УДК 621.391

ДИФФЕРЕНЦИАЛЬНЫЕ МЕТОДЫ МОДУЛЯЦИИ/ДЕМОДУЛЯЦИИ КВАДРАТУРНЫХ АМ СИГНАЛОВ ДЛЯ КВАЗИСТАЦИОНАРНЫХ КАНАЛОВ

В.Л. БАНКЕТ, А.Д. ПЕРСИН

Одесская национальная академия связи им. А.С. Попова

DIFFERENTIAL METHODS OF QAM MODULATION/DEMODULATION FOR QUASISTATIONARY CHANNELS

V.L.BANKET, A.D. PERSIN

Odessa national academy of telecommunications n.a. O.S. Popov

Аннотация. В статье разработан новый метод дифференциальной передачи (модуляции/демодуляции) сигналов квадратурной амплитудной модуляции, обеспечивающий помехоустойчивую передачу информации в каналах с медленными замираниями. Имитационное моделирование подтвердило работоспособность предложенных алгоритмов.

Abstract. In article the new method of differential transmitting (modulation &demodulation) of quadrature amplitude modulation signals, providing the noise immunity transmitting of information in channels with slow fading has developed. Simulation has confirmed working capacity of the offered algorithms.

введение

Современный этап развития телекоммуникационных систем характеризуется широким использованием технологий беспроводной радиосвязи. Особенностью каналов таких систем является наличие замираний, обусловленных многопутевым распространением радиосигнала. Развитие методов передачи информации по каналам с замираниями прошло ряд этапов [1]. Пионером исследований и применения дифференциальных методов в каналах с замираниями следует считать Н.Т. Петровича, предложившего способ «относительной фазовой модуляции» для каналов с замираниями [2,3,4]. В последующем идея Н. Петровича была развита школой А.М. Заездного в форме «дифференциальной фазовой модуляции» [5], по мотивам которой авторы данной статьи разработали структуры и исследовали характеристики так называемых «активных фильтров» (АФ) для оптимального некогерентного приема сигналов дифференциальной ФМ [6], которые обеспечивают высокие показатели помехоустойчивости и частотной избирательности при простоте реализации. Последующий анализ показал, что в цитируемых работах Ю. Окунева и Н. Петровича [2,3,4,5] основное внимание уделено исследованию дифференциальных методов передачи сигналов фазовой модуляции и не рассмотрены вопросы передачи многопозиционных сигналов квадратурной АМ, которые в последнее время широко используются в структуре сигналов ортогонального частотного мультиплексирования OFDM [7]. Задача настоящей работы – восполнить этот пробел в теории дифференциальных методов передачи для каналов с замираниями. В статье теоретические результаты подкрепляются моделированием процессов в пакете объектно-ориентированного графического программирования НРУЕЕ. С целью сокращения объема работы в тексте опущены громоздкие тригонометрические и алгебраические преобразования и даны окончательные результаты.

1 КВАЗИСТАЦИОНАРНЫЙ КАНАЛ

Отличительной особенностью всех работ по методам передачи в системах беспроводного доступа являлось предположение о "квазистационарности" радиоканала. Используемая модель радиоканала базировалась на предположении о том, что в канале имеют место замирания, параметры которых изменяются во времени медленно (так называемые "медленные" замирания). Такая модель оказывалась адекватной ситуациям замираний в каналах фиксированной радиосвязи с многолучевым распространением радиоволн, когда *передатчики и приемники неподвижны*. В рамках квазистационарной модели появились термины: "интервал когерентности замираний" (fading coherence time) и "канал с кусочно-постоянным федингом" (piecewise-constant fading channel), характеризующие каналы с переменными параметрами, свойства которых остаются неизменными во времени на некотором, достаточно протяженном интервале. Отметим, что родоначальник дифференциальных методов Н.Т. Петрович отмечал в своей монографии [2] квазистационарность в виде некоего *квадрата стационарности* с площадью, равной произведению интервалов стационарности во времени и по частоте. В дальнейшем удобно использовать комплексное представление сигналов: сигналу-функции времени соответствует вектор, представленный комплексным числом:

$$s_i(t) = S_i \cos(w_0 t + f_i) \rightarrow \overset{\mathbf{r}}{s_i} = S_i e^{jf_i} .$$
(1)

При действии на входе канала сигнала *s*(*t*) уравнение канала с аддитивной помехой *w*(*t*) имеет вид

$$r(t) = h(t)s(t) + w(t)$$
. (2)

Здесь *h*(*t*)–передаточная функция канала. Для модели канала с медленными общими замираниями комплексное выражение передаточной функции будет

$$h(t) = h_k(t)e^{jf_k(t)}.$$
(3)

На протяжении интервала когерентности $t_{\kappa o \epsilon}$ модуль передаточной функции и вносимый фазовый сдвиг остаются постоянными:

$$h_k(t) = h_k = const, \ f_k(t) = f_k = const.$$
(4)

Сигнал квадратурной амплитудной модуляции (КАМ, QAM – quadrature amplitude modulation) формируется в виде суммы двух *ортогональных* (*синфазной* и *квадратурной*) составляющих

$$S_{OAM} = S_{I}(t, a_{n}) + S_{O}(t, b_{n}).$$
(5)

С учетом вносимых каналом искажений принимаемые сигналы будут

$$S_{I}(t,a_{n}) = S_{0}h_{k}a_{n}\cos(w_{c}t+j_{c}+j_{k}), \ S_{Q}(t,b_{n}) = S_{0}h_{k}b_{n}\sin(w_{c}t+j_{c}+j_{k}).$$
(6)

Здесь W_c и j_c – частота и начальная фаза сигнала, (a_n, b_n) – модулирующие амплитуду S₀ символы, которые определяются как результаты *дифференциального кодирования* передаваемых информационных символов (u_n, v_n) :

Для синфазного канала

$$a_n = a_{n-1} + m_a u_n \tag{7a}$$

и для квадратурного канала

$$b_n = b_{n-1} + m_b v_n$$
. (7b)

Здесь *m_a*, *m_b*-коэффициенты АМ по каналам "*a*" и "*b*", соответственно.

Из этих выражений следуют правила дифференциального декодирования

$$u_n = \frac{1}{m_a} (a_n - a_{n-1});$$
(8a)

$$v_n = \frac{1}{m_b} (b_n - b_{n-1}).$$
 (8b)

Отметим, что правила дифференциального кодирования/декодирования (7), (8) по форме подобны правилам, используемым при дифференциальной фазовой модуляции [5]. Вопрос дифференциальной КАМ (Д-КАМ) рассматривается далее.

2 АЛГОРИТМ РАБОТЫ НЕКОГЕРЕНТНОГО МОДЕМА СИГНАЛОВ QAM

По аналогии с идеями построения активных фильтров Ю. Окунева [5,6] рассмотрим алгоритм работы некогерентного демодулятора сигналов QAM. Передаваемые сигналы (5), (6) и сигналы разностей удобно рассматривать во вспомогательной системе ортогональных колебаний

$$S_{0,x}(t) = S_{0,x} \cos(w_0 t + j_0);$$
(9)
$$S_{0,y}(t) = S_{0,y} \sin(w_0 t + j_0).$$

В демодуляторе вычислим скалярные произведения сигналов (5), (6) с ортогональными колебаниями (9), опуская промежуточные преобразования:

$$X_{n} = \frac{1}{T} \int_{0}^{T} S_{I}(t, a_{n}) S_{0,x}(t) dt = \frac{1}{T} \int_{0}^{T} [S_{0}h_{k}a_{n} \cos(w_{c}t + j_{c} + j_{k})] S_{0,x} \cos(w_{0}t + j_{0}) dt =$$

$$= \{S_{0}S_{0,x}h_{k}a_{n} \frac{\sin[(w_{c} + w_{0})T]\cos(j_{c} + j_{0} + j_{k})}{2T(w_{c} + w_{0})}\} + S_{0}S_{0,x}h_{k}a_{n} \frac{\sin[(w_{c} - w_{0})T]\cos(j_{c} - j_{0} + j_{k})}{2T(w_{c} - w_{0})};$$

$$X_{n-1} = \frac{1}{T} \int_{0}^{T} S_{I}(t, a_{n-1})S_{0,x}(t) dt = \frac{1}{T} \int_{0}^{T} [S_{0}h_{k}a_{n-1} \cos(w_{c}t + j_{c} + j_{k})] S_{0,x} \cos(w_{0}t + j_{0}) dt =$$

$$\{S_{0}S_{0,x}h_{k}a_{n-1} \frac{\sin[(w_{c} + w_{0})T]\cos(j_{c} + j_{0} + j_{k})}{2T(w_{c} + w_{0})}\} + S_{0}S_{0,x}h_{k}a_{n-1} \frac{\sin[(w_{c} - w_{0})T]\cos(j_{c} - j_{0} + j_{k})}{2T(w_{c} - w_{0})};$$

$$Y_{n} = \frac{1}{T} \int_{0}^{T} S_{I}(t, b_{n}) S_{0,y}(t) dt = \frac{1}{T} \int_{0}^{T} S_{0}h_{k}b_{n} \cos(w_{c}t + f_{c} + j_{k}) S_{0,y} \sin(w_{0}t + j_{0}) dt =$$

$$\{S_{0}h_{k}S_{0,y}b_{n}\{[\frac{[\cos(w_{c} + w_{0})T]\cos(j_{c} + j_{0} + j_{k})}{2T(w_{c} + w_{0})}]\} + S_{0}h_{k}S_{0,y}b_{n} \frac{[\sin(w_{c} - w_{0})T]\cos(j_{c} - j_{0} + j_{k})}{2T(w_{c} - w_{0})};$$

$$Y_{n-1} = \frac{1}{T} \int_{0}^{T} S_{I}(t, b_{n-1})S_{0,y}(t) dt = \frac{1}{T} \int_{0}^{T} S_{0}h_{k}b_{n-1} \cos(w_{c}t + f_{c} + j_{k})S_{0,y} \sin(w_{0}t + j_{0}) dt =$$

$$(12)$$

$$= \{S_0 h_k S_{0,y} b_{n-1} \{ [\frac{[\cos(w_c + w_0)T]\cos(j_c + j_0 + j_k)}{2T(w_c + w_0)}] \} + S_0 h_k S_{0,y} b_{n-1} \frac{[\sin(w_c - w_0)T]\cos(j_c - j_0 + j_k)}{2T(w_c - w_0)}.$$
(13)

Следуя идеологии дифференциальной модуляции, описанной в монографии [5] полагаем, что по каналу последовательно передаются сигналы: в текущий момент времени *t_n*:

$$S_{QAM}(t, a_n, b_n) = S_I(t, a_n) + S_Q(t, b_n),$$
(14)

где синфазная и, соответственно, квадратурная составляющие равны

$$S_{I}(t, a_{n}) = S_{0}a_{n}\cos(w_{c}t + j_{c}), \ S_{Q}(t, b_{n}) = S_{0}b_{n}\sin(w_{c}t + j_{c}),$$

и в предыдущий момент времени *t*_{*n*-1}:

=

$$S_{QAM}(t, a_{n-1}, b_{n-1}) = S_I(t, a_{n-1}) + S_Q(t, b_{n-1}),$$
(15)

где
$$S_I(t, a_{n-1}) = S_0 a_{n-1} \cos(w_c t + j_c), S_Q(t, b_{n-1}) = S_0 b_{n-1} \sin(w_c t + j_c)$$

Для выделения передаваемых информационных символов на приемной стороне образуем первую разность[5]

$$\Delta_n^1 S_{QAM} = [S_{QAM}(t, a_n, b_n) - S_{QAM}(t, a_{n-1}, b_{n-1})] = [S_I(t, a_n) + S_Q(t, b_n) - (16)$$

$$-S_{I}(t, a_{n-1}) - S_{Q}(t, b_{n-1})] = [\Delta_{n} S_{I}(t, a) + \Delta_{n} S_{Q}(t, b)],$$

которая есть сумма первых разностей квадратурных AM сигналов в составе QAM:

$$[\Delta_n^1 S_I(t,a) = [S_I(t,a_n) - S_I(t,a_{n-1})], \ [\Delta_n^1 S_Q(t,b) = [S_Q(t,b_n) - S_Q(t,b_{n-1})].$$
(17)

Далее удобно пользоваться векторным представлением сигналов первых разностей:

19

- сигнал разности $\Delta S_{QAM}(t, a, b)$ будет представлен вектором ΔS_{QAM} и далее
- сигнал разности $\Delta S_I(t,a)$ будет представлен вектором ΔS_I ,
- сигнал разности $\Delta S_Q(t)$ будет представлен вектором ΔS_Q .

Векторы $\Delta S_I u \Delta S_Q$ взаимно ортогональны и в сумме образуют результирующий вектор разности

$$\Delta \mathbf{\tilde{S}}_{QAM} = \Delta \mathbf{\tilde{S}}_{I} + \Delta \mathbf{\tilde{S}}_{Q}. \tag{18}$$

Геометрические соотношения при вычислении разностей в процессе некогерентной демодуляции QAM сигналов представлены на рис. 1. Координаты начал и концов этих векторов представлены значениями проекций[(10)...(13)].

Рисунок 1 – Геометрия вычисления разностей сигналов

На рисунке векторы сигналов разностей (18) показаны пунктирами. Передаваемые информационные символы содержатся в разности параметров ортогональных АМ сигналов $\Delta S_I u \Delta S_Q$. Координаты начал и концов этих векторов определяются в соответствии с рис.1.

В результатах вычислений [(10)...(13)] содержатся члены различной величины. В частности, в выражениях(10), (11), которые определяют результаты обработки X_n и X_{n-1} имеются дроби вида

$$C_{(a)} = \frac{\sin[(w_c - w_0)T]\cos(j_c - j_0 + j_k)}{2T(w_c - w_0)},$$
(19)

а в выражениях
(12), (13), которые определяют результаты обработки Y_n
и Y_{n-1} , также имеются подобные дроби вида

$$C_{(b)} = \frac{[\sin(w_c - w_0)T]\cos(j_c - j_0 + j_k)}{2T(w_c - w_0)}.$$
(20)

Далее полагаем выполнение условия [$(w_c + w_0)T >> 1$], при котором на интервале длительности посылки *T* содержится большое количество периодов колебаний удвоенной частоты сигнала w_c . При выполнении этого условия дроби в фигурных стрелках в выражениях (10)...(13) оказываются значительно меньшими остальных результатов вычислений. Отбрасывая на этом основании в(10)...(13) дроби в фигурных скобках, с учетом ранее введенных обозначений (19), (20) получаем результаты обработки

$$X_{n} = C_{(a)}S_{0}h_{k}S_{0,x}a_{n}, X_{n-1} = C_{(a)}S_{0}h_{k}S_{0,x}a_{n-1};$$
(21a)

$$Y_{n} = C_{(b)}S_{0}h_{k}S_{0,y}b_{n}, \ Y_{n-1} = C_{(b)}S_{0}h_{k}S_{0,y}b_{n-1}.$$
(216)

Далее полагаем единичными амплитуды сигналов $S_0 = S_{0,x} = S_{0,y} = 1$, это позволяет выразить значения передаваемых символов через скалярные произведения сигналов

$$X_{n} = C_{(a)}h_{k}a_{n}, X_{n-1} = C_{(a)}h_{k}a_{n-1};$$
(22a)

$$Y_n = C_{(b)}h_k b_n, \ Y_{n-1} = C_{(b)}h_k b_{n-1}.$$
(226)

Далее, вычисляя модулирующие символы в ортогональных каналах КАМ сигнала получаем

$$a_{n} = \frac{1}{C_{(a)}h_{k}} X_{n}, \ a_{n-1} = \frac{1}{C_{(a)}h_{k}} X_{n-1} ;$$
(23a)

$$b_n = \frac{1}{C_{(a)}h_k}Y_n, \ b_{n-1} = \frac{1}{C_{(b)}h_k}Y_{n-1}.$$
(236)

В соответствии с правилами демодуляции (8) сформулируем алгоритмы выделения информационных символов по квадратурным каналам:

$$u_n = \frac{1}{m_a} (a_n - a_{n-1}) = \frac{1}{m_a h_k C_{(a)}} (X_n - X_{n-1});$$
(24a)

$$v_n = \frac{1}{m_b} (b_n - b_{n-1}) = \frac{1}{m_b h_k C_{(b)}} (Y_n - Y_{n-1}) .$$
(246)

Как видим, правила дифференциального кодирования (7) и связанные с ними правила дифференциального декодирования (8) *не обеспечивают инвариантность метода* к искажениям, вносимым каналом, поскольку оценки информационных символов в (24*a*) и (24*б*) зависят от модуля передаточной функции канала h_k и от вносимого фазового сдвига \mathbf{j}_k (который входит в коэффициенты (19), (20)). В этой ситуации можно предложить иной алгоритм дифференциальной модуляции/ демодуляции.

3 АЛГОРИТМ ДИФФЕРЕНЦИАЛЬНОЙ АМПЛИТУДНОЙ МОДУЛЯЦИИ/ДЕМОДУЛЯЦИИ

Рассмотрим алгоритмы формирования модулирующих символов АМ сигналов (6). Пусть модулирующие символы определяются правилами дифференциальной модуляции

$$a_n = a_{n-1}(1 + m_a u_n), \ b_n = b_{n-1}(1 + m_b v_n),$$
(25)

тогда вытекающие из них алгоритмы демодуляции

$$u_n = \frac{1}{m_a} \left(\frac{a_n}{a_{n-1}} - 1\right), \ v_n = \frac{1}{m_b} \left(\frac{b_n}{b_{n-1}} - 1\right).$$
(26)

Эти алгоритмы *обеспечивают инвариантность к искажениям в канале*. Подставляя значения модулирующих символов из (24*a*), (24*b*) и производя сокращения, получаем окончательно:

$$u_n = \frac{1}{m_a} \left(\frac{X_n}{X_{n-1}} - 1 \right), \ v_n = \frac{1}{m_b} \left(\frac{Y_n}{Y_{n-1}} - 1 \right).$$
(27)

Можно утверждать, что алгоритмы (26) и (27) обеспечивают инвариантность не только к амплитудным h_k и фазовым искажениям сигнала j_k в канале, но также инвариантность к расхождению частот $\Delta w = w_c - w_0$, поскольку в алгоритмах демодуляции (27) эти параметры отсутствуют (сокращаются при выполнении деления в (27)).

Работоспособность алгоритмов(26), (27) проверена моделированием (Программа "Тест модема Д-КАМ" (рис.2). При расхождении частоты сигнала (5кГц) и частоты местного опорного генератора (5,1 кГц) обеспечивается уверенное выделение информационных символов в ортогональных каналах "*a*" и "*b*". Точки на кривых Sn(Ch(*a*), Ch(*b*), Un(Cn(*a*), Cn(*b*)) соответствуют передаче значений многоуровневых сигналов и информационных символов в квадратурных каналах "*a*" и "*b*" сигнала КАМ.

Рисунок 2 – Рабочая панель программы "П-Тест модема Д-КАМ"

4 ЧАСТОТНО-СЕЛЕКТИВНЫЕ СВОЙСТВА АКТИВНОГО ФИЛЬТРА СИГНАЛА Д-КАМ

Как и в случае активных фильтров, наличие интеграторов в ветвях обработки принимаемого сигнала обеспечивает частотную селективность демодулятора, определяющим здесь является наличие в результатах обработки(10), (13), множителя вида $\frac{\sin \Delta wT}{\Delta wT}$, который обращается в нуль при расстройках, удовлетворяющих условию

$$\Delta w = k \frac{p}{T} (k - \mu e \pi o e) \tag{28}$$

Это положение проверено моделированием. При фиксированной частоте локального опорного генератора W_0 на демодулятор в режиме сканирования подавался Д-КАМ сигнал с частотой $(W_c + \Delta W)$, при этом с выходов каналов обработки определялась норма вектора разности ΔS_{QAM} $N = [(X_n - X_{n-1})^2 + (Y_n - Y_{n-1})^2]^{\frac{1}{2}}$. Величина нормы позволяет учесть влияние селективных свойств интеграторов в ортогональных каналах демодулятора. На рис.3 приведена рабочая панель программы "АЧХ демодулятора КАМ".

Частота максимума AЧХ определяется частотой местного генератора (Local Freq Gen = 5 kHz), а на частотах соседних QAM сигналов, удовлетворяющих условию(28) имеются провалы AЧХ до нуля. АЧХ некогерентного демодулятора QAM в области, близкой к максимуму приведена на рис.4. По ширине частотной области в районе частоты местного(Local) генератора (5 кГц) можно судить о требованиях к точности установки этой частоты(в рассматриваемом примере расхождение частоты сигнала КАМ и частоты "настройки" активного фильтра не превышает(300–400) Гц)).

Рисунок 3 – Рабочая панель программы "АЧХ демодулятора КАМ"

Рисунок 4 – АЧХ некогерентного демодулятора в области частот, близкой к максимуму

5 ОРТОГОНАЛЬНОСТЬ СИГНАЛОВ ДАМ

Согласно [7] в структуру многочастотного сигнала OFDM должны входить ортогональные составляющие, разнесенные на определенные частотные интервалы ("интервалы ортогональности"). Проверим ортогональность сигналов QAM. Вычислим коэффициент корреляции на интервале(0...*T*) сигнала (5) и подобного сигнала, расстроенного на интервал частот Δw

$$S_{OAM}(t, a_n, b_n, \Delta W) = S_I(t, a_n, \Delta W) + S_O(t, b_n, \Delta W), \qquad (29)$$

где

$$S_{I}(t, a_{n}, \Delta w) = S_{0}a_{n}\cos[(w_{c} + \Delta w)t + \boldsymbol{j}_{c})]; \qquad (30)$$
$$S_{O}(t, b_{n}, \Delta w) = S_{0}b_{n}\sin[(w_{c} + \Delta w)t + \boldsymbol{j}_{c})].$$

Искомый коэффициент корреляции будет

$$R(\Delta w,T) = \frac{1}{T} \int_0^T S_{QAM}(t,a_n,b_n) S_{QAM}(t,a_n,b_n,\Delta w) dt.$$
(31)

23

После подстановки в это выражение слагаемых из (9), (10) и последующей подстановки в них сигналов из (5) и (6) коэффициент корреляции определяется в результате простых вычислений

$$R(\Delta w, T) = \left\{\frac{S_0^2 a_n^2}{2} + 2S_o^2 a_n b_n \sin \Delta w T + \frac{S_0^2 b_n^2}{2}\right\} \frac{\sin \Delta w T}{\Delta w T}.$$
(32)

В этом выражении множитель $\frac{\sin \Delta wT}{\Delta wT}$ определяет частотные свойства коэффициента корре-

ляции. В частности, при выполнении условия, подобного условию (28), коэффициент корреляции обращается в ноль. Иными словами, сигналы QAM(формула (5) *ортогональны* при расстройках по частоте(28). Условие ортогональности (28) и зависимость (32) проверялись моделированием с использованием возможностей системы программирования HPVEE. Сигнал QAM со ступенчато изменяемой частотой $S_{QAM}(t, a_n, b_n, \Delta w)$, определяемый формулой (30) подавался на коррелятор, в котором в соответствии с формулой (31) вычислялся коэффициент корреляции с подобным сигналом(с фиксированной частотой Freq Fix). На рис. 5 представлена рабочая панель программы "П-Проверка ортогональности QAM". Нули на частотах, определяемых условием(28) четко просматриваются.

Рисунок 5 – Рабочая панель программы "П-Проверка ортогональности QAM"

Таким образом, теоретически и моделированием доказана ортогональность сигналов QAM. Это открывает возможность их использования в структуре сигналов OFDM.

выводы

1. В работе предложены простые в реализации алгоритмы дифференциальной модуляции(25) и связанные с ними алгоритмы дифференциальной демодуляции (26)для сигналов квадратурной AM. Проведённое имитационное моделирование подтвердило работоспособность новых алгоритмов.

2. Новые алгоритмы модуляции/демодуляции (25) и (26) обеспечивают инвариантность не только к амплитудным h_k и фазовым искажениям сигнала \boldsymbol{j}_k в канале, но также инвариантность к расхождению частот $\Delta \boldsymbol{w} = \boldsymbol{w}_c - \boldsymbol{w}_0$.

3. На основе теоретических исследований и моделирования доказана ортогональность сигналов Д-КАМ. Это открывает возможность их использования в структуре сигналов OFDM.

4. В последующем целесообразно выполнение исследований помехоустойчивости демодуляции дифференциально модулированных КАМ сигналов при действии аддитивных флуктуационных помех.

ЛИТЕРАТУРА

1. Банкет В.Л. Сигнально-кодовые конструкции в телекоммуникационных системах / Банкет В.Л. – О.: Феникс, 2009.– 180 с.

2. Петрович Н.Т. Относительные методы передачи информации, / Петрович Н.Т. – М.: Книга-М, 2003. –108 с.

3. Петрович Н. Т. Новые способы осуществления фазовой телеграфии. / Петрович Н.Т. – Радиотехника, 1957 – № 10.– С.7–9.

4. Петрович Н.Т. Способ проводной и радиосвязи фазо-манипулированными колебаниями. / Петрович Н.Т. – А. с. 105692, приоритет от 22.02.1954.

5. Окунев Ю.Б. Теория фазоразностной модуляции / Окунев Ю.Б. – М: Связь, 1979. – 216 с.

6. Банкет В.Л. Структуры и характеристики активных фильтров для оптимальной некогерентной демодуляции сигналов дифференциальной ФМ / В.Л. Банкет, А.Д. Персин //Цифрові технології 2013 №13, – С. 47–60

7. Балашов В.А. Системы передачи ортогональными гармоническими сигналами / В.А. Балашов, П.П. Воробиенко, Л.М. Ляховецкий – М.: Эко-Трендз, 2012.– 228 с.