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ON ONE BORDER PROBLEM
OF RING DOMAIN DEFORMATION

В данiй роботi методом комплексних потенцiалiв Мусхелiшвiлi побудовано розв’язок гра-
ничної задачi теорiї пружностi для областi в формi кiльця з кусково-сталими граничними
умовами на контурi. Розв’язок одержано в аналiтичному виглядi i зведено до форми, прида-
тної для чисельного моделювання. Встановлено, що в околi контура має мiсце деформацiя
областi, близька до зсуву (на дiлянках границi з ненульовою граничною умовою) або до ра-
дiального стиску (на дiлянках границi з нульовою граничною умовою).

Ключовi слова: комплекснi потенцiали Мусхелiшвiлi, гранична задача теорiї пружностi,
безрозмiрнi параметри, деформацiя зсуву, радiальне стискання.

In this paper, the method of Muskhelishvili’s complex potentials is used to solve the boundary
value problem of elasticity theory for a domain in the form of a ring with piecewise constant
boundary conditions on the contour. The solution is obtained in an analytical form and it is put to
a form suitable for numerical simulation. It is established that in the neighborhood of the contour
there is deformation of the region close to the shift (on the sections of the boundary with a nonzero
boundary condition) or to radial compression (on the parts of the boundary with the zero boundary
condition).

Keywords: Muskhelishvili’s complex potentials, boundary value problem of elasticity theory,
dimensionless parameters, shift deformation, radial contraction.

1. Introduction.
A system of partial differential equations

for a domain in the form of a ring, known
[1] as the first fundamental boundary problem
of the elasticity theory, is solved using the
method of Muskhelishvili’s complex potentials.
The ring models the power element of engi-
ne, transmitting rotational motion, therefore
the boundary conditions are formulated taki-
ng into account the tangential load. Such
a problem has already been considered [2].
However, the load in these works was thought
to be uniformly distributed along the contour.
It is physically realistic to assume that the load
is uniformly distributed only within the angles
corresponding to the ring bindings and that it
is equal to zero outside these limits. The aim
of the paper is to find and analyze the solution
of the corresponding boundary value problem.

2. Basic notation.
We denote the inner and outer radii of the

ring as R1, R2. The position of the current poi-
nt on the contour will be characterized by the
angle θ, where 0 6 θ 6 2π. Suppose that N
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Fig. 1 - Determination of the geometric parameters
of the problem.

bindings are placed along the contour with the
angular size 2δ each (Fig. 1), where the mi-
ddle points of bindings are described by the
angles θm = m∆θ, m = 0, N − 1, ∆θ = 2π

N
. To

ensure that the bindings do not overlap in the
angle, we must put 2δ · N < 2π, from which
Nδ < π. Let C denote the fraction that the
binding angular size forms from the period of
the bindings:
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C =
2δ

∆θ
=
Nδ

π
.

Then the binding overlapping in the angle does
not occur at values 0 < C < 1.

Fig. 1 also shows the diagram of the
tangential mechanical stress equal to T0 = T01

for the inner part of the contour and T0 = T02

for the outer one.
It was shown in [2] that accounting for

centrifugal inertia forces is reduced only to
correction of the normal component of the
external stress, and this does not change the
mutual angle of points rotation on the outer
and inner parts of the contour. Therefore, in
the present paper, the normal component is
not taken into account at all. Thus, volumetri-
cly distributed forces are absent, the problem
can be considered in a static formulation, and
the method of complex potentials can be appli-
ed directly. In this case, the distribution of the
external stress for angles can be taken in the
form

T (θ) = T0 · t(θ). (1)
Here the function

t(θ) =
N∑
m=0

{
σ(θ − θ−m)− σ(θ − θ+

m)
}
, (2)

where σ is the Heaviside function, and the poi-
nts of discontinuity θ±m = θm± δ. The function
t(θ) plays the role of a «comb»: it identically
is equal to one within the angular intervals
corresponding to the bindings, and is equal to
zero outside these intervals.

The sum (2) contains the (N+1) summand.
Among them the summands with the numbers
m = 0 and m = N describe the halves of
the same binding: its parts θ ∈ [0; δ] and
θ ∈ [2π − δ; 2π], respectively. Let the thickness
of the ring be h. The angle dθ is supported by
a contour arc of length d` = Rdθ (the index of
the radius is omitted, since these calculations
are the same for the outer and inner parts of
the contour). Area element dS = h d` = Rhdθ.
Elementary force dF = T (θ) dS = T (θ)·Rhdθ.
Elementary moment

dM = RdF = T (θ) ·R2h dθ.

Taking into account (1), (2) integration of the
last expression leads to the result

M = T0R
2h · (N · 2δ) = 2πCT0R

2h.

Let M0 = M
h

– be the external torque per
length unit in the direction of the perpendi-
cular to the ring plane. Then M0 = 2πCT0R

2.
It is this moment that is applied separately to
the contour inner part, and separately to the
external one (in the static case, these moments
must be balanced). Then

T01 =
M0

2πCR2
1

, T02 =
M0

2πCR2
2

.

To specify the form of the function (1),
it remains to substitute these values in (1)
instead of T0.

Let γ = R1

R2
denote the fraction that the

inner radius forms from the outer one. Then

T02 = γ2T01.

It is clear that the fulfillment of this relation
ensures that the total external torque vanishes.

3. Boundary conditions. In terms of
complex potentials Φ, Ψ the boundary conditi-
on [1, § 41, (23)] in the Kolosov-Muskhelishvili
form in the absence of the normal component
(N = 0) has the form (j = 1, 2):{

Φ + Φ− e2iθ [z · Φ′ + Ψ]
}∣∣
|z|=Rj

= −iT. (3)

Here the tangent component of T = T01 ·t(θ) at
j = 1 or T = T02 · t(θ) at j = 2. The condition
(3) must be fulfilled identically with respect to
θ angle.

4. The solution of the boundary value
problem. We seek for the solution of the
boundary value problem in the form

Φ(z) =
+∞∑
−∞

akz
k, Ψ(z) =

+∞∑
−∞

a′kz
k. (4)

The substitution of these expressions in (3) and
the subsequent use of the method of indefini-
te coefficients for the functions eikθ allow us to
find the coefficients ak, a′k, and consequently –
the solution of the boundary value problem. In
addition, for contour points we must assume
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that z = Rje
iθ, j = 1, 2. Such approach requi-

res the expansion of the right side of (3) in the
complex Fourier series.

The function (2) can be expanded in a
Fourier series with respect to the angle θ on
the interval 0 6 θ 6 2π. Obviously, the coeffi-
cients of the sines are zero, and therefore:

t(θ) = c0 +
+∞∑
k=1

ck cos kθ. (5)

The constant component (integral mean) c0 is
equal to the ratio of the area under the graph
t(θ) to the width of the expansion interval:

c0 =
2δ ·N

2π
= C.

Coefficients for cosines:

ck =
1

π

2π∫
0

t(θ) cos kθ dθ.

Restricting ourselves to integration along the
intervals where t(θ) 6= 0, we have:

πck =

δ∫
0

cos kθ dθ +

2π∫
2π−δ

cos kθ dθ+

+
N−1∑
m=1

θm+δ∫
θm−δ

cos kθ dθ =
2 sin kδ

k

N−1∑
m=0

cos kθm.

We have kθm = k · 2πm
N

= mx, where x = 2kπ
N

is temporarily designated. As it is known,

N−1∑
m=0

cosmx =

[
N , x = 2πp;
0, x 6= 2πp.

The condition x = 2πp is k = Np, then

ck =

[
2N sin kδ

kπ
, k = N, 2N, · · · ;

0, at other k.

Now the Fourier expansion (5) is formed. We
transform it into a complex form:

t(θ) =
+∞∑

k=−∞

Ake
ikθ. (6)

We have:

t(θ) = A0 +
(
A1e

iθ + A−1e
−iθ)+

+
(
A2e

2iθ + A−2e
−2iθ
)

+ · · · =
= A0 + (A1 + A−1) cos θ + i (A1 − A−1) sin θ+

+ (A2 + A−2) cos 2θ+i (A2 − A−2) sin 2θ+· · · .
Comparing with (5), we obtain: A0 = c0 = C,
and also {

Ak + A−k = ck;
i (Ak − A−k) = 0.

From here it follows that

Ak = A−k =
ck
2

=

[
N sin kδ
kπ

, k = N, 2N · · · ;
0, at other k.

To establish the correspondence with the
notation [1, § 59, (2)], we put:

A′k = −iT01Ak, A′′k = −iT02Ak.

Now (3) coincides with [1, § 59, (2)], and we
can use the technique [1, § 59].

We substitute (4) in (3)

k=+∞∑
k=−∞

Rk
j

[
(1− k)ake

ikθ + ake
−ikθ]−

−
k=+∞∑
k=−∞

Rk
ja
′
ke
i(k+2)θ = −iT.

Here the right side is

−iT =


+∞∑

k=−∞
A′ke

ikθ, j = 1;
+∞∑

k=−∞
A′′ke

ikθ, j = 2.

Let us compare free terms. In addition, in
the left side the summands with the number
k = 0 should be taken from the first sum, and
from the second one – the summonds with the
number k = −2. Separately assuming j = 1
(points on the inner circle) and j = 2 (points
on the outer circle), we obtain a pair of equati-
ons: 

a0 + a0 −
a′−2

R2
1

= A′0 = −iT01A0;

a0 + a0 −
a′−2

R2
2

= A′′0 = −iT02A0.
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Eliminating a′−2 from these equations, we
obtain: a0 + a0 = 0. Here it is taken into
account that

−iT01A0 ·R2
1 = −iT02A0 ·R2

2 = −i · M0

2π
.

In solving the first fundamental boundary
value problem, the potential Φ(z) is defined
only to a purely imaginary additive constant
[1, § 34], therefore without generality restricti-
on we may assume that a0 is a real number.
Then a0 = a0, and a0 = 0. Now we find:
a′−2 = i · M0

2π
.

Let us compare the factors at eikθ. This
function is contained in ±k summands in the
first sum, and (k− 2) summands in the second
one. Such a comparison should be carried out
twice: for j = 1 for points of the inner circle,
and for j = 2 for points of the outer circle.
Therefore, one comparison generates a couple
of equations:(

Rk
1(1− k) R−k1 −Rk−2

1

Rk
2(1− k) R−k2 −Rk−2

2

)
×

×

 ak
a−k
a′k−2

 =

(
A′k
A′′k

)
. (7)

Excluding a′k−2 from here, we obtain:

(1− k)
(
R2

2 −R2
1

)
ak +

(
R2−2k

2 −R2−2k
1

)
a−k =

= R2−k
2 A′′k −R2−k

1 A′k. (8)

Let us compare factors at e−ikθ. From the
resulting pair of equations (for j = 1, 2) by
eliminating the a′−k−2 coefficient, we find:

(1 + k)
(
R2

2 −R2
1

)
a−k +

(
R2+2k

2 −R2+2k
1

)
ak =

= R2+k
2 A′′−k −R2+k

1 A′−k.

Conjugating this equation, we have:

(1 + k)
(
R2

2 −R2
1

)
a−k +

(
R2+2k

2 −R2+2k
1

)
ak =

= R2+k
2 A′′k −R

2+k
1 A′k. (9)

Here it is taken into account that A′−k = A′k,
A′′−k = A′′k. Now the simultaneous solution of
equations (8), (9) allows us to find a pair of
coefficients ak, a′−k at once. It is clear then that

the solving of the corresponding system of li-
near algebraic equations is sufficient only for
natural k. The matrix of this system has the
form:(

(1− k) (R2
2 −R2

1) R2−2k
2 −R2−2k

1

R2+2k
2 −R2+2k

1 (1 + k) (R2
2 −R2

1)

)
.

If k = 1, then this matrix degenerates,
because it takes the form:(

0 0
R4

2 −R4
1 2 (R2

2 −R2
1)

)
.

Therefore, the coefficients a1, a′−1 must be
found in a special way.

For k = 1, the first equation of this system
takes the form:

0 · a1 + 0 · a−1 = R2A
′′
1 −R1A

′
1.

On mechanical grounds, it is clear that the ri-
ng must have more than one binding, N > 2
(for N = 1, the equilibrium conditions for
a solid cannot be satisfied). Then the Fouri-
er coefficient c1 = 0, from which A±1 = 0,
A′±1 = A′′±1 = 0, and the first equation of
the compatibility system does not contradict.
The remaining equation can be solved together
with the condition of single-valuedness of di-
splacements [1, § 35]; its solution is trivial:
a1 = a−1 = 0. The remaining pairs of coeffi-
cients ak, a′−k are solutions of non-degenerate
systems composed of the equations (8), (9) for
k > 2: ak = Pk

Qk
. Here is denoted:

Pk = (1+k)(R2
2−R2

1)Bk−(R2−2k
2 −R2−2k

1 )B−k,

Qk =
(
1− k2

) (
R2

2 −R2
1

)2−

−
(
R2+2k

2 −R2+2k
1

) (
R2−2k

2 −R2−2k
1

)
,

Bk = A′′kR
2−k
2 − A′kR2−k

1 .

Now the coefficients a′k can be found from any
equation of the system (7). If the numbering is
shifted by two units, we obtain:

a′k =
a−k−2R

−k−2
1 − (1 + k) ak+2R

k+2
1 − A′k+2

Rk
1

.

Among other things for k = −2 we have:

a′−2 =
−A′0
R−2

1

=
iT01A0

R−2
1

= i · M0

2π
,
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which has already been obtained above.
In addition, it should be taken into consi-

deration that the coefficients a±1 = 0 were
calculated in a special way. Hence we obtain
a′−1 = a′−3 = 0.

From now on, all the coefficients ak, a′k are
found, the complex potentials Φ, Ψ are defined,
and the solution of the boundary problem is
constructed.

5. Use of the solution of the boundary
value problem for finding physical fi-
elds. The series (4) converge, and therefore
admit a term-by-term integration: ϕ =

∫
Φ dz,

ψ =
∫

Ψ dz. The analytic functions ϕ, ψ are
also potentials. Now the components u, v di-
splacement fields according to [1, § 32, (1)] are
determined from equation

2µ (u+ iv) = κϕ− zϕ′ − ψ. (10)

Here µ is the material shear modulus; the
coefficient κ = 3 − 4σ for the state of plane
strain or κ = 3−σ

1+σ
for a plane stress state,

σ – Poisson’s ratio. The transformation of the
rotation of the coordinate system according to
[1, § 39, (2)] also makes it possible to obtain
the radial vr and angular vθ components of the
displacement field:{

vr = u cos θ + v sin θ;
vθ = −u sin θ + v cos θ.

The components Xx, Yy, Xy = Yx of the
stress field are determined by the relations:

Xx + Yy = 2
[
Φ(z) + Φ(z)

]
, (11)

Yy−Xx+i(Xy+Yx) = 2 [zΦ′(z) + Ψ(z)] . (12)

The transformation of the rotation of the
coordinate system to the axes x′Oy′ also makes
it possible to obtain stresses in the rotated
axes:

X ′x′ + Y ′y′ = Xx + Yy,

Y ′y′ −X ′x′ + i(X ′y′ + Y ′x′) =

= (Yy −Xx + i(Xy + Yx)) e
2iθ.

6. Reduction to a form suitable for
numerical simulation. The obtained soluti-
on (10), (11), (12) of the problem must be

reduced to a dimensionless form, since in
numerical simulation this will allow analyzing
the basic characteristics of fields without using
the values of physical parameters.

The position of the current point of the
domain will be characterized by the number

z = Reiθ = ρR2e
iθ =

ρ

γ
R1e

iθ.

Here ρ = R
R2

denotes the fraction that the
actual radius R forms from the largest possible
radius R2. Then R1 < ρR2 < R2, γ < ρ < 1.

Thus the value ρ describes the dimensi-
onless modulus of the current value z. In
this case, a natural unit ` = R1

γ
= R2 of

length measurement arises when determining
the position of the current point for a given
boundary value problem. In fact, the module
for moving away the current point from the
center of circles can be defined in ` units, since
|z| = ρ`, and the variable ρ is dimensionless.

For termwise integration, for example, of
the first of the series (4), the typical term of
the expansion takes the form

ak
k + 1

· zk+1 =
ak

k + 1
·
(
ρ

γ

)k+1

Rk+1
1 ei(k+1)θ.

Obviously, the dimension of this term is
concentrated only in the factor akRk+1

1 . Taking
into account (10) it should be equal to Pascal
multiplied by a meter. In this case, the meter
as an integral part of the dimension of the ϕ, ψ
potentials linear combination can not arise due
to the use of only the geometric characteristics
of the region (in our case, the radii R1, R2). In
fact, the cause of the displacement field is the
external load. Assuming physical linearity, the
components of the displacement field must be
proportional to this load. Therefore, the physi-
cal characteristic of the load, and not just the
geometric characteristics of the region, should
be the source of the dimension of the potentials
linear combination. Taking into consideration
all said above it makes sense to introduce the
following changes of variables:

ak =
iM0

2πCR1

· 1

Rk+1
1

· αk,
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a′k =
iM0

2πCR1

· 1

Rk+1
1

· α′k.

Now αk, α′k are dimensionless parameters that
replace the coefficients ak, a′k. Using the results
obtained above, we find:

αk =

[
Ak · fk(γ), k = ±2,±3, · · · ;
0, k = 0,±1.

Here is denoted
fk(γ) =

(
1− γk

)
×

×
(1 + k)

(
γ2k − γ2k+2

)
− γ3k + γk+2

(1− k2)(γk−1 − γk+1)2 −
(
1− γ2k+2

) (
γ2k−2 − 1

) .
We also obtain

α′k =

[
0, k = −3;−1;
C, k = −2.

For other values of k we have:

α′k = αk+2 + α−k−2 + Ak+2.

When dividing (10) by M0

2πCR1
, it turns out

to be expedient to change the variables

U = u · 4πµCR1

M0

, V = v · 4πµCR1

M0

. (13)

Consequently, value

L =
M0

4πµCR1

;

it plays the role of a natural unit of
length measurement when calculating the
components of the displacement field for a gi-
ven boundary value problem. In fact, the u, v
components of the displacement field can be
defined in L units, since u = LU , v = LV , and
the variables U and V are dimensionless.

Using the substitutions (13), the expression
(10) takes the form

U + iV =

= i

+∞∑
k=−∞

ρk+1

γk+1
eiθ
(
καk − α′k
k + 1

· eikθ + αke
−ikθ
)
.

For an arbitrary pair (ρ; θ), the value of
this sum can be obtained approximately by
the accumulation method: it is necessary to
add pairs of summands with numbers k =

±1,±2, · · · to the initial term arising at k = 0.
It should be remembered that some coefficients
αk, α′k are calculated in a non-typical way.

Then, the dimensionless components U , V
of the displacement of a point with coordinates
(ρ; θ) arise when the real and imaginary parts
are separated in the accumulated sum.

Finally, we define the natural unit for
measuring the stresses for a given problem.
Bearing in mind (11), from the point of vi-
ew of dimensions it is sufficient to consider the
following sum:

akz
k + akzk = − M0

πCR2
1

· αk
(
ρ

γ

)k
sin kθ.

Taking into account (12), we also obtain

z · kakzk−1 =
M0

πCR2
1

· ikαk
2

(
ρ

γ

)k
ei(k−2)θ.

It is clear then that the natural unit for
measuring stresses for a given problem is the
factor σ0 = M0

πCR2
1
. Consequently, the stresses

Xx, Yy, Xy can be expressed in σ0 units:

Xx = σ0X̃x, Yy = σ0Ỹy, Xy = σ0X̃y;

these changes of variables reduce (11), (12) to
the dimensionless form.

Numerical simulation of a similar problem
for specific values of physical parameters was
carried out in [3]. The results of this section of
the present article generalize the result obtai-
ned in [3].

7. Conclusions. In this paper, a soluti-
on of the boundary value problem of elasti-
city theory for a domain in the form of a ri-
ng with piecewise constant boundary conditi-
ons on the contour was constructed using the
Muskhelishvili’s method of complex potentials.
The solution is obtained in an analytical form
and is reduced to a form suitable for numerical
simulation. Analysis of the solution shows that
in the neighborhood of the contour there is
deformation of the region close to the shift (on
the sections of the boundary with a nonzero
boundary condition) or to radial contraction
(on the sections of the boundary with the zero
boundary condition). The results of this paper
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can be applied to describe the state of rotating
mechanical structures.
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