УДК 621.396.67

ПОТЕНЦИАЛЬНЫЕ СВОЙСТВА ДВУХЗАХОДНОГО ЦИЛИНДРИЧЕСКОГО СПИРАЛЬНОГО ИЗЛУЧАТЕЛЯ В КАЧЕСТВЕ ЭЛЕМЕНТА МІМО-АНТЕННЫ

РОЖНОВСКАЯ И.Ю.

Одесская национальная академия связи им. А. С. Попова

POTENTIAL PROPERTIES OF COMBINED HELICAL RADIATOR AS MIMO-ANTENNA ELEMENT

ROZHNOVSKAYA I.YU.

Odessa National Academy of Telecommunications n.a. A.S. Popov

Аннотация. Представлены результаты исследования потенциальных свойств двухзаходного цилиндрического спирального излучателя в качестве элемента МІМО-антенны. Получены калибровочные характеристики для управления поляризацией посредством исследуемого излучателя в качестве элемента МІМОантенны.

Abstract. The research results of the potential properties of the combined helical radiator as MIMO-antenna element are represented. The calibration characteristics for polarization control by the research radiator as MIMO-antenna element.

В современных беспроводных системах связи для повышения пропускной способности радиоканала применяется технология MIMO (Multiple Input Multiple Output) [1], в основе которой лежит организация слабо коррелированных каналов в среде распространения с использованием многоантенных систем, в свою очередь, используемые антенные системы должны потенциально позволять обеспечивать такие каналы посредством, например, поляризационного метода разнесения [2, 3]. Поэтому при выборе MIMO-антенны необходимо учитывать потенциальные направленные и поляризационные свойства ее элементов.

В качестве элемента MIMO-антенны предлагается двухзаходный цилиндрический спиральный излучатель со встречной намоткой, который позволяет управлять поляризацией излучения путем изменения условий возбуждения, а именно путем изменения амплитуд и фаз токов в правых и левых заходах [4, 5]. Однако на ряду с известными результатами исследований излучателей такого типа [4, 6], необходимо оценить ограничения и получить калибровочные характеристики для управления поляризацией излучения такого излучателя, что и явилось целью данной статьи.

1. ХАРАКТЕРИСТИКИ ИЗЛУЧЕНИЯ ДВУХЗАХОДНОГО ЦИЛИНДРИЧЕСКОГО СПИРАЛЬНОГО ИЗЛУЧАТЕЛЯ

Проанализируем двухзаходный цилиндрический спиральный излучатель со встречной намоткой для выявления его потенциальных возможностей излучения и возможности управления поляризацией излучения. Будем считать, что спирали являются регулярными и характеризуются одинаковыми геометрическими параметрами (см. рис. 1), за исключением направления намотки: радиус цилиндрической поверхности a = 1,53 см, угол подъема витка (намотки) спирали $\gamma = 14$ град., количество витков спирали $n_{ct} = 7$, радиус излучающего проводника спирали $r_{i\delta} = 1$ мм, диаметр диска экрана $d_{j\delta\delta} = 16$ см, исследуемый диапазон частот – 2,4...2,7 ГГц, который объединяет в себе нижние частотные диапазоны стандартов Wi-Fi (IEEE 802.11 a/b/g/n) и Wi-MAX (IEEE 802.16e) [7, 8], где используется технология MIMO.

В качестве анализируемых параметров рассмотрены диаграммы направленности (ДН) исследуемой антенны по E_{θ} и E_{ϕ} составляющим поля излучения в ортогональных плоскостях на разных частотах анализируемого диапазона, частотная зависимость коэффициента эллиптичности (КЭ) в осевом направлении излучения, коэффициент направленного действия (КНД) по общему полю и его парциальные поляризационные составляющие, а также входное сопротивление излучателя. Исследование проводилось в среде моделирования FEKO.

Рисунок 1 – Двухзаходный цилиндрический спиральный излучатель

Проведённые исследования ДН исследуемого излучателя по E_{θ} и E_{ϕ} показали, что во всем исследуемом диапазоне частот сохраняется режим осевого излучения, характер ДН на разных частотах сохраняется, за исключением ширины главного лепестка ДН по уровню половинной мощности, которая уменьшается с ростом частоты от ≈ 44 град. в нижней области частот до ≈ 40 град. в верхней. На рис. 2 изображены ДН по соответствующим составляющим поля излучения в ортогональных плоскостях на средней (2,55 ГГц) частоте исследуемого диапазона частот. Отметим, что напряженность поля в осевом направлении излучения по E_{θ} компоненте в ортогональной плоскости на 2 дБ меньше, чем в плоскости $\phi = 0^{\circ}$, а по E_{ϕ} компоненте в ортогональной плоскости на 1,6 дБ меньше, чем в плоскости $\phi = 90^{\circ}$.

Рисунок 2 – ДН двухзаходного цилиндрического спирального излучателя на частоте f = 2,55 ГГц

При уменьшении ширины главного лепестка ДН с ростом частоты увеличивается КНД излучателя. Проведенный анализ зависимостей КНД по общему полю и его парциальных поляризационных составляющих от частоты позволяет отметить следующее. В выделенной полосе частот (от 2,4 ГГц до 2,7 ГГц), определяющей режим прямого осевого излучения, изменение КНД носит практически линейный характер. Причем в нижней части исследуемой области (при изменении частоты возбуждения) КНД имеет минимальные значения, а в верхней области происходит возрастание на ≈ 1,2 дБ, что согласуется с незначительным уменьшением ширины главного лепестка ДН по уровню поло-

винной мощности. Таким образом, увеличение КНД в верхней области частот обусловлено уменьшением ширины главного лепестка ДН.

Анализ частотного изменения КЭ в осевом направлении показал, что КЭ практически постоянен во всем исследуемом диапазоне частот и приблизительно равен нулю КЭ \approx 0, то есть при противофазном возбуждении спиралей во всем диапазоне частот сохраняется линейная поляризация.

Проведенный анализ характера изменения входного сопротивления двухзаходного совмещенного цилиндрического спирального излучателя показал, что активная $R_{a\delta}$ и реактивная $X_{a\delta}$ составляющие входного сопротивления излучателя характеризуются двумя зонами: зоной постоянных (слабо изменяющихся) значений в нижней части диапазона, которая соответствует зоне слабо изменяющихся значений КНД, и зоной резко возрастающих значений (резонансная зона) в верхней области диапазона частот. В начале первой зоны составляющие $R_{a\delta}$ и $X_{a\delta}$ входного сопротивления составляют $R_{a\delta} = 30 \pm 10$ Ом и $X_{a\delta} = 360 \pm 30$ Ом, а с ростом частоты увеличиваются до $R_{a\delta} = 130 \pm 30$ Ом и $X_{a\delta} = 550 \pm 50$ Ом. Для компенсации реактивной составляющей входного сопротивления необходимо использовать согласующие устройства.

2. УПРАВЛЕНИЕ ПОЛЯРИЗАЦИЕЙ ИЗЛУЧЕНИЯ ДВУХЗАХОДНОЙ ЦИЛИНДРИЧЕСКОЙ СПИРАЛЬНОЙ АНТЕННЫ

Для выявления потенциальной возможности управления поляризацией излучения двухзаходного совмещенного цилиндрического спирального излучателя проведены следующие исследования. В качестве параметра, характеризующего изменение поляризации при изменении амплитуд и фаз токов в первом и во втором заходах, выбран угол наклона плоскости поляризации β . Исследования проводились в два этапа.

Первый этап заключался в анализе угла наклона плоскости поляризации β при изменении амплитуд напряжений на входах первого и второго заходов (амплитуда напряжения на первом заходе фиксировалась равной U_1 , а на втором – амплитуда напряжения U_2 изменялась от 0 до U_1 В) при противофазном возбуждении, которое соответствует осевому излучению во всем исследуемом диапазоне частот. Второй этап исследований заключался в анализе того же угла β при изменении фаз токов в первом и во втором заходах (сдвиг фаз $\Delta \psi$ изменялся в пределах от 0 до 360°) при равноамплитудном возбуждении.

В результате исследований (для первого этапа) было выявлено, что при равноамплитудном возбуждении ($U_1 = U_2$) КЭ равен нулю, а $\beta = 90^{\circ}$. (см. рис. 3) во всем исследуемом диапазоне частот, что соответствует линейной поляризации излучения, а при изменении U_2 от 0 до U_1 В КЭ изменяется, достигая максимального значения, равного 0,35. При анализе зависимостей изменения угла β при изменении напряжения второго захода от 0 до U_1 В замечено, что указанные зависимости на разных частотах диапазона имеют разный характер, поэтому на рис. 3 для наглядности эта зависимость изображена для десяти анализируемых частот диапазона.

Также следует отметить, что при изменении амплитуды напряжения второго захода U_2 от 0 до U_1 В практически во всем исследуемом диапазоне частот сохраняется режим осевого излучения, однако в процессе проведения исследования возможности управления поляризацией выявлено, что при изменении амплитуды напряжения второго захода U_2 от 0 до U_1 В появляется рассогласование по волновому сопротивлению линии передачи и входному сопротивлению соответствующих входов антенны., что вносит определённые ограничения на диапазон изменения угла β . Так, например, на рис. 4 изображена зависимость модуля коэффициента отражения для двух портов (заходов) $|S_{11}|$ и $|S_{22}|$ от изменении амплитуды напряжения второго захода U_2 от 0 до U_1 В при полном согласовании на средней частоте диапазона 2,55 ГГц при противофазном возбуждении антенны.

Рисунок 3 – Зависимость угла наклона плоскости поляризации от изменения амплитуд напряжения U₂ второго захода антенны

Из рис. 4 видно, что наименьшее значение модуля коэффициента отражения, т.е. наилучшее согласование, достигается при равноамплитудном возбуждении, а при изменении амплитуд напряжения модуль коэффициента отражения ухудшается, приближаясь к единице в случае отсутствия возбуждения на втором заходе ($U_2 = 0$ В). Допустимыми значениями модуля коэффициента отражения (коэффициент стоячей волны (КСВ) не более 2) являются значения меньше ≈ -10 дБ, таким образом из рис. 4 видно, что амплитуду напряжения второго захода антенны можно изменять в пределах от 0,2 до 1 В.

Результаты исследований (для второго этапа), представленные на рис. 5, показаны аналогично для десяти исследуемых частот диапазона, чтобы проиллюстрировать, как изменяется крутизна подъёма кривых на разных частотах. На рис. 5 выделены границы области изменения $\Delta \psi = 120...240^{\circ}$ (сдвига фаз питающих токов первого и второго заходов антенны), в которой сохраняется режим осевого излучения во всем исследуемом диапазоне частот.

Рисунок 4 – Зависимость модуля коэффициента отражения от изменения амплитуд напряжения U_2 второго захода антенны

Из рис. 5 видно, что при противофазном возбуждении спиралей ($\Delta \psi = 180^{\circ}$) угол наклона плоскости поляризации $\beta = 90^{\circ}$, что соответствует линейно-вертикальной поляризации излучения. С изменением величины $\Delta \psi$ от 0 до 360 град. наблюдается изменение угла наклона плоскости поляризации β от 0 до 180 град., при этом подчеркнем, что режим осевого излучения сохраняется в диапазоне $\Delta \psi = 120...240^{\circ}$. КЭ при повороте поляризационной плоскости от 0 до 180°. принимает значения в пределах от 0 и до 0,4.

Аналогично, как и на первом этапе исследований, анализировалась зависимость модуля коэффициента отражения для двух портов (заходов) $|S_{11}|$ и $|S_{22}|$ от изменения сдвига фаз между заходами антенны при равноамплитудном возбуждении. На рис. 6 изображена такая зависимость при полном согласовании на средней частоте диапазона 2,55 ГГц.

Из рис. 6 видно, что наименьшее значение модуля коэффициента отражения, т.е. наилучшее согласование, достигается при противофазном возбуждении, а при изменении сдвига фаз между заходами антенны модуль коэффициента отражения ухудшается, приближаясь к единице в случае синфазного возбуждения, также заметим, что область ограничения по модулю коэффициента отражения (–10 дБ) перекрывается областью ограничений по сохранению режима осевого излучения и сдвиг фаз при управлении плоскостью поляризации можно изменять только в пределах от 120 до 240 град.

Выше представлены результаты исследований изменения угла наклона плоскости поляризации для двух случаев: при изменении напряжения U_2 на втором заходе от 0 до U_1 В, когда на первом напряжение равно 0 В, при противофазном возбуждении антенны и при изменении сдвига фаз питающих токов $\Delta \psi$ от 0 до 360°. при равноамплитудном возбуждении. Отметим, что в случае одновременного изменения сдвига фаз от 120 до 240°. и напряжений на втором заходе от 0,2 до 1 В, что соответствует ограничениям по сохранению осевого излучения и согласованию линии с антенной, можно в среднем расширить диапазон изменения значений угла наклона плоскости поляризации β на ≈18 % во всем исследуемом диапазоне частот.

Таким образом, проведённые исследования характеристик двухзаходного цилиндрического спирального излучателя со встречной намоткой показали возможность формирования режима прямого осевого излучения с линейной поляризацией во всем исследуемом диапазоне частот при равноамплитудном и противофазном возбуждении встречных заходов спирали, а также позволили выявить потенциальные свойства анализируемого излучателя.

Рисунок 5 – Зависимость угла наклона плоскости поляризации от изменения сдвига фаз между заходами антенны

В результате проведённых исследований подтверждена потенциальная возможность управления поляризацией излучения двухзаходного цилиндрического спирального излучателя со встречной намоткой путём изменения амплитуд и фаз токов встречных заходов спирали и выявлены ограничения на диапазон изменения угла наклона плоскости поляризации, связанные с учётом сохранения осевого режима излучения во всем исследуемом диапазоне частот и необходимости согласования линии передачи с антенной. Полученные калибровочные характеристики позволят обеспечить управление поляризацией посредством исследуемого излучателя в качестве элемента МІМО-антенны для организации поляризационного разделения каналов в беспроводных системах связи.

К основным направлениям дальнейших исследований МІМО-антенн планируется отнести:

 исследование антенных решёток, построенных на элементах с управляемой поляризацией излучения на основе цилиндрических спиралей;

исследование МІМО-антенны с возможностью реализации методов пространственного и углового разнесения.

ЛИТЕРАТУРА

- 1. Современные беспроводные сети: состояние и перспективы развития / [Гепко И.А., Олейник В.Ф., Чайка Ю.Д., Бондаренко А.В.]; под ред. В.Ф. Олейника. – К.:ЕКМО, 2009. – 672 с.
- Dehghanian V. Combined Spatial-Polarization Correlation Function for Indoor Multipath Environments / V. Dehghanian, J. Nielsen, G. Lachapelle // IEEE Antennas and Wireless Propagation Letters. – 2010. – Vol. 9. – P. 950–953.
- 3. Elnaggar M.S. Multi-Polarization Dimensionality of Multi-Antenna Systems / M.S. Elnaggar, S.K. Chaudhuri, S. Safari-Naeini // Progress In Electromagnetics research. 2009. Vol. 14. P. 45–63.
- 4. Юрцев О.А. Спиральные антенны / Юрцев О.А., Рунов А.В., Казарин А.Н. М.: Сов. радио, 1974. –224 с.
- 5. Жук М.С. Проектирование линзовых, сканирующих, широкодиапазонных антенн и фидерных устройств / М.С. Жук, Ю.Б. Молочков. М.: Энергия, 1973. 440 с.
- 6. Лобкова Л.М. Управление поляризацией излучения на основе совмещённой цилиндрической спиральной антенны / Л.М. Лобкова, М.Б. Проценко, В.В. Головин // Изв. вузов. Радиоэлектроника. 2002. Т. 45, № 8. С. 41 48.
- Wi-Fi CERTIFIED 802.11n draft 2.0: Longer-Range, Faster-Throughput, Multimedia-Grade Wi-Fi Networks. Wi-Fi Alliance, 2007. – 18 р. [Электронный ресурс]. – Режим доступа: www.wifi.org/.../WFA_802_11n_Industry.
- 8. IEEE 802.16 Standards: Broadband Wireless Metropolitan Area Networks (MANs) [Электронный ресурс]. Режим доступа: <u>http://standards.ieee.org/about/get/802/802.16.html</u>