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CENTER CONDITIONS FOR A CUBIC DIFFERENTIAL SYSTEM WITH
TWO INVARIANT STRAIGHT LINES AND ONE INVARIANT CUBIC

We determine conditions for the origin to be a center for a class of cubic differential systems
having two invariant straight lines and one invariant cubic. We prove that a fine focus O(0, 0) is a
center if and only if the first two Lyapunov quantities vanish.
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Introduction
We consider the cubic differential system of

the form
ẋ = y + ax2 + cxy + fy2 + kx3+
+mx2y + pxy2 + ry3 ≡ P (x, y),
ẏ = −(x+ gx2 + dxy + by2 + sx3+
+qx2y + nxy2 + ly3) ≡ Q(x, y),

(1)

where P (x, y) and Q(x, y) are real and copri-
me polynomials in the variables x and y. The
origin O(0, 0) is a singular point of a center or
a focus type for (1), i.e. a fine focus. The aim
of this paper is to find verifiable conditions for
O(0, 0) to be a center.

It is known that a singular point O(0, 0)
is a center for system (1) if and only if it
has a holomorphic first integral of the form
F (x, y) = C in some neighborhood of O(0, 0)
[19]. Also, O(0, 0) is a center if and only if
(1) has a holomorphic integrating factor of the
form µ = 1+

∑
µj(x, y) in some neighborhood

of O(0, 0) [1].
There exists a formal power series F (x, y) =∑
Fj(x, y) such that the rate of change of

F (x, y) along trajectories of (1) is a linear
combination of polynomials {(x2 + y2)j}∞j=2 :

dF
dt

=
∞∑
j=2

Lj−1(x
2 + y2)j.

Quantities Lj, j = 1,∞ are polynomials
with respect to the coefficients of system (1)
called to be the Lyapunov quantities. The ori-
gin is a fine focus of order r if L1 = L2 = . . . =
Lr−1 = 0 and Lr ̸= 0. The origin is a center for
(1) if and only if Lj = 0, j = 1,∞.

By the Hilbert basis theorem, there is N
such that Lj = 0 for all j if and only if Lj = 0

for all j ≤ N . It is only necessary to find a
finite number of Lyapunov quantities, though
in any given case it is not known a priori how
many are required.

The number N is known for quadratic
systems N = 3 [2] and for cubic systems
with only homogeneous cubic nonlinearities
N = 5 [26]. If the cubic system (1) contains
both quadratic and cubic nonlinearities, the
problem of the center has been solved only
in some particular cases (see, for example,
[3–15,17,18,20,21]).

In this paper we solve the problem of
the center for a class of cubic differential
systems (1) with two invariant straight li-
nes and one irreducible invariant cubic. The
paper is organized as follows. In Section 1 we
present the known results concerning relati-
on between integrability, invariant algebraic
curves and Lyapunov quantities. In Section 2
we find twenty eight sets of conditions for the
existence of two invariant straight lines and
one invariant cubic. In Section 3 we obtain
the center conditions for cubic system (1) with
two invariant straight lines and one invariant
cubic and determine the order of the fine focus
O(0, 0).

1. Algebraic solutions and center
sequences

In this paper we study the problem of the
center for cubic differential system (1) assumi-
ng that the system has irreducible invariant
algebraic curves: two invariant straight lines
and one invariant cubic.

Definition 1. An algebraic invariant curve of
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(1) is the solution set in C2 of an equation
Φ(x, y) = 0, where Φ is a polynomial in x, y
with complex coefficients such that

∂Φ

∂x
P (x, y) +

∂Φ

∂y
Q(x, y) = Φ(x, y)K(x, y),

for some polynomial in x, y, K = K(x, y) with
complex coefficients, called the cofactor of the
invariant algebraic curve Φ = 0.

We say that the invariant algebraic curve
Φ(x, y) = 0 is an algebraic solution of (1) if and
only if Φ(x, y) is an irreducible polynomial in
C[x, y].

If the cubic system (1) has sufficiently many
invariant algebraic curves Φj(x, y) = 0, j =
1, . . . , q, then in most cases a first integral (an
integrating factor) can be constructed in the
Darboux form

Φα1
1 Φα2

2 · · ·Φαq
q . (2)

Function (2), with αj ∈ C not all zero, is a
first integral (an integrating factor) for (1) if
and only if

q∑
j=1

αjKj ≡ 0
( q∑
j=1

αjKj ≡ −∂Q
∂y

− ∂P

∂x

)
.

If system (1) has a first integral or an
integrating factor of the form (2), being Φj = 0
invariant algebraic curves of (1), then system
(1) is called Darboux integrable [25]. The cubic
systems (1) which are Darboux integrable have
a center at O(0, 0).

The method of Darboux turns out to be
very useful and elegant one to prove integrabi-
lity for some classes of systems depending on
parameters. These years, interesting results on
algebraic solutions, Lyapunov quantities and
Darboux integrability have been obtained (see,
for example, [6–11,14,16,22,23]).

Definition 2. We say that (Φk, k =
1,M ; L = N) is a center sequence for (1)
if the existence of M invariant irreducible
algebraic curves Φk(x, y) = 0 and the vanishi-
ng of the Lyapunov quantities Lν , ν = 1, N ,
implies the origin O(0, 0) to be a center for (1).

The problem of center sequences for cubic
differential systems with invariant algebraic
curves was considered in [5–9, 24]. In these
papers, the problem of the center for cubic
systems with four invariant straight lines, three
invariant straight lines, two invariant straight
lines and one invariant conic was completely
solved. The main results of these works are
summarized in the following theorem.

Theorem 1. (ajx+bjy+cj, j = 1, 4; L = 2),
(ajx + bjy + cj, j = 1, 3; L = 7) and (ajx +
bjy+cj, j = 1, 2, a20x

2+a11xy+a02y
2+a10x+

a01y + 1 = 0; L = 4) are center sequences for
the cubic system (1).

The problem of the center for cubic system
(1) having two parallel invariant straight li-
nes and one invariant cubic was solved in [11]
and for cubic system (1) having a bundle of
two invariant straight lines and one invariant
cubic was solved in [12], [13]. The main results
of these papers are gathered in the following
theorem.

Theorem 2. (lj = ajx + bjy + cj, j =
1, 2, l1||l2, Φ; L = 2) and (lj = 1 + ajx −
y, j = 1, 2, Φ, l1 ∩ l2 ∩ Φ = (0, 1); L =
3), where Φ = x2 + y2 + a30x

3 + a21x
2y +

a12xy
2+a03y

3 is an irreducible invariant cubic,
are center sequences for the cubic system (1).

In the present paper, we shall prove that
(1 + ajx − y, j = 1, 2, Φ; L = 2), where
Φ = x2 + y2 + a30x

3 + a21x
2y + a12xy

2 is an
irreducible invariant cubic, is a center sequence
for the cubic system (1).

2. Conditions for the existence of an
invariant cubic

Let the cubic system (1) have two invari-
ant straight lines l1, l2 intersecting at a real si-
ngular point (x0, y0). By rotating the system
of coordinates (x → x cosφ − y sinφ, y →
x sinφ + y cosφ) and rescaling the axes of
coordinates (x → αx, y → αy), we obtain
l1 ∩ l2 = (0, 1). In this case the invariant strai-
ght lines can be written as

lj ≡ 1+ajx−y = 0, aj ∈ C, j = 1, 2; a2−a1 ̸= 0.
(3)

According to [10] the straight lines (3) are
invariant for (1) if and only if the following
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coefficient conditions are satisfied:

k = (a− 1)(a1 + a2) + g, l = −b,
r = −f − 1, s = (1− a)a1a2,

m = (a1 + a2)(c− a1 − a2) + a1a2−
−a+ d+ 2, q = (a1 + a2 − c)a1a2 − g,

p = (f + 2)(a1 + a2) + b− c,
n = −(f + 2)a1a2 − (d+ 1).

In this case the cubic system (1) looks:

ẋ = y + ax2 + cxy + fy2 + [(a− 1)×
×(a1 + a2) + g]x3+

+[d+ 2− a− a21 − (a1 + a2)(a2 − c)]×
×x2y + [(f + 2)(a1 + a2) + b− c]×

×xy2 − (f + 1)y3 ≡ P (x, y),
ẏ = −x− gx2 − dxy − by2+

+(a− 1)a1a2x
3 + [g + a1a2(c−

−a1 − a2)]x
2y + [(f + 2)a1a2 + d+ 1]×

×xy2 + by3 ≡ Q(x, y).
(4)

In this section for cubic system (1) with two
invariant straight lines (4) we find conditions
for the existence of one irreducible invariant
cubic curve

Φ(x, y) ≡ x2 + y2 + a30x
3 + a21x

2y+

+a12xy
2 + a03y

3 = 0, (5)

where (a30, a21, a12, a03) ̸= 0 and aij ∈ R.
By Definition 1, the cubic curve (5) is an

invariant cubic curve for system (1) if there
exist numbers c20, c11, c02, c10, c01 ∈ R such
that

P (x, y)
∂Φ

∂x
+Q(x, y)

∂Φ

∂y
≡ Φ(x, y)×

×(c20x
2 + c11xy + c02y

2 + c10x+ c01y). (6)

Identifying the coefficients of the monomials
xiyj in (6), we reduce this identity to a system
of fifteen equations {Fij = 0} for the unknowns
a30, a21, a12, a03, c20, c11, c02, c10, c01. When i +
j = 3, we find that c10 = 2a − a21, c01 =
a12 − 2b, d = (3a21 − 3a03 − 2a + 2f)/2, g =
(3a30 − 3a12 + 2b + 2c)/2 and a30, a21, a12, a03
are the solutions of the following systems of
algebraic equations:

F50 ≡ 9a12a30 − 2a30(3(a1 + a2)(a− 1) + 3b+
+3c− c20) + 2a21a1a2(1− a)− 9a230 = 0,

F41 ≡ 9a03a30 + 9a12a21 + 4a12a1a2(1− a)−
−18a21a30 + 2a21(c20 + (a1 + a2)(a1a2−
−2a+ 2)− ca1a2 − 3b− 3c)+
+2a30(c11 + 6a− 3f − 6 + 3(a1 + a2)×
×(a1 + a2 − c)− 3a1a2) = 0,

F32 ≡ 9a03a21 + 6a03a1a2(1− a) + 9a212−
−9a221 − 9a12a30 + 2a12(c20 + (a1 + a2)×
×(1− a) + 2a1a2(a1 + a2 − c)− 3b− 3c)+
+2a21(c11 + 5a− 3f − 5 + 2(a1 + a2)×
×(a1 + a2 − c)− (f + 4)a1a2) + 2a30×
× (c02 − 3b+ 3c− 3(f + 2)(a1 + a2)) = 0,

F23 ≡ 2a03(c20 + 3a1a2(a1 + a2 − c)− 3b−
−3c)− 9a12a21 + 6(f + 1)a30 + 2a12×
× (c11 + 4a− 3f − 4 + (a1 + a2)×
×(a1 + a2 − c)− (2f + 5)a1a2) + 9a03×
×(2a12 − a30) + 2a21(c02 − 2(f + 2)×
×(a1 + a2)− 3b+ 2c) = 0,

F14 ≡ a03(9a03 − 9a21 + 2(c11 + 3(a− f − 1)−
−3(f + 2)a1a2)) + 2a12(c02 − 3b+ c−
−(f + 2)(a1 + a2)) + 4(f + 1)a21 = 0,

F05 ≡ a03(c02 − 3b) + (f + 1)a12 = 0,
(7)

F40 ≡ 3a12(a21 − 2)− a30(a21 − 2a− 6)−
−2(b+ c)a21 + 2(2b+ 2c+ 2(a1 + a2)×
×(a− 1)− c20) = 0,

F31 ≡ 2a30(2b+ 3c− 4a12) + a21(2a− 2f+
+6− a21) + a12(6a12 − 4b− 4c) + 3a03×
×(a21 − 2) + 4a(a1a2 − 2) + 4(a1 + a2)×
× (c− a1 − a2)− 2c11 + 4f + 8 = 0,

F22 ≡ a03(15a12 − 9a30 − 6b− 6c) + 2a12×
×(a− 2f − 3− 3a21) + 2a21(b+ 2c)+
+2(4b− c02 − c20 + 2(f + 2)(a1 + a2)+
+3(f + 1)a30 − 2a1a2(a1 + a2 − c)) = 0,

F13 ≡ a03(2a− 6f − 6− 7a21 + 9a03)+
+2a12(c− a12) + 2(2f + 3)a21−
−2(2a+ c11 − (2f + 4)a1a2) = 0,

F04 ≡ a12(a03 − f) + b(a03 − 2) + c02 = 0.
(8)

The conditions for the existence of an invari-
ant cubic for system (4) will be found studying
the consistency of the system of equations {(7),
(8)} and assuming that a03 = 0. In this case
the invariant cubic curve (5) looks as

Φ(x, y) ≡ x2+y2+a30x
3+a21x

2y+a12xy
2 = 0.

(9)
Then from the equation F05 = 0 of (7), we

can see that either a12 = 0 or f = −1.
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3.1. Assume that a12 = 0 and let a21 =
0. Then F05 ≡ 0, F14 ≡ 0 and f = −1. We
express c02, c11, c20 from the equations of (7)
and a1, a30 from F04 = 0, F22 = 0. Then reduce
the equation F31 = 0 by a22 from F13 = 0.

If b2 = 3 and a = 0, then we have the
following set of conditions

1) a = 0, d = −1, f = −1, g = (3c −
b)/3, b2 = 3, a1 = (3c− b− 3a2)/3, 3a22 +
(b− 3c)a2 − 3bc− 6 = 0

for the existence of an invariant cubic curve
9(x2 + y2)− 8bx3 = 0.

If b2 = 3 and a ̸= 0, then we obtain the
following set of conditions

2) a = 4/3, c = (−7b)/9, d = (−7)/3, f =
−1, g = −2c, b2 = 3, 9a1 +9a2 +10b = 0,
9a22 + 10ba2 + 51 = 0

for the existence of an invariant cubic curve
9(x2 + y2) + 8bx3 = 0.

Let b2 ̸= 3 and express c from F40 = 0. Then
F31 ≡ f1f2 = 0, where f1 = b2(2a−3)+9(a−1)2

and f2 = (3b2 + 7a2 + 6a − 9)2 + 32a2(a −
3)2 ̸= 0. When f1 = 0 we get the following set
of conditions for the existence of an invariant
cubic

3) c = b(2a − 5)/3, d = −a − 1, f = −1,
g = [2b(5a2 − 14a+ 9)]/(6a− 9), b2(2a−
3)+9(a−1)2 = 0, a1 = (2ab−6b−3a2)/3,
3a22 + (b− 3c)a2 + 12a+ b2 − 3bc− 9 = 0.

The invariant cubic is 3(2a − 3)(x2 + y2) +
4b(a2 − 3a+ 2)x3 = 0.

3.2. Assume that a12 = 0 and let a21 ̸=
0. Then F14 = 0 yields f = −1. We express
c02, c11, c20 from the equations F23 = 0, F32 =
0, F41 = 0 and obtain that F50 ≡ g1g2g3 = 0,
where g1 = a1a21 + a30, g2 = a2a21 + a30, g3 =
(a− 1)a21 + (a1 + a2 − c)a30.

If g1 = 0, then a30 = −a1a21 and F40 ≡
(a21 + 1)((2a− 2− a21)a1 + 2b+ 2c) = 0.

Suppose that a21 = −1 and express a1 from
F04 = 0, then F31 ≡ i1i2 = 0, where
i1 = 2a2 + b− 2c and i2 = 4aa2 − 6a2 + 3b+ 6c.

When i1 = 0, then b = 0 and the right-hand
sides of (1) have a common factor 1 + cx− y.

When i1 ̸= 0, we reduce the equations F22 =
0, F13 = 0 by b from i2 = 0. Then we calculate
the resultant of the polynomials F22 and F13

with respect to a and establish that the system
of equations {F22 = 0, F13 = 0} is consistent
if and only if 4a22 +18a+9 = 0. We obtain the
following set of conditions for the existence of
an invariant cubic

4) a = (−b2 − 1)/2, c = b(−b2 − 5)/2, d =
(b2 − 4)/2, g = 5b(−b2 − 3)/4, f = −1,
a1 = b(−b2 − 3)/2, a2 = (−3b)/2.

The invariant cubic is 2(x2 + y2) − x2(b3x +
3bx+ 2y) = 0.

Let a21 + 1 ̸= 0. Then the equation F40 =
0 yields c = (a1a21 − 2aa1 + 2a1 − 2b)/2.
We express a from F13 = 0 and b from
F04 = 0. Calculating the resultant of F31

and F22 with respect to a2, we obtain that
Res(F31, F22, a2) = (a21+1)h1h2h3, where h1 =
a21 + a21 + 1, h2 = 3a41 − 4a21a21 + 14a21 + 27,
h3 = 27a21a

2
21 − a321 + 15a221 − 48a21 − 64.

If h1 = 0, then a21 = −a21 − 1 and we get
the following set of conditions

5) b = (−2aa1− a31− a1− 2a2)/3, c = (4a2+
5a1−a31−2aa1)/6, d = (−2a−3a21−5)/2,
f = −1, g = a1(2− a+ a21), a = −(4a22 +
9+21a21+a1(a

2
1+1)(3a1+2a2))/(2(3a

2
1+

2a1a2+9)), F31 ≡ a31(23a
2
1+5a1a2+4a22+

54)− 18a21a2 + 27a1 − 4a32 − 27a2 = 0.

The invariant cubic is x2 + y2 + (a21 +1)(a1x−
y)x2 = 0.

If h1 ̸= 0 and h2 = 0, then a21 = (3a41 +
14a21 + 27)/(4a21) and we find the following set
of conditions for the existence of an invariant
cubic

6) a = (3a41 + 14a21 + 27)/(8a21), b = (−a21 −
3)/a1, c = a1− b, f = −1, d = 2a−1, g =
(−9a41 − 34a21 − 81)/(8a1), a2 = (−3b)/2,
5a61 + 31a41 + 63a21 − 27 = 0.

The invariant cubic is 4a21(x
2 + y2) − (3a41 +

14a21 + 27)(a1x− y)x2 = 0.
Suppose that h1h2 ̸= 0 and let h3 = 0.

Denote a21 = 3h2 − 1, then
h3 ≡ (3a1h

2 − a1 + h3 − 3h)×
×(3a1h

2 − a1 − h3 + 3h) = 0.
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In this case we obtain the following two sets
of conditions:

7) a = (3h2 − 1)/2, b = −2h, c = h(7a −
4)/(3a), g = h(13a − 4 − 3a2)/(3a), f =
−1, d = 2a − 1, a1 = h(h2 − 3)/(3h2 −
1), a2 = 3h.

The invariant cubic is x2 + y2 + (3hx− h3x +
3h2y − y)x2 = 0.

8) a = (3h2 − 1)/2, b = 2h, c = −h(7a −
4)/(3a), g = −h(13a− 4− 3a2)/(3a), f =
−1, d = 2a − 1, a1 = −h(h2 − 3)/(3h2 −
1), a2 = −3h.

The invariant cubic is x2 + y2 + (h3x− 3hx +
3h2y − y)x2 = 0.

The case g2 = 0 is symmetric to g1 = 0 and
we get the conditions 4) – 8).

Assume that g1g2 ̸= 0 and let g3 = 0. Then
a = (a21+ca30−a2a30−a1a30)/a21. We express
a1 from F04 = 0 and reduce the equations of
(8) by a22 from F13 = 0. Consider the equation
F40 − F22 = 0 and suppose that ba30 − 3a221 +
b2a21 = 0. In this case we get the following set
of conditions for the existence of an invariant
cubic

9) a = (b2 + 4)/4, c = (−3b)/2, d = (b2 −
4)/2, f = −1, g = b(3b2 − 4)/8, a1 =
−a2 − 2b, 4a22 + 8ba2 + 5b2 + 4 = 0.

The invariant cubic is 4(x2 + y2) + b2x2(bx +
2y) = 0.

Suppose that ba30 − 3a221 + b2a21 ̸= 0 and
express c from the equation F40 − F22 = 0.
If a30 = 0, then we have the following set of
conditions

10) a = 1, b = 2c, d = 10, f = −1, g = 3c,
a1 = 3

√
3, a2 = −3

√
3.

The invariant cubic is x2 + y2 + 8x2y = 0.
Let a30 ̸= 0 and express a30 from F31 = 0. In

this case we get the following set of conditions
for the existence of an invariant cubic

11) a = (2a21 + ba30)/(2a21), c = [−b(a221 +
a21(b

2−32)+4b2)]/[2(3a221− b2a21−4b2)],
d = (3a21 − 2a − 2)/2, f = −1, g =
(3a30+2b+2c)/2, a30 = [(3a21− b2)(a21−

8)a221]/[b(3a
2
21 − b2a21 − 4b2)], a1 = (2c −

b − 2a2)/2, a21(2a
2
2 + (b − 2c)a2 + b2 −

2bc+2)− 7a221+4ba30 = 0, F40 ≡ 81a421−
30b2a321+b

2(b2+24)a221+8b4a21+16b4 = 0.

The invariant cubic is x2+y2+x2(a30x+a21y) =
0.

3.3. Assume that a12 ̸= 0 and let f =
−1. We express c02, c11, c20 from the equati-
ons F14 = 0, F23 = 0, F32 = 0 of (7)
and calculate the resultant of the polynomi-
als F41 and F50 with respect to a. We obtain
that Res(F41, F50, a) = j1j2j3j4, where j1 =
4a12a30 − a221, j2 = a1 + a2 − c, j3 = a21a12 +
a1a21 + a30, j4 = a22a12 + a2a21 + a30.

3.3.1. Suppose that j1 = 0. Then a30 =
a221/(4a12) and F41 ≡ h1h2h3 = 0, where h1 =
2a1a12 + a21, h2 = 2a2a12 + a21, h3 = 2(a −
1)a12 + (a1 + a2 − c)a21.

Let a1 = (−a21)/(2a12), then h1 ≡ 0 and
F50 ≡ 0. We express b from F04 = 0 and reduce
the equations F31 = 0 and F22 = 0 by a22 from
F13 = 0. Suppose that a21+1 ̸= 0 and express c
from F40 = 0. Then F22−F31 ≡ (a21−2a)(a212−
2a21 − 4) = 0.

If a21 = 2a and a = 4, then we have the
following two sets of conditions for the exi-
stence of an invariant cubic:

12) a = 4, b = 7 − g, c = 2g − 7, d = 7,
f = −1, g2 − 14g + 46 = 0, a1 = −1,
a2 = 3g − 17.

The invariant cubic is x2+y2+4x(x+y)2 = 0.

13) a = 4, b = −7 − g, c = 2g + 7, d = 7,
f = −1, g2 + 14g + 46 = 0, a1 = 1, a2 =
3g + 17.

The invariant cubic is x2+y2−4x(x−y)2 = 0.

If a21 = 2a and a ̸= 4, then we find the
following set of conditions

14) b = [3(a2 − a212)]/[2a12(a − 4)], c =
(4a2−2aa212−4a+5a212)/[a12(4−a)], d =
2a − 1, g = (a212 − 3a3 + 17a2 − aa212 −
8a)/[2a12(4 − a)], a1 = (−a)/a12, a2 =
(a212 − 9a2 + 2aa212)/[2a12(a − 4)], F13 ≡
27a412−2a212(4a

3−3a2+48a+32)+27a4 =
0.
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The invariant cubic is a12(x2 + y2) + x(ax +
a12y)

2 = 0.
Suppose that a21 ̸= 2a and let a21 = (a212 −

4)/2. If 5a212 − 108 = 0, then F22 ≡ (15a −
64)(5a12a2−234) = 0 and we get the following
two sets of conditions:

15) a = 64/15, b = (504 − 25a12a2)/(75a12),
c = 2(25a12a2 + 897)/(75a12), f = −1,
d = 119/15, g = (25a12a2+2046)/(75a12),
5a212−108 = 0, a1 = (−22)/(5a12), 75a22−
145a12a2 − 819 = 0.

The invariant cubic is 16a12(x
2+y2)+x(a212x−

4x+ 4a12y)
2 = 0.

16) b = 6(15a − 101)/(25a12), c = 2(45a +
497)/(25a12), d = (61 − 5a)/5, f = −1,
g = 4(45a + 76)/(25a12), 5a212 − 108 = 0,
a1 = (−22)/(5a12), a2 = 234/(5a12).

The invariant cubic is 16a12(x2+y2)+x(a212x−
4x+ 4a12y)

2 = 0.
If 5a212−108 ̸= 0, then we obtain the followi-

ng set of conditions

17) b = (4ca12−4a2a12−3a212−4)/(4a12), d =
(3a212 − 4a − 16)/4, g = (3a412 − 96a212 −
32a12a2 + 64ca12 + 16)/(32a12), n =
(4aa12+a

2
12a2−4a2−3a312+12a12)/(4a12),

c = [a212(16a
2 + 104a − a412 − 10a212 −

64) + 96a − 160]/[16a12(6a − 4 − a212)],
a2 = [4aa212(5a

2
12 − 4)− (5a212 − 12)(a212 +

4)(a212 − 6)]/[32a12(6a − 4 − a212)], F13 ≡
3a812−4a612(8a+1)+4a412(28a

2+8a−13)+
32a212(1− 4a3 − 2a2 + 4a)− 64 = 0.

The invariant cubic is 16a12(x2+y2)+x(a212x−
4x+ 4a12y)

2 = 0.
Let a21 = −1. In this case F40 ≡ (a −

1)(4a12a2 − 1) = 0. If a = 1, then the system
(8) is not consistent. Assume that a ̸= 1 and let
a2 = 1/(4a12). The case a = (−1)/2 is contai-
ned in 14). If a ̸= (−1)/2 and a212 = 2, then we
get the following set of conditions

18) a = (−3)/4, b = 1/(2a12), c =
13/(4a12), d = (−7)/4, f = −1, g =
9/(8a12), a

2
12 = 2, a1 = 1/(2a12), a2 =

1/(4a12).

The invariant cubic is 4a12(x
2 + y2) + x(x2 −

4a12xy + 8y2) = 0.
The case h2 = 0 is symmetric to h1 = 0 if

we replace a2 with a1 and we obtain the sets
of conditions 12) – 18).

Assume that h1h2 ̸= 0 and let h3 = 0.
We express a1 from F04 = 0 and reduce the
equations of (8) by a22 from F13 = 0. Then
h3 = 0 yields a = (a12a21 +2a12 + ba21]/(2a12).
Denote ∆1 = a12a21 − 2a12 − 3ba21 and ∆2 =
4a212(a21 + 16)− 3a321.

Let ∆1 ̸= 0 and express c from F22 = 0. If
a21(a21 + 4) = 0, then the system (8) is not
consistent. If a21 = 8, then a12 = ±4 and we
get the following two sets of conditions:

19) a = b + 5, c = b + 12, d = 6 − b, f =
−1, g = 2(b+ 6), a1 = 8− a2, a

2
2 − 8a2 =

11.

The invariant cubic is x2+y2+4x(x+y)2 = 0.

20) a = 5 − b, c = b − 12, d = 6 + b, f =
−1, g = 2(b−6), a1 = −a2−8, a22+8a2 =
11.

The invariant cubic is x2+y2−4x(x−y)2 = 0.

Suppose that a21(a21 + 4)(a21 − 8)∆1 ̸= 0
and let ∆2 = 0. Then the system (8) is not
consistent.

Suppose that a21(a21+4)(a21−8)∆1∆2 ̸= 0
and reduce the equations {F40 = 0, F31 = 0}
by b2 from H ≡ a21F40 + a12F31 = 0. Then
F31 ≡ e1e2 = 0, where

e1 = 44a212a21 − 64a212+
+16ba12a

2
21 − 128ba12a21 − 9a321,

e2 = 432a412 − 16a212a
3
21 + 24a212a

2
21−

−768a212a21 − 1024a212 + 27a421.
If e1 = 0, then express b and obtain that

F31 ≡ F40 ≡ 0 and H ≡ ∆1∆
2
2 ̸= 0.

If e1 ̸= 0 and e2 = 0, then we have the
following set of conditions

21) a = (a12a21 + 2a12 + ba21)/(2a12), c =
[4a212(2a21− 7)+12ba12(2− 3a21)+9a221−
12b2a21]/[4(a12a21 − 2a12 − 3ba21)], d =
(2a12a21 − 4a12 − ba21)/(2a12), f = −1,
g = (3a221 − 12a212 + 8ba12 + 8ca12)/(8a12),
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a1 = c−b−a12−a2, 2a12a22+2a12a2(a12+
b − c) + 4ba212 + a12(2b

2 − 2bc + 2) +
a21(4b − 3a12) = 0, H ≡ b2(4a212a21 +
64a212−3a321)+ba12(4a

2
12a21−32a212+a

3
21−

8a221) + a212(12a
2
12 − a221 − 16a21) = 0, e2 ≡

432a412−16a212a
3
21+24a212a

2
21−768a212a21−

1024a212 + 27a421 = 0.

The invariant cubic is 4a12(x2+ y2)+x(a21x+
2a12y)

2 = 0.

Let ∆1 = 0. Then b = [a12(a21 − 2)]/(3a21)
and the system of equations {F22 = 0, F31 = 0}
is consistent if and only if a12 = ±4, a21 = 8.
In this case we obtain the sets of conditions 19)
(b = 1) and 20) (b = −1).

3.3.2. Assume that j1 ̸= 0 and let j2 = 0.
Then c = a1 + a2 and F41 ≡ i1i2 = 0, where
i1 = a − 1, i2 = 2a1a2a

2
12 + (a1 + a2)a12a21 −

2a12a30 + a221.
Let i1 = 0. Then F50 ≡ 0, F41 ≡ 0 and

F04 = 0 yields a12 = −b. We obtain that
F40 ≡ (2a1 + 2a2 + a30 + 5b)(a21 + 1) = 0.
Suppose that a21 = −1. Then F22 = 0

implies a30 = −(2a1 + 2a2 + 7b)/3 and F31 ≡
(2a1 + a2 +3b)(a1 + 2a2 + 3b) = 0. In this case
the system (8) is not consistent.

Suppose that a21 ̸= −1. Then F40 = 0 yields
a30 = −2a1 − 2a2 − 5b and F22 ≡ (a1 + a2 +
2b)(a21 + 4) = 0. If a21 = −4, then the system
(8) is not consistent.

If a21 ̸= −4 and a1 = −a2−2b, then F13 = 0
implies a21 = [2(a2 + b)2 + 2]/7. In this case
we get the following set of conditions for the
existence of an invariant cubic

22) a = 1, c = −2b, d = 10, f = −1, g = −b,
a1 = −a2 − 2b, a22 + 2ba2 + b2 − 27 = 0.

The invariant cubic is x2 + y2 − x(bx2 − 8xy+
by2) = 0.

Let i1 ̸= 0 and i2 = 0. Then a30 =
(2a1a2a

2
12 + (a1 + a2)a12a21 + a221)/(2a12) and

the equations F50 = 0, F04 = 0 yield a21 =
b(a1 + a2), a12 = −b. We express a from
F13 = 0 and reduce the equations F40 = 0 and
F31 = 0 by b3 from F22 = 0. In this case the
equation G ≡ F40 + a2F31 = 0 becomes

G ≡ −2(b(a1 − a2) + a22 + 1)(2a1 + 5b)(a22 + 1) = 0.

If a1 = (−5b)/2, then a2 = (−46)/(11b) and
b2 = 4/11. We find the following set of condi-
tions for the existence of an invariant cubic

23) a = (−61)/11, c = −14b, d = (−34)/11,
f = −1, g = (−299b)/11, b2 = 4/11, a1 =
(−5b)/2, a2 = (−23b)/2.

The invariant cubic is 2(x2 + y2) − x(6b2x +
2x+ by)(5bx+ 2y) = 0.

If a1 ̸= (−5b)/2, then G = 0 implies
a1 = (ba2 − a22 − 1)/b and F40 = 0 yields
a2 = (−5b)/2. In this case b2 = 4/11 and we
obtain the set of conditions 23).

3.3.3. Assume that j1j2 ̸= 0 and let j3 = 0.
Then a30 = −a1(a1a12 + a21) and F41 ≡ r1r2 =
0, where r1 = a12(a1 + a2) + a21, r2 = (a −
1)a12 + (a1 + a2 − c)(a1a12 + a21).

Suppose that r1 = 0. Then a21 = −(a1 +
a2)a12. We express a1 from F04 = 0 and reduce
the equations {F40 = 0, F31 = 0, F22 = 0} by
a22 from F13 = 0.

Denote ∆3 = a12 − 3b + c and let ∆3 ̸= 0.
If ∆3 = 0 the system (8) is not consistent.
We express a from F22 = 0 and calculate the
resultant of the polynomials F40 and F31 with
respect to c. We obtain that Res(F40, F31, c) =
1048576ba12s1s2 · · · s9, where s1 = a12 − 2b,
s2 = a12 − b, s3 = 3a212 − 8ba12 − 4, s4 =
a212 + (3a12 − 4b)2 + 8, s5 = (a12 − 4b)2 + 4,
s6 = 9a212 + 4, s7 = 5a212 + 4, s8 = a212 + 4,
s9 = b2 + 1 and s4s5 · · · s9 ̸= 0.

Let b = 0. If a12 = c, then the invariant
cubic is reducible. If a12 ̸= c and a212 = 4/3,
then c2 − 12 = 0. We get the following set of
conditions

24) a = (−7)/3, b = 0, d = (−8)/3, f = −1,
g = c, c2 − 12 = 0, a1 = (2c − 3a2)/3,
3a22 − 2ca2 + 3 = 0.

The invariant cubic is 3(x2+y2)+x(cx2−8xy+
cy2) = 0.

Let s1 = 0 and b ̸= 0. Then a12 = 2b and
c = (3b2 + 1)/(2b). In this case the right hand
side of (1) have a common linear factor.

Let s2 = 0 and bs1 ̸= 0. Then a12 = b and
c = 0. We find the following set of conditions

25) a = b2 + 1, c = 0, d = 2(b2 − 1), f = −1,
g = b(3b2 + 1), a1,2 = −b± i

√
b2 + 1
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for the existence of an invariant cubic x2+y2+
(2b3 + b)x3 + 2b2x2y + bxy2 = 0.

Let s3 = 0 and bs1s2 ̸= 0. Then b = (3a212 −
4)/(8a12) and c = (15a412+32a212+16)/(16a312).
In this case we get the following set of conditi-
ons

26) a = (7a412 − 48a212 − 48)/(32a212), b =
(3a212 − 4)/(8a12), c = (15a412 + 32a212 +
16)/(16a312), d = (7a212 − 52)/16, f =
−1, g = (9a612 − 132a412 + 432a212 +
320)/(128a312), a1 = (4−a212)/(4a12), a2 =
(16− 3a412 + 24a212)/(16a

3
12).

The invariant cubic curve is
64a312(x

2 + y2) + x(3a412x− 24a212x−
−16x+ 16a312y)(a

2
12x− 4x+ 4a12y) = 0.

Assume that r1 ̸= 0 and let r2 = 0. Then
a = [a12−(a1+a2−c)(a1a12+a21)]/a12. Denote
∆4 = a12(a1 − a2 + a12) + 3a21, ∆5 = a12(a

2
1 −

a1a12−1)+2a1a21 and suppose that ∆4∆5 ̸= 0.
We express b from F04 = 0, c from F13 = 0 and
reduce the equations {F40 = 0, F31 = 0} by a22
from F22 = 0. Then express a2 from F40 = 0
and obtain that F31 = u1u2u3u4∆4∆5, where
u1 = 3a1a12 + 2 + 2a21, u2 = 4a1a12 − a212 +
4 + 4a21, u3 = a21 + 2a1a12 + 1 + a21, u4 =
(a1a12 + a21)

2 + a212 ̸= 0.
If u1 = 0, then the system (8) is not consi-

stent. If u1 ̸= 0 and u2 = 0, then a21 =
(a212 − 4a1a12 − 4)/4 and F22 = 0 yields a1 =
(a412 − 72a212 − 432)/(16a312). In this case we
obtain the following set of conditions

27) a = (3a412 − 16a212 + 144)/(32a212), b =
(−5a212 − 36)/(8a12), c = (35a412 −
432)/(16a312), d = (3a412 + 76a212 +
576)/(16a212), f = −1, g = (236a412 −
3a612 − 144a212 − 8640)/(128a312), a1 =
(a412 − 72a212 − 432)/(16a312), a2 = (7a212 +
36)/(4a12)

for the existence of an invariant cubic
64a312(x

2 + y2)− x(a412x− 72a212x−
−432x− 16a312y)(a

2
12x− 4x+ 4a12y) = 0.

If u1u2 ̸= 0 and u3 = 0, then a21 =
−a21 − 2a1a12 − 1 and F22 = 0 yields a12 =
(−7a41 − 18a21 − 27)/(8a31). In this case we get
the following set of conditions

28) a = (3a61−31a41+81a21+243)/[8a21(a
2
1+9)],

b = (7a41 + 18a21 + 27)/[2a1(a
2
1 + 9)], c =

[(a41 − 18a21 − 27)(5a21 + 9)]/[4a31(a
2
1 + 9)],

d = [2a(a21 +9)+ 26a21 +18]/(a21 +9), f =
−1, g = (3a81 + 94a61 − 288a41 − 1134a21 −
243)/[16a31(a

2
1+9)], a2 = −(19a41+54a21+

27)/(8a31)

for the existence of an invariant cubic
8a31(x

2 + y2) + x(a51x− 10a31x− 27a1x+
+7a41y + 18a21y + 27y)(a1x− y) = 0.

Let ∆4 = 0. Then a21 = a12(a2−a1−a12)/3
and the equations F13 = 0 yields a2 = (a212 +
3a1a12 + 6)/(a12 + 6a1). In this case the right-
hand sides of (1) have a common factor.

Assume that ∆4 ̸= 0 and let ∆5 = 0. Then
a21 = a12(1 + a1a12 − a21)/(2a1). If a12 = −2a1,
then the right-hand sides of (1) have a common
factor. If a12 ̸= −2a1, then express c from
F22 = 0 and the system of equations (8) is not
consistent.

3.3.4. Assume that j1j2j3 ̸= 0 and let j4 =
0. The case j4 = 0 is equivalent with j3 =
0 if we take into consideration the symmetry
Fij(a1, a2) = Fij(a2, a1) in the algebraic system
of equations {(7), (8)}.

3. Center conditions for cubic system
(1) with two invariant straight lines and
one invariant cubic

In this section we derive four sets of condi-
tions for the origin to be a center for cubic
system (1) by constructing integrating factors
or first integrals from invariant functions.

Theorem 3. The following four sets of condi-
tions are sufficient conditions for the origin to
be a center for system (1):

(i) a = k = r = 0, d = f = −1, g = (3c −
b)/3, l = −b, m = [2(−bc − 2)]/3, n =
bc + 2, p = (2b)/3, q = b, s = −bc −
2, b2 = 3;

(ii) a = (b2 + 4)/4, c = (−3b)/2, d =
2a − 4, f = −1, g = [b(3b2 − 4)]/8, k =
(−ab)/2, l = −b, m = b2/2, n =
(−7b2)/4, p = b/2, q = −b3, r = 0, s =
[−b2(5b2 + 4)]/16;

(iii) a = 1, c = −2b, d = 10, f = −1, g =
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−b, k = −b, l = −b, m = b2 − 16, n =
−m, p = q = b, r = s = 0;

(iv) a = b2 + 1, c = r = 0, d = 2(b2 − 1), f =
−1, g = b(3b2 + 1), k = b(b2 + 1), l =
−b, m = −b2, n = −4b2, p = −b, q =
b(−7b2 − 3), s = b2(−2b2 − 1).

Доведення. In Case (i), system (1) has
a Darboux integrating factor of the form
µ = lα1

1 l
α2
2 Φβ, where l1,2 = (3c − b ±√

9c2 + 30bc+ 75)x − 6y + 6, Φ = 9(x2 +
y2) − 8bx3, α1 = −α2 − 1, α2 = (5b + 3c −√
9c2 + 30bc+ 75 )/(2

√
9c2 + 30bc+ 75 ), β =

(−4)/3.
In Cases (ii), system (1) has a Darboux first

integral of the form lα1
1 l

α2
2 Φβ = C, where l1 =

2 + (−2b + i
√
b2 + 4)x − 2y, l2 = 2 + (−2b −

i
√
b2 + 4)x − 2y, Φ = 4(x2 + y2) + b2x2(bx +

2y), α1 = α2 = −1, β = 1.
In Case (iii), system (1) has a Darboux first

integral of the form
(x2 + y2 − x(bx2 − 8xy + by2))(bx− 2y − 1)−3=C.

In Case (iv), system (1) has a Darboux first
integral of the form

(x2 + y2 + (2b3 + b)x3 + 2b2x2y + bxy2)×
×(bx+ 2y − 1)−1 = C.

Theorem 4. Let the cubic system (1) have two
invariant straight lines (3) and one invariant
cubic (9). Then a singular point O(0, 0) is a
center if and only if the first two Lyapunov
quantities vanish.

Proof. To prove the theorem, we compute the
first two Lyapunov quantities L1, L2 in each
series of conditions 1) – 28) obtained in Secti-
on 2 by using the algorithm described in [9].
In the expressions for Lj we will neglect the
denominators and non-zero factors.

In Case 1) the first Lyapunov quantity vani-
shes, then Theorem 3, (i).

In Cases 2), 3), 4), 6), 7), 8), 12), 13), 14),
15), 17), 18), 23), 24), 26), 27), 28) we have
L1 ̸= 0. Therefore the origin is a focus.

In Case 5) we calculate the resultant of
F31 and L1 with respect to a2. We find that
Res(F31, L1, a2) = 8192(7a41+18a21+27)4(7a21+
4)(a21 + 1)2a1 ̸= 0. The origin is a focus.

In Case 9) the first Lyapunov quantity vani-
shes, then Theorem 3, (ii).

In Case 10) the first Lyapunov quantity is
L1 = c. If c = 0, then Theorem 3, (iii) (c = 0).

In Case 11) the first Lyapunov quantity
looks L1 = 81a421 − 6a321(5b

2 + 108) + b2(b2 +
300)a221+4b2(24−7b2)a21−128b4. We calculate
the resultant of F40 and L1 with respect to
b taking into account that a21(a21 + 4) ̸= 0.
We find that Res(F4, L1, b) = 0 if and only if
a21 = (−8)/5. Let a21 = (−8)/5. Then L1 ̸= 0.
In this case the origin is a focus.

In Case 16) the first Lyapunov quantity
looks L1 = 225a2 − 1630a + 1616. If L1 = 0,
then the second Lyapunov quantity is L2 ̸= 0.
In this case the origin is a focus.

In Case 19) the first Lyapunov quantity is
L1 = b(b + 4). If b = 0, then the second
Lyapunov quantity is L2 ̸= 0. If b = −4, then
L2 = 0 and Theorem 3, (iii) (b = −4).

In Case 20) the first Lyapunov quantity is
L1 = b(b − 4). If b = 0, then the second
Lyapunov quantity is L2 ̸= 0. If b = 4, then
L2 = 0 and Theorem 3, (iii) (b = 4).

In Case 21) we reduce the first
Lyapunov quantity by b2 from H = 0
and express b from L1 = 0. Then
H ≡ 186624a812 − 6912a612a21(2a

2
21 − 5a21 +

56)+32a412a
2
21(8a

4
21−40a321+831a221−400a21+

15488) − 48a212a
3
21(10a

4
21 − 33a321 + 456a221 +

2176a21 + 12288) + 81a621(a21 + 16)2 = 0.
We calculate the resultant of H and e2

with respect to a12 taking into account that
a21(a21 + 4)(a21 − 8) ̸= 0. We find that
Res(H, e2, a12) = 0 if and only if a321 − 8a221 −
16a21 − 16 = 0. Let a321 − 8a221 − 16a21 −
16 = 0 and calculate the resultant of L2

and H with respect to a12. We obtain that
Res(H,L2, a12) ̸= 0. Therefore the origin is a
focus.

In Cases 22) and 25) we have L1 = 0, then
Theorem 3, (iii) and (iv), respectively.
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