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ON SOME GENERALIZATIONS OF P -LOXODROMIC FUNCTIONS
Розглянуто функцiональне рiвняння f(qz) = p(z)f(z), z ∈ C\{0}, q ∈ C\{0}, |q| < 1. При

певних фiксованих елементарних функцiях p(z) знайдено його мероморфнi та голоморфнi
розв’язки. Цi розв’язки є деякими узагальненнями p-локсодромних функцiй.

The functional equation of the form f(qz) = p(z)f(z), z ∈ C\{0}, q ∈ C\{0}, |q| < 1 is consi-
dered. For certain fixed elementary functions p(z), meromorphic as well as holomorphic solutions
of this equation are found. These solutions are some generalizations of p-loxodromic functions.

Introduction.

Denote C∗ = C\{0}. For z ∈ C∗ consider
the equation of the form

f(qz) = p(z)f(z), (1)

where p(z) is some function, q ∈ C∗, |q| < 1.

If p(z) ≡ const, then meromorphic soluti-
on of this equation is p-loxodromic function
[4]. In particular, if p(z) ≡ 1, we have classic
loxodromic function. The class of loxodromic
functions is denoted by Lq. It was studied in
the works of O. Rausenberger [12], G. Vali-
ron [15] and Y. Hellegouarch [2]. Such functi-
ons have many applications, and not only
theoretical. A particularly practical one can
be found in [13]. Various generalizations and
properties of such functions were considered
recently by A. Kondratyuk and his students
in [3], [5-8], [10-11].

The aim of this article is to obtain
holomorphic and meromorphic solutions of the
equation (1), where p(z) are some elementary
functions. These solutions will be certain
generalizations of p-loxodromic functions.

We will consider two cases p(z) =
1

zm
and

p(z) =
1

(1− z)m
, where m ∈ Z. In fact, we

consider only the case m ̸= 0, because in the
casem = 0 we obtain classic loxodromic functi-
ons. In Section 1 we describe meromorphic
solutions of equation (1) for such p(z). Secti-
on 2 deals with holomorphic solutions of this
equation for the same p(z).

1. Meromorphic generalizations.

Let us consider functional equation

f(qz) =
1

zm
f(z), z ∈ C∗, m ∈ Z. (2)

Our task now is to find its meromorphic in C∗

solutions.
Definition. The function

P (z) = (1− z)
∞∏
n=1

(1− qnz)

(
1− qn

z

)
is called the Schottky-Klein prime function.

It was introduced by Schottky [14] and
Klein [9] for the study of conformal mappi-
ngs of double-connected domains (see also [1]).
This function is holomorphic in C∗ and has
zero sequence {qn}, n ∈ Z. It is easily shown
that the Schottky-Klein prime function has the
following properties

P (qz) = −z−1P (z), (3)

P

(
z

q

)
= −z

q
P (z). (4)

Theorem 1. The meromorphic in C∗

function of the form f(z) = Pm((−1)mz)g(z),
where g ∈ Lq, satisfies (2).

Доведення. Applying equality (3), we
have

f(qz) = Pm(q(−1)mz)g(qz)
(3)
=

=

(
− 1

(−1)mz
P ((−1)mz)

)m
g(z) =

1

zm
f(z).
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Theorem 2. Every meromorphic in C∗

solution of (2) can be represented in the form
f(z) = Pm((−1)mz)g(z), where g ∈ Lq.

Доведення. Let f be a meromorphic
solution of (2). Consider the function g(z) =

f(z)

Pm((−1)mz)
. Since f is meromorphic and P is

holomorphic, it follows that g is meromorphic.
Taking into account (2) and (3), we get

g(qz) =
f(qz)

Pm((−1)mqz)
=

=

1

zm
f(z)

1

((−1)mz)m
Pm((−1)mz)

= g(z).

So, we can conclude that g(qz) = g(z) for
every z ̸= qn, n ∈ Z. It is sufficient to
make a conclusion that g is loxodromic. This
completes the proof.

Now, consider functional equation of the
form

f(qz) =
1

(1− z)m
f(z), z ∈ C∗, m ∈ Z.

(5)
Let us find meromorphic in C∗ solutions of (5).

Define the entire function with the zero
sequence {q−n}, n ∈ N ∪ {0}, 0 < |q| < 1,

H(z) =
∞∏
n=0

(1− qnz).

Theorem 3. Let g ∈ Lq. The meromorphic
in C∗ function f(z) = Hm(z)g(z) satisfies
equation (5).

Доведення. The proof is strai-
ghtforward. At first, let us consider H(qz), we
have

H(qz) =
∞∏
n=0

(
1− qn+1z

)
=

∞∏
k=1

(
1− qkz

)
=

=
1

1− z

∞∏
n=0

(1− qnz) =
1

1− z
H(z). (6)

Since g is loxodromic, we obtain

(1− z)mf(qz) = (1− z)mg(qz)Hm(qz) =

= (1− z)mg(z)Hm(qz)
(6)
=

= (1− z)mg(z)
1

(1− z)m
Hm(z) = f(z).

Theorem 4. Every meromorphic in C∗

solution of (5) can be represented in the form
f(z) = Hm(z)g(z), where g ∈ Lq. Дове-
дення. The proof is analogous to the proof
of Theorem 2. Let f be a solution of equati-

on (5). Consider the function g =
f

Hm
. Since

f is meromorphic and H is holomorphic this
implies that g is meromorphic. Using (5) and
(6), we get

g(qz) =
f(qz)

Hm(qz)
=

1

(1− z)m
f(z)

1

(1− z)m
Hm(z)

= g(z).

Therefore, for all z ̸= q−n, n ∈ N ∪ {0} we
obtain that g(qz) = g(z), i. e. g is loxodromic.
The proof is finished.

2. Holomorphic generalizations

We also are interested in finding
holomorphic in C∗ solutions of equations
(2) and (5).

Theorem 5. If m is a positive
integer, then holomorphic in C∗ function

f(z) = C
m∏
j=1

P

(
z

cj

)
, where c1, c2, . . . cm are

nonzero complex numbers, not necessarily

distinct, such that
m∏
j=1

cj = (−1)m, C is a

constant, satisfies (2).
Доведення. Using formula (3), we obtain

f(qz) = C
m∏
j=1

P

(
qz

cj

)
=

= C

m∏
j=1

cj

(−z)m
m∏
j=1

P

(
z

cj

)
=

1

zm
f(z).

Theorem 6. If m is a positive integer,
then every holomorphic in C∗ solution
of (2) can be represented in the form

f(z) = C
m∏
j=1

P

(
z

cj

)
, where c1, c2, . . . cm are
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nonzero complex numbers, not necessarily

distinct, such that
m∏
j=1

cj = (−1)m and C is a

constant.
Доведення. Let m be an even positive

integer. Suppose, function f is a holomorphic
in C∗ solution of (2). Therefore, by Theorem 2,

f(z) = Pm((−1)mz)g(z), (7)

where g ∈ Lq. Since functions f and P
are holomorphic in C∗, then g is either
holomorphic in C∗ or has the poles only in the
points {(−1)mqn}, n ∈ Z and multiplicity of
each pole is ln ≤ m, ln ∈ N.

If g is holomorphic, then g(z) ≡ const
due to the fact that the only holomorphic
loxodromic function is constant [2, p. 93]. So

f(z) = CPm((−1)mz) = C

m∏
j=1

P

(
z

cj

)
,

where c1 = c2 = · · · = cm = (−1)m.
In the second case we use the loxodromic

function’s representation by Schottky-Klein
prime functions (see [2], [15] for more details).
Namely, let a1, a2, ..., al and b1, b2..., bl be the
zeros and the poles of function g in the annulus
Aq(R) = {z ∈ C : |q|R < |z| ≤ R}, R > 0,
respectively, and ∂Aq(R) contains neither zeros
nor poles of g ∈ Lq. It is known [2, p. 93] that
each loxodromic function has equal numbers
of zeros and poles (counted according to their
multiplicities) in every such annulus Aq(R).
Then

g(z) = Kzp
P

(
z

a1

)
P

(
z

a2

)
· ... · P

(
z

al

)
P

(
z

b1

)
P

(
z

b2

)
· ... · P

(
z

bl

) ,
(8)

where
a1a2 . . . al
b1b2 . . . bl

= q−p, p ∈ Z andK is a cons-

tant. Using 4 we obtain for p > 0,

zpP

(
z

a1

)
=

z

a1
P

(
z

a1

)
zp−1a1 =

= −qP
(

z

qa1

)
zp−1a1 =

=
z

qa1
P

(
z

qa1

)
zp−2a21(−q2) =

= −qP
(

z

q2a1

)
zp−2a21(−q2) =

= (−1)2zp−2a21qq
2P

(
z

q2a1

)
=

= · · · = (−1)pzp−pap1qq
2q3 . . . qpP

(
z

qpa1

)
=

= (−1)pap1q
p(p+1)

2 P

(
z

qpa1

)
.

In the same way, for p < 0, applying formula
(3), we get

zpP

(
z

a1

)
=

(
1

z

)−p

P

(
z

a1

)
=

=
a1
z
P

(
z

a1

)(
1

z

)−p−1
1

a1
=

= (−1)P

(
qz

a1

)(
1

z

)−p−1
1

a1
=

= (−1)
a1
qz
P

(
qz

a1

)(
1

z

)−p−2
1

a21
q =

= (−1)2P

(
q2z

a1

)(
1

z

)−p−2
1

a21
q = · · · =

= (−1)pP

(
q−pz

a1

)(
1

z

)−p−(−p)
1

a−p1

qq2 . . .

. . . q−p−1 = (−1)pap1q
p(p+1)

2 P

(
z

qpa1

)
.

The case p = 0 is trivial.
Then we can rewrite (8) in the following way

g(z) = C

P

(
z

qpa1

)
P

(
z

a2

)
· ... · P

(
z

al

)
P

(
z

b1

)
P

(
z

b2

)
· ... · P

(
z

bl

) ,

(9)
where C = (−a1)pq

p(p+1)
2 K. Let us denote

qpa1 = c1, a2 = c2, . . . , al = cl. Accordingly
to this notation, we can rewrite (9) as

g(z) = C

P

(
z

c1

)
P

(
z

c2

)
· ... · P

(
z

cl

)
P

(
z

b1

)
P

(
z

b2

)
· ... · P

(
z

bl

) , (10)
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where C is a constant.
Obviously, every annulus Aq(R) contains

only one point from the sequence {(−1)mqn},
n ∈ Z. It is convenient to choose such annulus
Aq(R), which contains the pole b1 = b2 =
= · · · = bl = (−1)mq0 = (−1)m. Note that
l = l0, where l0 is the multiplicity of the

pole at z = (−1)m. Since
l∏

j=1

bj = (−1)ml it

follows qpa1a2 . . . al = (−1)ml. In other words,
l∏

j=1

cj = (−1)ml. Thus, expression (10) can be

rewritten in the form

g(z) = C

l∏
j=1

P

(
z

cj

)
l∏

j=1

P ((−1)mz)

= C

l∏
j=1

P

(
z

cj

)
P l((−1)mz)

.

(11)
Using (7), we also can write g in the form

g(z) =
f(z)

Pm((−1)mz)
. (12)

Equating the right hand sides of formulas (11)
and (12), we see that

f(z) = CPm−l((−1)mz)
l∏

j=1

P

(
z

cj

)
.

Note that (−1)m
2
= (−1)m. So in the case l =

m Theorem 6 is proved. If l < m, then set
cl+1 = cl+2 = ... = cm = (−1)m to get

f(z) = C
m∏
j=1

P

(
z

cj

)
and again use the property (−1)m

2
= (−1)m

to obtain
m∏
j=1

cj = (−1)m.

Theorem 7. Let m be a positive integer.
The entire function f(z) = CHm(z), where C
is a constant, satisfies equation (5).

Доведення. Indeed,

(1−z)mf(qz) = (1−z)mC

(
∞∏
n=0

(1− qn+1z)

)m

=

= C(1− z)m

(
∞∏
k=1

(1− qkz)

)m

=

= C

(
∞∏
n=0

(1− qnz)

)m

= f(z).

Theorem 8. If m is a positive integer, then
every holomorphic in C∗ solution of (5) has the
form f(z) = CHm(z), where C is a constant.

Доведення. Assume that the function f
is a holomorphic in C∗ solution of (5). From
Theorem 4 it follows that

f(z) = Hm(z)g(z), (13)

where g ∈ Lq. Rewrite (13), as follows

g(z) =
f(z)

Hm(z)
. (14)

Functions f and H are holomorphic in C∗. We
also know that Hm has zeros of multiplicity m
at the points {q−n}, n ∈ N ∪ {0}.

If f has only the same zeros as H, we obtain
that g does not have any zeros. So g ∈ Lq is
holomorphic. Hence [2, p. 93], g(z) ≡ const,
and theorem is proved.

Suppose that f has zeros different from
{q−n}, n ∈ N ∪ {0}. Then g has zeros. In this
case g also should have poles [2, p. 93]. Since f
is holomorphic in C∗ solution of (5), then g has
poles only at the points {q−n}, n ∈ N ∪ {0} of
multiplicity ln ≤ m.

Let us use representation (10) of g ∈ Lq
in the annulus Aq(R). Every annulus Aq(R)
contains only one point from the sequence
{q−n}, n ∈ N ∪ {0}. Choose such annulus
Aq(R), which contains the pole b1 = b2 = · · · =
= bl = q0 = 1. Note that l = l0, where l0 is the
multiplicity of the pole at z = 1. Thus (13)
takes the form

f(z) = C

l∏
j=1

P

(
z

cj

)
P l(z)

Hm(z).

Since P has zeros at the points {qn}, n ∈ Z,
and H has zeros only at the points {q−n},
n ∈ N ∪ {0}, then we obtain a contradiction.
The proof is finished.

As we have seen in the proof of Theorem 8
holomorphic solutions of (5) possess the sub-
sequent properties.
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Corollary 1. If f is a holomorphic solution
of (5), thenf(z) = 0 iff z = {q−n}, n∈ N∪{0}.

Corollary 2. All holomorphic solutions of
(5) are entire functions.

We have considered only the case m > 0 so
far. The case m = 0 is trivial. So it remains
to consider negative m. The following theorem
deals with this case.

Theorem 9. If m is a negative integer,
then equations (2) and (5) do not have any
holomorphic in C∗ solutions.

Доведення. Consider equation (2). Let
m < 0 and to be definite, m is an even
integer. Suppose that there exist a holomorphic
in C∗ solution f of (2). In this case, accordi-
ng to Theorem 2, it has the form f(z) =
Pm(z)g(z), where g ∈ Lq. Hence g(z) =
f(z)P−m(z). Obviously, g is holomorphic in
C∗. Consequently [2, p. 93], we can assert that
g(z) ≡ const. Thus,

f(z) = CPm(z),

where C is a constant.
But on the other hand Pm(z) is not

holomorphic in C∗ in the case m < 0. This
contradicts our assumption.

Substituting H for P and using Theorem 4
we can apply similar arguments to equati-
on (5).
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