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Abstract. In a multidimensional space is preserved topological proximity: close events are displayed 
in the close area. The space thus clustered into regions similar in some respects. .Dynamic 3D meshes of 
television images are sequences of static meshes with unchanged-term connection having geometric corre-
lation of the connections, both in space on-field as well as in time. Compression methods of such meshes 
can be divided into two classes: the spectral-transformations and prediction in space. Applying the methods 
for reducing the dimension of the signal space: Wavelet transform, Tensor-Train Decomposition and principal 
component analysis ( PCA) are now competing with each other among spectral methods. 

Key words: 3D meshes, TV image, spectral space, compression, decomposition, tensor train 

Анотація. У багатовимірному просторі зберігається топологічна близькість: близькі події відо-
бражаються в близькій зоні. Таким чином, простір розбивається на подібні в деяких відносинах клас-
тери. Динамічні 3D сітки телевізійних зображень є послідовності статичних сіток з незмінним 
з’єднанням, що мають геометричну кореляцію з’єднань, як у просторі,  так і в часі. Методи стиснення 
таких сіток можна розділити на два класи: спектральні перетворення і передбачення в просторі. За-
стосування методів для зменшення розмірності простору сигналу: вейвлет-перетворення, тензорні по-
їзд-розкладання й аналіз головних компонентів (PCA) в даний час конкурують один з одним серед спе-
ктральних методів. 

Ключові слова: 3D сітки, ТВ зображення, спектральний простір, стиснення, декомпозиція, те-
нзорний поїзд 

Аннотация. В многомерном пространстве сохраняется топологическая близость: близкие со-
бытия отображаются в близкие зоны. Таким образом, пространство разбивается на подобные в неко-
торых отношениях кластеры. Динамические 3D сетки телевизионных изображений являются после-
довательностями статических сеток с неизменной топологической связностью, имеющей геометриче-
скую корреляцию соединений как в пространстве, так и во времени. Методы сжатия таких сеток мож-
но разделить на два класса: спектральные преобразования и предсказания в пространстве. Приме-
нение методов для уменьшения размерности в пространстве сигнала: вейвлет-преобразования, тен-
зорные поезд-разложения и анализ главных компонентов (PCA) в настоящее время конкурируют друг 
с другом для спектральных методов. 

Ключевые слова: 3-D сетки. ТВ изображение, спектральное пространство, сжатие, декомпо-
зиция, тензорный поезд. 
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Introduction 

The purpose of image compression is to eliminate contained there physiological and statisti-
cal redundancy through the effective using of communication channels for the transmission of tele-
vision 3D images. Accelerated development of advanced technology solutions will lead to a signifi-
cant change in the range of requirements to the functional characteristics of subscriber units in the 
near future. You will need a variety of devices, provides the ability to high quality 3D images in the 
presence of significantly different reception conditions, performance and bandwidth of communica-
tion channels. Existing international standards for coding video images do not currently provide a 
fully effective coordination with the specific compression parameters and the characteristics of the 
telecommunications systems. 

There is an urgent needing to carry out a comparative analysis of the promising methods of 
encoding dynamic images using transformations, ensuring the creation of a multi-level space- scal-
able structure. To consider efficient coding of numerous parameters, i.e. the transformation of the 
object shapes to the signals, the set of forms in a signal space, can be understood as an information 
space that is a direct source of information about the object to the subject, if it is able to decode 
these signals with the appropriate body feelings. Note that the process of generating the signal field 
does not necessarily imply the existence of subjects who could perceive this information. So here 
affirms the objective existence of the information as a set of natural form codes of material objects 
in the signaling processes of various environments as in simultaneously or sequentially facility is 
located. Naturally formed laws of nature primary code objects of the material world are filled with 
the surrounding space. Defining information as a form of code, we can say that the world is filled 
with information, and evolving in the world develops the subject at the appropriate organs of per-
ception. Such senses should be able to convert the primary codes to another form for one reason or 
another comfortable for the subject, and on the basis of how the subject creates an internal image of 
the object. This internal image, in fact, is a subjective model of the object.  

1 Analysis of research and publications 

There are a variety of scalable coding schemes in the MPEG-4 visual: spatial scalability, 
temporary bridges and scalable object-oriented spatial scalability. Spatial scalability supports 
changing the texture quality (SNR and spatial resolution). Object-oriented spatial scalability ex-
pands "normal" types of scalability of objects in a direction of arbitrary shape, so that it can be used 
in conjunction with other object- oriented features. Thus, there may be achieved very flexible scala-
bility. This makes it possible to improve the playback dynamically SNR, spatial resolution, fidelity 
of shape, etc., for objects of interest, or for a particular region [1]. 

Displaying information in a multidimensional space is a fruitful idea of information pro-
cessing a variety of modalities, including image processing. In a multidimensional space is pre-
served topological proximity: close events are displayed in the close area. The space thus clustered 
into regions similar in some respects. 

Multidimensional signal – is a signal, where each sample is a point in d-dimensional space: 
dxPd , where x – signal sample, Pd  – d-dimensional space.  

Under the decreasing of the signal space we understand a linear mapping of the original d-
dimensional signal space of dimension k, where k < d. Operator effecting this transition should be 
determined by taking into account the possibility of reverse transition into the space Pd (i.e., approx-
imately at the possibility of recovery of the signal). An example of such a linear operator can serve 
orthonormal matrix with the columns (S) with size k×d. For such a matrix is true that STS = Ek, 
while S ST  Ek, where ST – transposed matrix S with size d×k, E – the identity matrix of size k×k. 
The dimension of vector x


 can be reduced by the help of the S matrix [1]. 

You can use the Johnson-Lindenstrauss lemma in applying the method for reducing the di-
mension of the signal space. Then there is a mapping f: Pd → Pk, such that the reduced image by 
approximating procedure will differ from the original by no more than  [2]. 



Ц И Ф Р О В І  Т Е Х Н О Л О Г І Ї ,  №  1 7 ,  2 0 1 5  
 

138 

Dynamic 3-D meshes are sequences of static meshes with unchanged-term connection hav-
ing geometric correlation of the connections, both in space on-field as well as in time. Compression 
methods of such meshes can be divided into two classes: the spectral-transformations and prediction 
in space. Method of a parallelogram was widely used as prediction methods in the space. Wavelet 
transform and principal component analysis (PCA) are now competing with each other among spec-
tral methods [3]. 

The principal component analysis is one of the main ways to reduce the dimensionality of 
the data, loosing the least amount of information. This method is widely distributed in image pro-
cessing and data compression [4]. 

Evaluation of principal component analysis reduces to the calculation of the eigenvectors 
and eigenvalues of the covariance matrix of the original data. Sometimes the principal components 
method called Karhunen-Loeve transform, or Hotelling transform [5]. 

2.1 Main part 

The task of principal component analysis has at least four basic versions: 

– to approximate data linear manifolds of lower dimension; 

– to find a subspace of lower dimension in the orthogonal projection on which scatter in 
the data (i.e., the standard deviation from the mean ) is maximal; 

– to find a subspace of lower dimension in the orthogonal projection on which mean 
square distance between the points of maximum; 

– -to construct an orthogonal coordinate transformation for the multivariate random var-
iable, which resulted in a correlation between the individual coordinates will turn to zero. 

All the tasks of the main components drive to the problem of diagonalization of the covar-
iance matrix or sample covariance matrix. Empirical or sample covariance matrix is 

))((
1

c  ],[
1

ij jlji

m

l
liij XxXx

m
cC  



 (1) 

Covariance matrix of the multivariate random variable X is 

))([()cov( ],[ ij jjiijiij XExXExExx    (2) 

Vectors of principal components for the problem of best approximation and orthogonal 
projections about finding with the highest scattering are a set of orthonormal eigenvectors 

},...,{ 1 naa  of the empirical covariance matrix C, arranged in descending order 

0...: 21  n of the eigenvalues. These vectors are used to estimate the eigenvectors of the 

covariance matrix ),cov( ji XX . In the basis of the eigenvectors the covariance matrix is, of course, 

diagonal, and in this base the coefficient covariance between different coordinates is zero. If the 
spectrum of the covariance matrix is degenerate, then choose an arbitrary orthonormal basis of ei-
genvectors. It exists always, and the eigenvalues of the covariance matrix is always real and non-
negative. 

In PCA transformation is dominated image clustered approaches to compress the dynamic 3 
-D meshes. The trajectories of vertices, i.e., single- path nodes in a group of frames are grouped into 
clusters, each cluster and for converting PCA is chosen so as to approximate best the global behav-
ior of the vertices. Individual transformation and approximation errors are coded results. Dynamic 
mesh is represented as a matrix of large dimension 3VF, where V and F denote the number of verti-
ces and a dynamic mesh frames, respectively. Compression is achieved by decomposing this matrix 
via RCA and omitting most of the basic vectors, which can then be recovered by interpolation. PCA 
approach for clusters vertex trajectories allows to obtain even higher degree of compression. PCA 
coefficients are predicted using the parallelogram predictor, which makes it less entropy balances. 
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This method works effectively for high pointed meshes, where the number of vertices substantially 
larger than the number of frames. 

Using PCA transformation as a linear transformation is for certain types of data optimal in 
terms of the size of the data obtained with the same distortions. Also, data compression can be 
achieved by discarding the last conversion factors. 

In recent years, as a new tool in the scientific computing was created multilinear algebra to 
solve large-scale problems of linear approximation of tensors with lower healing rang, that would 
be unsolvable by classical methods. This study attempts to provide an overview of the current state 
of the literature in this area, with an emphasis on functions related to tensors. 

According to the number of elements in the chain approximation method for approximating 
tensors (Tensor-Train Decomposition) (TT) is close to the canonical approximation, while there is a 
stable algorithm for obtaining such an approximation. By the same method TT can be used in con-
junction with a method for Tucker further reduce the number of elements [6]. 

The idea of the method is to provide high dimension chain tensor by tensor of small dimen-
sion (of 3). Approximation is more excessive than the canonical, by introducing an additional index. 
In this representation, each three-dimensional tensor Gk, associated with subsequent and previous 
tensors using the index αk, so this structure is associated with the "chain" or "train" [6] 

Application of wavelet filter chain (Wavelet Tensor-Train, WTT) is a modification of the 
method of TT, allows us to represent the original signal in a diluted form. The idea is to use tensors Hk 
as filters for the original signal (i.e., Hk is used as a matrix without transformation). Applying filters for 
an image is reduced a serial multiplication of the filter and the image matrix with a preliminary resizing 
matrix data to the size of the filter. The signal can be recovered, since the filters are orthogonal. 

Further review is devoted tensor in terms of multi-dimensional arrays. In general, the tensor 

of order d and dimension dnnn  ...21  for integers will be denoted dnnnRX  ...21  

Source tensor X is represented as 
diiX ,...,1
 where each index },...,1{  ni   refers to  tensor 

representation for  = 1, ..., d.  For simplicity, we assume that X consists of the real values, but it is 
possible to determine tensors with complex values or, in general, tensors over arbitrary fields.  

A wide variety of applications leads to problems in which the data or the desired solution 
can be represented by a tensor. In this review we will focus on tensors, derived as a result of sam-
pling a multidimensional function. Discretization of multidimensional functions F(x1, x2, ..., хd) on 

the grid is the easiest way to come to a tensor in the domain d]1,0[ of the tensor product, In this 

case, each tensor element comprises a multi-dimensional vector value of the function at the corre-
sponding point of the spatial grid. 

With increasing order of d, the number of entries in the X increases exponentially with con-
stant n = n1 =…= nd 

This so-called curse of dimensionality does not allow a clear record keeping except for very 
small values d, Even for n = 2, storage order tensor d = 50 will require 9 terabytes! Therefore, it is 
important to find ways of approximation of tensors of higher order tensor decomposition scheme in 
the lower ranks. Various such expansions were developed. As a rule, the tensor X, containing the 
observable data does not directly induced by function, but only as a solution to some of algebraic 
equations, for example, the linear system or the eigenvalue problem, it requires the development of 
solvers for such equations, working in the scheme of compressed storage. Such algorithms are de-
scribed in [7]. 

Scope of low rank tensor methods is expanding rapidly. For example, they have been used to 
solve problems of approximation parameters of definite integrals, multidimensional integration and 
multi-dimensional convolution; computational problems in electronic structure calculation, for ex-
ample, based on the Hartree-Fock or DFT models; problems of the rational approximation; solving 
multidimensional Schrödinger equations. 
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Despite the fact that the area of low-rank approximation of tensors is relatively young, it is 
already a challenge for a full review of all developments in this area. This study concerns the work 
associated with CT and hierarchical Tucker decomposition. 

Rarely keep all records of a higher order tensor explicitly. Different compression schemes 
have been developed to reduce the memory requirements. For d = 2, all these schemes are reduced 
to the well- known algorithm singular value decomposition (SVD) of matrices. 

Peer components of the tensor X can be represented in the form of (3): 
)()2()1(

,...,, ...
2121

d
iiiiii dd

uuuX  ,     ni 1 ,  d,...,1  (3) 

We define the vectors T
nuuu ),...,(: )()(

1
)( 


 , in a more compact form 

)1()1()( ...)( uuuvec dd   , 

where the sign  specifies the common Kronekovsk product. and vec is a stack for tensor 
components in the form of a long column vector with indices arranged in reverse order. 

Using an external vector product , this ratio can be written as  )()2()1( ... duuu  ). In 
the case when the components of the tensor X are separable functions samples  f(x1,x2,,…, xd) = 

f1(x1)f2(x2)… fd(xd), then each vector  )(u , corresponding samples  f., is a peer of the original tensor X. 

CP decomposition described by a sum peer tensors: 

vec(X) = u(d) )1()1()()1(
1

)1(
1

)(
1 .........)( R

d
R

d
R

dd uuuuuuXvec    (4) 

Rank tensor X can be defined as a minimum value of R, where the tensor X is decomposed 
by CP decomposition on R components. 

CP- decomposition requires storage components, (n1 + n2 + …+ nd)R, which is very attrac-
tive for small R. In order to use the CP expansion for the approximation of functions associated with 
con- tensors, reliable and efficient compression techniques are essential. 

 In particular, it is often necessary to truncate rank tensor R to lower one. Almost all of the 
existing algorithms are based on carefully adapting existing optimization algorithms. 

2.2 Taker Decomposition 

Expansion in Tucker tensor X takes the form (5) 

)()...()( 11 CvecUUUXvec dd     (5) 

where U1,U2,…,Ud, if 


rn
RU


  called the factor matrices or basic matrices, and 

C= drrrR  ...21  called core tensor decomposition. 

As a CP, Tucker decomposition has a long history and we refer to the survey [8] for a more 
detailed story. In the following, we briefly review the basic techniques needed to motivate TT and 
HT expansions described below. 

Tucker decomposition similar to the representation of the tensor X by matrices. Array in  
-th approximation X() formed dimension )...( 111 dnnnnn    in a special way from the original 

components of the tensor X:   

diili XX ,...
)(

, 1
:


,       


















 ninil )1()1(1 . (6) 

In particular, it followed from the relation (6), 
1

111
)( )......(



  T
d UUUUCUX 




 , =1,…,d (7) 
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It follows that rank 
 rX )( )( , as the first factor 



rn
RU


   obviously has rank at most 

r . This motivates to define the multilinear rank (also called -rank) of a tensor X as the tuple (r1, 

r2,….,rd) with )( 
 Xrankr  . 

In contrast to the tensor rank related to the CP decomposition, the set T(r1,…,rd) of tensors of 
 -rank at most r is closed.  

Another consequence of the relation (4) is the higher-order SVD (HOSVD) introduced in 
[55, 56] for approximating a tensor by a Tucker decomposition (3) of lower multilinear rank. In 
HOSVD, the columns of each factor matrix U are computed as the k dominant left singular vec-
tors of X(). The core tensor is then obtained by forming vec(C) :=(Ud …U1)

Tvec(X).  Eventual-
ly, this yields  

).,...,(  )()...(:)
~

( 11 dd kkTCvecUkUXvec   

In contrast to the matrix case, where the SVD yields a best low-rank approximation for all 

unitarily invariant norms [8], the truncated tensor X
~

 resulting from the HOSVD is usually not op-
timal. However, we have 

Y-X  min    
~

),...,T(kY 1 dkdXX   

This quasi-optimality condition is usually sufficient for the purpose of obtaining an accurate 
approximation to a function-related tensor. 

Various alternatives to improve on the approximation provided by the HOSVD have been 
developed, see [9] and the references therein. Recent developments include Newton-type methods 
on manifolds [6,8], a Jacobi algorithm for symmetric tensors [6], generalizations of Krylov sub-
space methods [10], and modifications of the HOSVD [11]. 

2.3 Tensor train decomposition 

The need for storing the drr  ...1   core tensor C renders the Tucker decomposition increas-

ingly unattractive as d gets larger. This has motivated the search for decompositions which poten-
tially avoid these exponentially growing memory requirements, while still featuring the two most 
important advantages of the Tucker decomposition: closed ness and SVD-based compression. 

One well established candidate for such a decomposition is the so called TT (tensor train) 
decomposition, which takes the form 

,)(G    ),()()( 1

1 2211,...,




rr

ddii RiiGiGiGX
d

   (8) 

where r0 = rd = 1. For every mode  and every index i  the coefficients G(i) are matrices. 
In the context of numerical analysis, a decomposition of the form (5) was first proposed in [10]. 
However, such a decomposition has been proposed earlier in the density-matrix renormalization 
group method (DMRG) for simulating quantum systems [11]. In this area, the term matrix product 
state (MPS) representation for the decomposition (5) has been established [219]. Suitable conditions 
that imply a unique MPS representation can be found in [6]. The connection between TT and MPS 
has been explained in [12]. 

Similar to the Tucker decomposition, the TT decomposition is closely related to certain 
matricizations of X. Let X(1,…,) denote the matrix obtained by reshaping the entries of X into an 

(n1n)   (n+1    nd) array, such that (5) implies rank 
 rX )( ),...,1(   for  = 1,…,d. Consequently, 

the tuple containing the ranks of these matricizations is called the TT-rank of X. As explained, e.g., 
in [20] a quasi-best approximation in a TT decomposition for a given TT-rank can be obtained from 
the SVDs of X(1,…,), similarly to the HOSVD. It is important to avoid the explicit construction of 
these matrices and the SVDs when truncating a tensor in TT decomposition to lower TT-rank. Such 
truncation algorithms are described in [12]. On the theoretical side, it turns out that the set TT 
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(i) 

(ii) 

(iii)i

(iv) 

(v) 

(r1,…,rd-1) of tensors with TT-ranks bounded by r is closed, Actually, the set of tensors with TT-
rank equal to r  forms a smooth manifold [6, 12]. The Kahler manifold structure for complex MPS 
with open and periodic boundary conditions has been studied in [6]. 

Tensor network diagrams, which have been attributed to Penrose [13], are helpful in visual-
izing tensor decompositions and their manipulation. Figure 1 gives a few basic examples, see, e.g., 
[125, 128, 174] for more details. In particular, Figure 1 (v) gives an illustration of the contraction 
(5) representing a TT decomposition. In view of this diagram, the TT decomposition is also some-
times called linear tensor network [14]. 

In applications related to quantum spin systems, the tensor X often exhibits symmetries in-
herited from underlying physical properties. There are variants of MPS/TT that reflect such symme-
tries in the low-rank decomposition, see [15] and the references therein. 

 

 

 

 

 

 

Figure 1 Tensor network diagrams representing (i) a vector, (ii) a matrix,  
(iii) a matrix-matrix multiplication, (iv) a tensor in Tucker decomposition,  

and (v) a tensor in TT decomposition. 

2.4 Hierarchical Tucker decomposition 

An alternative way to reduce the complexity of the Tucker decomposition is given by the hi-
erarchical Tucker (HT) decomposition [16] (also called hierarchical tensor representation). This de-
composition is based on the idea of recursively splitting the modes of the tensor, which results in a 
binary tree T containing a subset },...,1{ dt   at each node. An example of such a binary tree is giv-

en in the left plot of Figure 2. The matricization X(t) of a tensor X corresponding to such a subset  
t merges all modes contained in t into row indices of the matrix, and the other modes into column 
indices. We then consider a hierarchy of matrices Ut whose columns span the image of X(t) for each 

Tt  . Hence, Ut has exactly )( )(t
t Xrankr   columns. The rank tuple Tttr )(   is called the HT-rank of X. 

 

Figure 2 – Left: Binary tree representing mode splitting for HT decomposition.  
Right: Tensor network diagram representing a tensor in HT decomposition. 

The following nestedness property allows for the implicit storage of (Ut)tT , and thus of the 
tensor X: 

For ,l r l rt t t t t   , there exists a matrix Bt such that 

Ut = (Utr•Utl) Bt ,                                                                   (9) 

{1, 2, 3, 4} 

{1, 2} {3, 4} 

{1} {2} {4} {3} 
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For simplicity, we have assumed that the ordering of the modes in the tree T is such that all 
modes contained in tl are smaller than the modes contained in tr. The relation (9) implies that it suf-
fices to store the basis matrices Ut only for the leaf nodes t = {1}; {2},…{d}, and Bt for all other 
nodes in T . The resulting  storage requirements are O(dnr + dr3), when assuming r  rt and n  n. 

Similarly to the Tucker and TT decompositions, a quasi-best approximation in the HT de-
composition for a given HT-rank can be obtained from the SVDs of X(t). Algorithms that avoid the 
explicit computation of these SVDs when truncating a tensor that is already in HT decomposition 
are discussed in [12, 16]. As for the TT decomposition, the set of tensors having fixed HT-rank 
forms a smooth manifold [17]. 

The tensor network corresponding to the HT decomposition is always a binary tree, see also 
the right plot of Figure 2. Such tensor tree networks had already been discussed in [18] (without the 
basis matrices at the leafs). Moreover, the so called multilayer multi-configuration time-dependent 
Hartree method (MLMCTDH) introduced in [19] makes use of a decomposition based on general 
trees instead of binary trees.  

When allowing for general trees, tensor tree networks include the Tucker decomposition 
from Section 2.2 as a (quite particular) special case. In the case of a degenerate tree, where at each 
level, one mode is split from the remaining modes, the HT decomposition becomes equivalent to a 
variant of the TT decomposition discussed in [12]. In contrast to the TT decomposition defined in (5), 
this variant features additional basis matrices, which may reduce the storage cost for large n_. A discus-
sion on the difference between the ranks for the HT and TT decompositions can be found in [6]. 

To summarize, the TT and HT decompositions have similar properties and serve similar 
purposes. While the HT decomposition offers greater flexibility, the simpler structure of the TT de-
composition may lead to simplifications in an implementation. However, it seems premature to give 
an authorative comparison of the two decompositions. Unless there is an underlying topological 
structure, as in strongly correlated quantum mechanical systems, it appears to be difficult to decide 
a priori which decomposition should be preferred for approximating a given function-related tensor. 

2.5 More general tensor network formats 

Motivated by an underlying topology describing interactions, tensor networks beyond trees 
have been considered in the context of renormalization group methods for simulating strongly cor-
related quantum spin systems. Well-known examples include the so called projected entangled-pair 
states (PEPS) [20] and the multiscale entanglement renormalization ansatz (MERA) [6]. Both, PEPS 
and MERA contain cycles in the tensor network. Tree-structured tensor networks, as the hierarchical 
Tucker and the TT format, are closed [17] in the sense that tensors with ranks at most r form a closed 
set in Rnxtd. In general, this statement does not hold for tensor networks containing cycles [6]. 

Possibly for this reason, more general networks have not yet been considered to a large ex-
tend in the numerical analysis community for, e.g., the solution of high-dimensional PDEs, but see 
[21] for some recent mathematically oriented work. 

2.6 Hybrid formats 

Adding to the diversity of the formats discussed above, it is possible and sometimes useful 
to combine different low-rank formats. One popular combination is the Tucker format combined 
with the CP format for the approximation of the core tensor [22], see [24] for other variations of 
Tucker and CP. In [23], combinations of low-rank tensor formats with hierarchical matrices are in-
vestigated. 

Conclusion 

Presentation of television images by the 3D meshes is the most acceptable result. However, 
for the transmission of the vertices coordinates, which are called geometrical data, requires too 
broadband channels. The analysis of geometric data conversion 3D meshes in spectral space has 
shown the advantages of using tensor decomposition. Competing spectral transforming method can 
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be called the principal components analyses. However, using Tucker tensor decomposition we come 
to the hierarchical scheme. Then we can talk about nested spectral space with lower dimension. In 
terms of television images such hierarchical space allows to implement various sharpness and reso-
lution, depending on the bandwidth and performance of computing devices. 
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