃(t) is a solution of (6) satisfying (11) (in
the indicated sense). To solve this problem, one
should �nd the coe�cients ck ≡ ck(ψ), k ∈ N
of such an element. In order to �nd ck, k ∈ N,
we multiply (11) by ek, k ∈ N in the sense of
the dot product, taking into account that

ck(γ(t)) ≡ ck(u(t)) = ck(G̃(t))ck(ψ),

ck(G̃(t)) = exp(−t
√
f(λk)).

Then we obtain

µck(G̃(0))ck(ψ)−
m∑

n=1

µnck(G̃(tn))ck(ψ) = ck(g),

ck(G̃(tn)) = exp(−tn
√
f(λk)), ck(G̃(0)) = 1.

Hence

ck(ψ) = ck(g)
(
µ−

m∑
n=1

µn exp(−tn
√
f(λk))

)−1

.

Now we set: Q1(t, λk) = exp(−t
√
f(λk)). Then

ck(ψ) = ck(g)
(
µ−

m∑
n=1

µnQ1(tn, λk)
)−1

.

Observe that(
µ−

m∑
n=1

µnQ1(tn, λk)
)−1

≤
(
µ−

m∑
n=1

µn

)−1

≡µ0,

that is, ck(ψ) = ck(g)Q2(λk), where Q2(λk) =(
µ−

m∑
n=1

µnQ1(tn, λk)
)−1

. Then

∞∑
k=1

|ck(ψ)|2 ≤ µ2
0

∞∑
k=1

|ck(g)|2 = µ2
0∥g∥2, g ∈ H,

that is, the element ψ generating a solution of
(6), (11), belongs to H, and the corresponding
solution is given by

u(t) = G̃(t) ∗ ψ =
∞∑
k=1

Q1(t, λk)ck(g)×

×
(
µ−

m∑
n=1

µn Q1(tn, λk)
)−1

≡

≡
∞∑
k=1

Q1(t, λk)Q2(λk)ck(g) =
˜̃G(t) ∗ g,

g =
∞∑
k=1

ck(g)ek ∈ H,

where ˜̃G(t) =
∞∑
k=1

Q1(t, λk)Q2(λk)ek,
˜̃G(t) ∈

H∞⟨mn⟩ for all t ∈ (0, T ].
By Lemma 1, we can consider the convoluti-

on ˜̃G ∗ g in the case where g ∈ H ′
∞⟨mn⟩.

Moreover, the same lemma yields that u(t) =
˜̃G ∗ g ∈ H∞⟨mn⟩ for all t ∈ (0, T ],

ck(u(t)) = ck(
˜̃G(t))ck(g) =

= Q1(t, λk)Q2(λk)ck(g) = ck(γ(t))Q2(λk),

k ∈ N.
The proof of strong twice di�erentiability of

the function u(t) = ˜̃G(t) ∗ g, g ∈ H ′
∞⟨mn⟩

is similar to the proof for the function γ(t)
(see proof of Theorem ). The function u(t) is a
solution of (6) satisfying condition (11), where
g ∈ H ′

∞⟨mn⟩ in the sense that

µ lim
t→+0

u(t)−
m∑

n=1

µn lim
t→tn

u(t) = g, (12)

g ∈ H ′
∞⟨mn⟩,

where the limits are considered in the space
H ′

∞⟨mn⟩.
To prove (12), we take any element ψ =

∞∑
k=1

ck(ψ)ek ∈ H∞⟨mn⟩ and observe that, by

the continuity of the inclusion of H∞⟨mn⟩ in
the space H ′

∞⟨mn⟩ and, taking into account
that ek, k ∈ N in an orthonormal basis, one
has

⟨u(t), ψ⟩ = (u(t), ψ) =
∞∑
k=1

ck(u(t))ck(ψ) =

=
∞∑
k=1

Q1(t, λk)Q2(λk)ck(g)ck(ψ).
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Then

µ lim
t→+0

⟨u(t), ψ⟩ −
m∑

n=1

µn lim
t→tn

⟨u(t), ψ⟩ =

= µ lim
t→+0

∞∑
k=1

ck(u(t))ck(ψ)−

−
m∑

n=1

µn lim
t→tn

∞∑
k=1

ck(u(t))ck(ψ),

where the series
∞∑
k=1

ck(u(t))ck(ψ) converges

uniformly on (0, T ]. The latter fact follows
from view of ck(u(t)), k ∈ N and the inequality

|ck(u(t))| · |ck(ψ)| ≤ c̃|ck(g)| · |ck(ψ)|,

t ∈ (0, T ], k ∈ N.
Indeed, since g ∈ H ′

∞⟨mn⟩, we have that

∀µ > 0 ∃c = c(µ) > 0∀k ∈ N :

|ck(g)| ≤ cρ(µλk).

The condition ψ ∈ H∞⟨mn⟩ together with (A)
gives that

∃µ0 > 0∃c0 > 0∀k ∈ N :

|ck(ψ)| ≤ c0ρ
−1(µ0λk).

We set µ = µ0/2. By convexity inequality (2),

|ck(g)| · |ck(ψ)| ≤ cc0ρ
−1(µ0λk)ρ

(µ0

2
λk

)
≤

≤ cc0ρ
−1
(µ0

2
λk

)
, k ∈ N,

which implies the desired property.
Thus,

lim
t→tn

∞∑
k=1

ck(u(t))ck(ψ) =
∞∑
k=1

ck(u(tn))ck(ψ) ≡

≡
∞∑
k=1

Q1(tn, λk)Q2(λk)ck(g)ck(ψ), (13)

lim
t→+0

∞∑
k=1

ck(u(t))ck(ψ) =
∞∑
k=1

ck(u(0))ck(ψ) ≡

≡
∞∑
k=1

Q2(λk)ck(g)ck(ψ). (14)

Taking into account (13) and (14) we obtain

µ lim
t→+0

⟨u(t), ψ⟩ −
m∑

n=1

µn lim
t→tn

⟨u(t), ψ⟩ =

=
∞∑
k=1

[(
µ−

m∑
n=1

µnQ1(tn, λk)
)
Q2(λk)

]
ck(g)ck(ψ) ≡

≡
∞∑
k=1

Q−1
2 (λk)Q2(λk)ck(g)ck(ψ) =

=
∞∑
k=1

ck(g)ck(ψ) = ⟨g, ψ⟩, ψ ∈ H∞⟨mn⟩,

and the proof is completed.

Since u(t) = ˜̃G(t), t ∈ (0, T ], if g = δ̃ =
∞∑
k=1

ek ∈ H ′
∞⟨mn⟩, then (12) implies that the

function ˜̃G(t) satis�es in the space H ′
∞⟨mn⟩

the following limit relation

µ lim
t→+0

˜̃G−
m∑

n=1

µn lim
t→tn

˜̃G(t) = δ̃.

The function ˜̃G(t) is called a fundamental
solution of the nonlocal multipoint problem for
equation (6).

We summarize the above obtained results
in the following statement.
Theorem 2. Let (5) and (7) be satis�ed.

Then multipoint problem (6), (12) is solvable

and a solution is given by u(t) = ˜̃G(t) ∗ g, t ∈
(0, T ], u(t) ∈ H∞⟨mn⟩ for all t ∈ (0, T ].

Consider for example the self-adjoint
operator A2 in the Hilbert space H =
L2[0, 2π] generated by the di�erential expressi-
on −d2/dx2 and conditions u(0) = u(2π),
u′(0) = u′(2π), A =

√
A2 ≡ |D|, where |D|

is the modulus of the di�erentiation operator,
|D| ≥ 0. The spectrum of the operator A = |D|
is discrete: σ(A) = {|k|, k ∈ Z} with a unique
limit point at in�nity, ek = eikx, k ∈ Z, x ∈ R,
are its eigenfunctions. In this case one has

Φm =
{
φ ∈ H

∣∣∣φ =
m∑

k=−m

ck,φe
ikx, ck,φ ∈ C,

x ∈ R
}
,m ∈ Z+,
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that is, ever element of Φm is a trigonometric
polynomial of degree m, Φ′ is the space of all
formal Fourier series which are identi�ed wi-
th generalized 2π-periodic functions as anti-
linear continuous functionals on the space of
trigonometric polynomials [21].

The convolution of two generalized periodic
functions {f, g} ⊂ Φ′ is de�ned as follows [21]:

⟨f ∗ g, φ⟩ = ⟨fx, ⟨gy, φ(x+ y)⟩⟩, ∀φ ∈ Φ.

It make sense, because

⟨gy, φ(x+ y)⟩ =
⟨
gy,

m∑
k=−m

ck,φe
ik(x+y)

⟩
=

=
m∑

k=−m

ck,φ⟨g, eiky⟩eikx ∈ Φ.

The mapping

F : Φ′ ∋ f → {ck(f) = ⟨f, e−ikx⟩, k ∈ Z} ∈ S

sends the space L2[0, 2π] onto ℓ2, the operator
|D| is transformed into the multiplicati-
on operator by |k|, and the convolution is
transformed into the coordinate-wise multipli-
cation:

ck(f ∗ g) = ⟨f ∗ g, e−ikx⟩ = ⟨f, ⟨gy, e−ik(x+y)⟩⟩ =

= ⟨f, ⟨g, e−iky⟩e−ikx⟩ = ck(f)ck(g),

∀{f, g} ⊂ Φ′.

Hence we obtain the commutativity and associ-
ativity of the convolution on Φ′, that is, in this
case Φ′ is a ring (with respect to the convoluti-
on) with unit which is the Dirac delta-function.
Thus, f ∗ g is a generalized 2π-periodic functi-
on from Φ′ which is identi�ed with the Fourier

series
∞∑

k=−∞

ck(f ∗g)eikx =
∞∑

k=−∞

ck(f)ck(g)e
ikx,

and the convolution on Φ′ coincides with the
abstract convolution introduces in Section 3.

Remark that in this case G{β}(|D|) =
H∞⟨nnβ⟩, β > 0, consists of all 2π-periodic
in�nitely di�erentiable on R functions φ havi-
ng the following property: there exist constants
c, α > 0 (depending only on the function φ)
such that

|φ(n)(x)| ≤ cαnnnβ, n ∈ Z+, x ∈ R.

If 0 < β < 1 then the function φ ∈ G{β}(|D|)
admits an analytic extension on the complex
plane to an entire function φ(z), z = x+iy ∈ C
such that [22, p. 35�39]

∃c = c(φ) > 0 ∃b = b(φ) > 0 :

|φ(x+ iy)| ≤ c exp(b|y|1/(1−β)).

We de�ne the sequence (ρn) to be equal
the sequence ((n(1− β))−n(1−β)en(1−β)), where
β ∈ (0; 1) is a �xed parameter. As noticed
above, the sequence ρn satis�es conditions a)
� c), and the corresponding sequence (mn =
n!ρn) has properties 1), 2), ρ0(λ) ∼ exp(λ1/β),
λ ∈ [1,+∞). We take the function f generati-
ng the operator f(|D|) ≡ f(A) to be equal
λν , ν > 0. One can directly verify that if
2/β ≤ ν, 0 < β < 1 then the function
f(λ) = λν possesses conditions (5), (7). For
instance, if one set β = 1/2 then f(λ) = λ4,
Af ≡ f(|D|) = d4/dx4 and equation (6) has
the form

∂2u(t, x)

∂t2
=
∂4u(t, x)

∂x4
, x ∈ R, t ∈ (0, T ].

(15)
So, the nonlocal multipoint problem for

equation (15) with condition (12), where g ∈
H ′

∞⟨nn/2⟩ ≡ G′
{1/2}(|D|), is solved (in the sense

indicated above: the corresponding limits in
(12) are considered in the space G′

{1/2}(|D|)).
The following function is a 2π-periodic in�ni-
tely di�erentiable in x solution

u(t, x) =
+∞∑

k=−∞

ck(g) exp(−tk2 + ikx)×

×
(
µ−

m∑
n=1

µn exp(−tnk2)
)−1

,

u(t, ·) ∈ G{1/2}(|D|),

g =
+∞∑

k=−∞

ck(g)e
ikx ∈ G′

{1/2}(|D|).

Thus, generalized 2π-periodic functions
from the space G′

{1/2}(|D|) can be used to pose
of nonlocal condition (12). In this case the
solution u(t, x) of the corresponding problem
preserves properties of a smooth solution of the
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�classical� nonlocal problem for equation (15)
with condition (11), where g ∈ L2[0, 2π].
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