УДК 691.55:666.913

Чистяков В.В., доктор техн.наук, професор, КНУСА Сербин В.П., доктор техн.наук, професор, НТУУ КПИ Гафткович А. Е., главный технолог, ООО «Плитос», Лукашук М.С., магистрант, КНУСА Украина, г.Киев

ОСОБЕННОСТИ ПРОЦЕССОВ ТВЕРДЕНИЯ ГИПСОВОГО ВЯЖУЩЕГО

Несмотря на однородность фазового состава, до настоящего времени отсутствует единая точка зрения на механизм твердения гипса. В публикациях критически анализируются аспекты кристаллизационной и коллоидной теорий.

Это связано с недостаточностью экспериментальных данных для обоснования развиваемых теоретических представлений.

В настоящей работе применен метод акустического резонанса дисперсных систем [1], позволяющий в комплексе с дифференциально-термическим (ДТА), инфракрасной спектроскопией (ИКС), рентгенофазовым и дисперсионным анализами получать объективные данные по кинетике гидрато- и структурообразования вяжущих веществ.

На установке ИГ-1Р, разработанной И.Г.Гранковским исследованы процессы формирования дисперсной структуры твердеющей цементной пасты. Она состоит из звукового генератора ЗГ-10, магнитно-электрического возбудителя колебаний, измерительной кюветы, приемника колебаний, индикатора резонанса - осциллографа или миллиамперметра.

Данный метод основывается на явлении резонанса упругих колебаний дисперсной структуры цементного теста в диапазоне звуковых частот $\omega = 500 - 1500$ Гц. Следует отметить. что энергия воздействия на твердеющую систему на несколько порядков ниже значений, вызывающих деструкцию гипсового теста. Частота резонанса связана с упругостью системы.

Данный метод позволяет проследить изменение дисперсности твердеющей системы по величине амплитуды резонанса A_{pes} . Повышение уровня A_{pes} свидетельствует о повышении дисперсности системы, а уменьшение указывает на протекание агрегационных и конденсационных процессов.

В исследованиях использовался гипс марки Г-10. По данным ДТА и рентгенофазового анализа, исследуемый строительный гипс содержал около 5 % карбоната кальция. Соотношение вода / гипс (в/г) соответствовало нормальной густоте и равнялось 0,65. Начало и конец схватывания гипса наступали соответственно через 13 и 16,5 мин.

Согласно кинетике структурообразования (рис. 2), в моменты, соответствующие характеристическим точкам на кривой А_{рез}, отбирались пробы твердеющего гипса. Для прекращения гидратации отобранные пробы сразу же препарировались в ацетоне, а затем изучались методами рентгенофазового, ДТА, ИКС и дисперсионного анализов.

Гипс является гидрофильным материалом. В результате сразу после затворения полугидрата формируется капиллярно-пориста структура. В начальный период в жидкой фазе достигается состояние насыщения относительно дигидрата и образуются первичные зародыши [6].

На кривой ω_{pes} через 3 мин после затворения фиксируется уменьшение упругих свойств и разжижение гипсо-водной дисперсии. Этот эффект обусловлен ослаблением капиллярных

сил, вызванным разрывом сплошности капиллярной воды в результате интенсивного гидратообразования.

Доля связанной воды в препарате № 1 по сравнению с исходным полугидратом возросла почти в 2 раза (с 5.0 до 11.6 %).

По данным дисперсионного анализа, в первые 9 мин гидратации (до точки 4, рис. 1) не наблюдается физического диспергирования исходных частичек дисперсной фазы (рис. 2). Исходный полугидрат (препарат № 0) и пробы, отобранные через 3 (№ 1) и 5 мин (№ 2), характеризуются одинаковым содержанием частиц до 5 мкм (7 %). Этот эффект может быть объяснен невозможностью проникновения воды в межслоевые вакансии в результате сжатия частиц под действием сил поверхностного натяжения [7]. Эти силы многократно возрастают с уменьшением размера частиц и могут достигать величин порядка 200—300 МПа.

Рисунок 1- Кинетические кривые структурообразования гипса

 ω_{pes} – частота резонанса гипсо-водной пасты (Гц), A_{pes} - амплитуда резонанса (мВ), Δm , % - степень гидратации гипса – потери при нагреве препаратов до 473 К, I/I_{θ} – интенсивность линий (%): I- CaSO₄·2H₂O(d=0,76 нм); II- CaSO₄·0.5H₂O (d=0,61 нм); III- CaCO₃ (d=0,303 нм), D - оптическая плотность ИК спектров в области 3400 см⁻¹, τ - время (мин).

Рисунок 2 - Изменение дисперсности твердеющей гипсо-водной пасты *А* — содержание частиц (%), *Б* — размер частиц (мкм)

Препарат 0 — исходный полугидрат; 1, 2, 4, 6-8 — время отбора проб соответствует точкам рис. 1, кривая *А*_{рез}; то же для рис. 3.

Кривые распределения частичек гипсо-водной дисперсии (рис. 2) и данные ДТА (эндотермический эффект при 412 К) свидетельствуют, что частички размером более 8 мкм сразу после затворения непосредственно присоединяют воду с образованием дигидрата. Этот вывод подтверждается рентгенофазовым анализом (появляются интенсивные реплики 0.775, 0.432, 0.383, 0.302, 0.289, 0.268, 0.209 нм).

Необходимо отметить, что новообразования дигидрата прочно связаны с исходным полугидратом. Это следует из характера кривых дисперсионного анализа препаратов № 1 и 2, зафиксировавших увеличение по сравнению с исходным полугидратом содержания более крупных частиц в интервале 8—100 мкм.

Несмотря на то что дисперсионный анализ на этом этапе не фиксирует физическое диспергирование частичек полугидрата, на кривой A_{pes} в интервале 1-3 (рис. 1) отмечается увеличение межфазной поверхности.

Этот эффект связан с локальным растворением поверхностных зон полугидрата, в результате чего достигается пересыщение жидкой фазы относительно дигидрата.

На ИК спектре препарата № 1 фиксируется появление полос поглощения в области 1680, 3240 и 3400 см⁻¹ (рис. 3). Полоса с частотой 1680 см⁻¹ характеризует появление в твердеющей системе

молекул воды, которые кристаллохимически неэквивалентны ранее зафиксированным у полугидрата (полоса с частотой 1615 см⁻¹) [8]. Возникновение небольшого плеча 3240 см⁻¹, согласно работе [9], относится к ОН-валентным колебаниям воды, связанной ион-дипольным взаимодействием с поверхностными катионами Ca^{2+} .

Рисунок 3 - ИК спектры препаратов твердеющего гипса (см.рис.2)

Увеличение интенсивности полосы в области 3400 см⁻¹ свидетельствует о существенном повышении степени гидроксилирования гидратирующейся системы и об образовании в распивающейся структуре водородных связей. Полоса с частотой 3615 см⁻¹ принадлежит изолированным ОН-группам, не связанным водородной связью.

Водородная связь возникает при определенной степени дисперсности, когда расстояние между соседними ОН-группами не превышает 0,3 нм. ОН-группы являются центрами физической адсорбции воды. Адсорбция осуществляется по следующей схеме:

Значительная доля общего содержания гидроксильных групп находится не только на поверхности, а и в межслоевых вакансиях, что способствуют внутриструктурной конденсации:

Таким образом, гидроксилирование гидратирующегося полугидрата с образованием водородных связей вносит существенный вклад в синтез прочности гипсового камня. Иммобилизованная в окрестности гидроксилированных частичек вода, обладая специфическими свойствами (повышенная плотность, пониженная химическая активность и др.), становится элементом структуры и носителем прочности.

В точке 3 образовавшийся поверхностный гидрат характеризуется максимальной степенью оводненности. В результате продолжающейся гидратации происходит заполнение микропор продуктами новообразований. Усиливается межчастичное взаимодействие, и микропоровые контакты типа —O—Ca—H₂O—Ca—O— преобразуются в межкристаллитные типа —O—Ca—O —. Этот вывод подтверждается уменьшением интенсивности полосы поглощения 3400 см⁻¹ и уменьшением значений A_{pes} (рис. 1, интервал 3—4), свидетельствующим о преобладании на этом участке конденсационных процессов.

Дополнительно подтверждает уменьшение количества поверхностных катионов кальция ослабление полосы поглощения в области 2240 см⁻¹, соответствующей физической адсорбции CO_2 катионами Ca^{2+} .

Описанный процесс протекает в микропористой структуре метастабильных новообразований, покрывающих частички подугидрата. В результате конденсационных процессов (рис. 2, участок 3—4 кривой A_{pes}) происходит высвобождение части (45 %) ранее связанной воды (рис.1, кривая Δm). Необходимо отметить, что наряду с физически связанной водой высвобождается и часть гидратной воды, что фиксируется уменьшением потерь массы препарата $\mathbb{N} = 4$ во всех интервалах характеристических температур. В результате структурной перестройки и деформировании новообразований, покрывающих частички исходного полугидрата, происходит отслаивание поверхностного дигидрата и обнажение новых поверхностей.

Этот вывод подтверждается существенным повышением интенсивностей на рентгенограмме препарата № 4 реплик полугидрата. В ранее отобранных пробах №1 частички полугидрата были покрыты оводнен-ными новообразованиями, ослабляющими соответствующие рефлексы на рентгенограммах.

Кроме усиления реплик полугидрата отмечается повышение до исходной интенсивности линий кальцита (d=0.303 нм), частички которого также ранее (пробы № 1-3) были покрыты новообразованиями дигидрата.

Дисперсионный анализ препарата № 4 показал, что в результате перестройки и отслаивания дигидрата происходит его интенсивная диспергация. Количество частичек до 5 мкм увеличивается в 4 раза и достигает 27 %. В этот момент фиксируется увеличение дисперсности частичек гипсоводной дисперсии во всем интервале размеров частиц (рис. 2).

Мельчайшие метастабильные частички дигидрата в этот период растворяются (ДТД. рентгенофазовый анализы фиксируют уменьшение в гипсо- водной системе CaSO₄ • 2H₂O).

Аналогичные эффекты диспергации и конденсации новообразований, высвобождения части ранее связанной воды, отслоения гидратов от частичек вяжущего наблюдались также при твердении портландцемента [4] и шлакощелочного вяжущего [3].

Характер кривой, A_{pes} в интервале 4—5 (рис. 1) подтверждает интенсивную диспергацпю гидратирующейся гппсо-водной системы. В результате резкого увеличения межфазной поверхности и связывания воды в точке 5 фиксируется начало схватывания гипсового теста.

Возросшая избыточная поверхностная энергия твердеющей системы регулируется на следующим этапе структурообразования (рис. 1, интервал 5—6), когда отмечается усиление межчастичных взаимодействий и конденсационных процессов. Точка 6 (рис. 2) соответствует концу схватывания гипса.

Конденсационные процессы подтверждаются дисперсионным анализом. Количество частиц с размером до 5, 10 и 20 мкм уменьшилось соотвественно с 27, 35 и 44 % до 14, 18 и 25 % (рис. 1).

Количество связанной воды в момент схватывания (препарат №6) достигает величины (15.4 %), предшествовавшей перестройке первичных гидратов (препарат № 3).

В интервале **6**—8 отмечается замедление процессов гидратообразования (рис. 1, кривая Δm). Волнообразный характер кривой A_{pes} на этом участке свидетельствует о рекристаллизационных процессах, подтверждаемых ДТА, рентгенографическим и дисперсионным анализами. Повышение интенсивности и расширение полосы поглощения в области 2240 см⁻¹ может быть объяснено рекристаллизационными процессами, сопровождающимися повышением в структуре гипсового камня поверхностных катионов кальция. Для схватившегося гипсового камня характерна высокая степень гидроксилирования межслоевых поверхностей. ОН-группы, взаимодействуя через водородные связи с поверхностными катионами кальция, вносят существенный вклад в синтез прочности затвердевшего гипса.

Полученные экспериментальные данные показали, что твердения гипса характеризуется стадийностью диспергационных и конденсационных процессов. В результате накопления количественных изменений в первичном метастабильном, поверхностном дигидрате перед схватыванием гипса происходит качественная перестройка твердеющей системы с высвобождением ранее связанной воды, отслоением и диспергацией дигидрата. Регулирует интенсивность отмеченных процессов степень гидроксилирования частичек гипсо-водной дисперсии. Существенный вклад в синтез прочности гипсового камня вносит водородная связь.

ЛИТЕРАТУРА

1. Гранковский И. Г. Структурообразование в минеральных вяжущих системах. Киев: Наук, думка, 1984. 300 с.

2. Чистяков В.В., Гранковский И.Г, Гоц В. И. // ЖПХ. 1986. Т. 59, № 3. С. 590—595.

3. Ферронская А.В. Гипсовые материалы и изделия (производство и применение). Справочник. -М.: Издательство АСВ, 488 с

4. Волженский А. В., Ферронская А. В. Гипсовые вяжущие изделия. М.: Стройпздат, 1974. 328 с.

5. Литтл А. Инфракрасные спектры поверхностных соединений. М.: Мир, 1969. 514 с.

6. Волощенко И. А., Гончарова Л. А., Колесников В. А., Платонова М. П. // Журнал прикладной химии. Т. 49, № 1. С. 3—5.

7. Красильников К. Г., Никитина Л. В., Скоблинская П. Н. Физикохимия поверхностных деформаций цементного камня. М.: Стройиздат, 1980. 256 с.

8. Беличева Т. Г., Лобанова О. А. Электронные и колебательные спектры неорганических и координационных соединений. Л.: Изд-во ЛГУ, 1983. 120 с.

9. Цундель Г. Гидратация и межполярное взаимодействие. М.: Мир, 1972. 404 с.

10. Р.Н. Мирсаев, В.В. Бабков, И.В. Недосенко, С.С. Юнусова, И.И. Ахмадулина, У.Ш. Шаяхметов. Структурообразование и твердение прессованных композиций на основе дигидрата сульфата кальция // Строительные материалы. 2009. № 6.

11. Е.Н. Потапова, И.В. Исаева . Повышение водостойкости гипсового вяжущего // Строительные материалы. 2012. №7. С.20-24.

12. А.В. Еремин, А.П. Пустовгар. Современные подходы к рентгенофазовому анализу гипсовых вяжущих // Строительные материалы. 2012. №7.С.62-66.