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ON SOME GENERALIZATIONS OF P-LOXODROMIC FUNCTIONS

PosrasayTo dbyukmionamsue pisasang f(qz) = p(2)f(z), z € C\{0}, ¢ € C\{0}, |q| < 1. Tlpm
neBHux ikcoBaHux eseMeHTapHux (GyHKIigX p(z) 3Haiimeno fioro mepomopdui ta rosomopdui
po3B’sa3ku. 1li po3B’sa3kU € JAeIKUMN y3araJbHeHHIMI P-TOKCOAPOMHUX (DYHKITIf.

The functional equation of the form f(gz) = p(z)f(z), z € C\{0}, ¢ € C\{0}, |q| < 1 is consi-
dered. For certain fixed elementary functions p(z), meromorphic as well as holomorphic solutions
of this equation are found. These solutions are some generalizations of p-loxodromic functions.

Introduction.

Denote C* = C\{0}. For z € C* consider
the equation of the form

flaz) = p(2) f(2), (1)

where p(z) is some function, ¢ € C*, |¢| < 1.

If p(z) = const, then meromorphic soluti-
on of this equation is p-loxodromic function
[4]. In particular, if p(z) = 1, we have classic
loxodromic function. The class of loxodromic
functions is denoted by L£,. It was studied in
the works of O. Rausenberger [12|, G. Vali-
ron [15] and Y. Hellegouarch [2]. Such functi-
ons have many applications, and not only
theoretical. A particularly practical one can
be found in [13]. Various generalizations and
properties of such functions were considered
recently by A. Kondratyuk and his students
in [3], [5-8], [10-11].

The aim of this article is to obtain
holomorphic and meromorphic solutions of the
equation (1), where p(z) are some elementary
functions. These solutions will be certain

generalizations of p-loxodromic functions.

1
We will consider two cases p(z) = — and
Zm

1
consider only the case m # 0, because in the
case m = (0 we obtain classic loxodromic functi-
ons. In Section 1 we describe meromorphic
solutions of equation (1) for such p(z). Secti-
on 2 deals with holomorphic solutions of this
equation for the same p(z).

—, where m € Z. In fact, we
z
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1. Meromorphic generalizations.

Let us consider functional equation

1
f(qz)zz—mf(z), ze€C*, meZ. (2
Our task now is to find its meromorphic in C*
solutions.

Definition. The function

n q"
P = (-9 ][0 -2 (1- 1)
15 called the Schottky-Klein prime function.

It was introduced by Schottky [14] and
Klein [9] for the study of conformal mappi-
ngs of double-connected domains (see also [1]).
This function is holomorphic in C* and has
zero sequence {¢"}, n € Z. It is easily shown
that the Schottky-Klein prime function has the
following properties

P(qZ) - _Z_1P<Z)7

P (g) — —gP(z). (4)

Theorem 1. The meromorphic in C*
function of the form f(z) = P™((—1)"2)g(2),
where g € L,, satisfies (2).

HoBenennsi. Applying equality (3), we
have

(3)

f(gz) = P™(g(=1)"2)g(qz) &

- () o) -

—AGe)
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Theorem 2. FEvery meromorphic in C*
solution of (2) can be represented in the form
f(z) = P™((—=1)"2)g(2), where g € L,.

Hosenennsi. Let f be a meromorphic
solution of (2). Consider the function g(z) =

f(z)
pr((—1)mz) . ,
holomorphic, it follows that g is meromorphic.
Taking into account (2) and (3), we get

faz)
") = P

. Since f is meromorphic and P is

)
= 1 = = g(Z)
((_1)mz)mP ((_1> Z)

So, we can conclude that g(qz) = g(z) for
every z # ¢",n € Z. It is sufficient to
make a conclusion that ¢ is loxodromic. This
completes the proof.

Now, consider functional equation of the
form

f(gz) = ——— f(2), me L.

(1—2)
5

Let us find meromorphic in C* solutions of (5).
Define the entire function with the zero
sequence {¢~ "}, n € NU{0}, 0 < |q| < 1,

z e Cr,

~—

o0

H(z) =1 - q"2).

n=0

Theorem 3. Let g € L,. The meromorphic
in C* function f(z) = H™(z)g(z) satisfies
equation (5).

JloBemeHHsl. The proof is  strai-
ghtforward. At first, let us consider H(gz), we
have

Higz) = [[ (1= q""'2) =[] (1 - ¢*2) =

Since ¢ is loxodromic, we obtain

(1 =2)"f(qz) = (1 — 2)"g(qz) H"(q2) =
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— (1—2)"g(z)H™(q2) <

m z; ™(z)= f(z
=(1-2) 9()(1_z)mH (2) = f(2).

Theorem 4. Fvery meromorphic in C*
solution of (5) can be represented in the form
f(z) = H™(2)g(z), where g € L,. Hose-
neHHs. The proof is analogous to the proof
of Theorem 2. Let f be a solution of equati-

on (5). Consider the function g = T Since

f is meromorphic and H is holomorphic this
implies that ¢ is meromorphic. Using (5) and
(6), we get

1

—f(2)
flqz) (1—2z)m
9(qz) = i = =g(2).
"(qz) L g,

Therefore, for all z # ¢, n € NU {0} we
obtain that g(qz) = g(2), i. e. g is loxodromic.
The proof is finished.

2. Holomorphic generalizations

We also are interested in finding
holomorphic in C* solutions of equations
(2) and (5).

Theorem 5. If m is a positive
integer, then holomorphic in C* function

m z

f(z) = CIIP|—

j=1 Cj

nonzero complex mnumbers,
m

distinct, such that [[¢; =

J=1
constant, satisfies (2).
Hosenennsi. Using formula (3), we obtain

, where ¢q,¢a,...cp,, are

not mnecessarily

(=)™ C is a

Theorem 6. If m is a positive integer,
then every holomorphic in C* solution
of (2) can be represented in the form

1o =clir(:

), where cq,cCa,...Cp are
J

Cj
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nonzero complex mnumbers, not necessarily

m
distinct, such that [[ ¢; = (—=1)™ and C is a
j=1
constant.
HoBenennsi. Let m be an even positive

integer. Suppose, function f is a holomorphic
in C* solution of (2). Therefore, by Theorem 2,

f(z) = P"((=1)"2)g(2), (7)

where ¢ € L, Since functions f and P
are holomorphic in C*, then ¢ is either
holomorphic in C* or has the poles only in the
points {(—1)"¢"}, n € Z and multiplicity of
each pole is [,, <m, [,, € N.

If g is holomorphic, then ¢(z) = const
due to the fact that the only holomorphic
loxodromic function is constant [2, p. 93]. So

f(2) = CPP(~1)m2) = cf[lp ().

where ¢; = co =+ = ¢, = (—1)™.

In the second case we use the loxodromic
function’s representation by Schottky-Klein
prime functions (see [2], [15] for more details).
Namely, let aq,as,...,a; and by, bs...,b; be the
zeros and the poles of function ¢ in the annulus
Ay(R) = {= € C : |glR < || < R}, R > 0,
respectively, and 0A,(R) contains neither zeros
nor poles of g € £,. It is known |2, p. 93] that
each loxodromic function has equal numbers
of zeros and poles (counted according to their
multiplicities) in every such annulus A,(R).

Then
P(a)r) )
g(z) = KoP— i e
P(—|)P(—)-..-P|—
@) rG) ()
a,a a ®)
where ——=""""! — 4P p € Z and K is a cons-
biby ... b
tant. Using 4 we obtain for p > 0,
PP (i> = iP (i) P lay =
aq aq (051
= —qP (i) P ay =
qay
146

_ (_l)pazl,qp(pg-l)P ( z

In the same way, for p < 0, applying formula

(3), we get
or(2)=() v () -
@) ) -

()t

= e ()

qPay
The case p = 0 is trivial.
Then we can rewrite (8) in the following way

o)) o)
(e

p(p+1)

where C' = (—ay)’q” 2 K. Let us denote
g?ay = ¢, a3 = co,...,a; = ¢. Accordingly
to this notation, we can rewrite (9) as

CP (£> » (C_Zz> P (2) o)
> (b_zl) - (632) P (bfl)

9(z) =
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where C' is a constant.

Obviously, every annulus A,(R) contains
only one point from the sequence {(—1)™¢"},
n € Z. It is convenient to choose such annulus
A, (R), which contains the pole by = by =
= ... =b = (-1)"¢" = (—1)™. Note that
[ = lp, where [y is the multiplicity of the

)

pole at z = (—1)"™. Since [[b; = (—1)™ it
=1

follows qPajas . ..a; = (—1)™. In other words,

l
[le; =
7j=1

rewritten in the form

nri) i)

I P((-1)")

(—1)™. Thus, expression (10) can be

g(z) =C

(11)
Using (7), we also can write g in the form
e
pr((=1)mz)
Equating the right hand sides of formulas (11)
and (12), we see that

9(2) (12)

!
_ m—l//__1\m i
f(z) =cP™Y((-1) Z)HP(C).
7j=1
Note that (—1)™ = (=1)™. So in the case | =
m Theorem 6 is proved. If [ < m, then set
Cl41 = Clag = . = Gy = (—1)™ to get

o-cfir(;)

and again use the property (—1)™" =

to obtain [] ¢; = (—1)™.
j=1
Theorem 7. Let m be a positive integer.

The entire function f(z) = CH™(z), where C
is a constant, satisfies equation (5).
HoBenennsi. Indeed,

(=™

(1-2)"f(gz) = (1-2)"C <H<1 - qn+1z>> _

n=0

— -2 (Hu - qkz>> -

k=1
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-0 (Hu - qnz>> ~ /().
n=0
Theorem 8. If m is a positive integer, then
every holomorphic in C* solution of (5) has the
form f(z) = CH™(z), where C' is a constant.
JoBenennsi. Assume that the function f
is a holomorphic in C* solution of (5). From
Theorem 4 it follows that

f(z) = H"(2)g(2), (13)
where g € £,. Rewrite (13), as follows
G

Functions f and H are holomorphic in C*. We
also know that H™ has zeros of multiplicity m
at the points {¢7"}, n € NU {0}.

If f has only the same zeros as H, we obtain
that g does not have any zeros. So g € £, is
holomorphic. Hence [2, p. 93], g(z) = const,
and theorem is proved.

Suppose that f has zeros different from
{¢™"}, n € NU{0}. Then ¢ has zeros. In this
case g also should have poles |2, p. 93]. Since f
is holomorphic in C* solution of (5), then g has
poles only at the points {¢~"}, n € NU {0} of
multiplicity [, < m.

Let us use representation (10) of g € L,
in the annulus A,(R). Every annulus A,(R)
contains only one point from the sequence
{¢"},n € N U {0}. Choose such annulus
A,(R), which contains the pole by = by = --- =
= b, = ¢° = 1. Note that [ = ly, where [ is the
multiplicity of the pole at z = 1. Thus (13)

takes the form
! z
plZ

Since P has zeros at the points {¢"}, n € Z,
and H has zeros only at the points {¢~"},
n € N U {0}, then we obtain a contradiction.
The proof is finished.

As we have seen in the proof of Theorem 8
holomorphic solutions of (5) possess the sub-

sequent properties.
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Corollary 1. If f is a holomorphic solution
of (5), thenf(z) =0 iff z = {¢"},ne NU{0}.

Corollary 2. All holomorphic solutions of
(5) are entire functions.

We have considered only the case m > 0 so
far. The case m = 0 is trivial. So it remains
to consider negative m. The following theorem
deals with this case.

Theorem 9. If m is a negative integer,
then equations (2) and (5) do not have any
holomorphic in C* solutions.

Hosenenns. Consider equation (2). Let
m < 0 and to be definite, m is an even
integer. Suppose that there exist a holomorphic
in C* solution f of (2). In this case, accordi-
ng to Theorem 2, it has the form f(z) =
P"(2)g(z), where ¢ € L, Hence g(z) =
f(z)P~™(z). Obviously, ¢ is holomorphic in
C*. Consequently |2, p. 93], we can assert that
g(z) = const. Thus,

f(z) = CP™(2),

where C' is a constant.

But on the other hand P™(z) is not
holomorphic in C* in the case m < 0. This
contradicts our assumption.

Substituting H for P and using Theorem 4
we can apply similar arguments to equati-
on (5).
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