© 2007

Член-корреспондент НАН Украины А.И. Шевченко, А.С. Миненко

Об одной проблеме минимума со свободной границей

Solvability of a boundary-value problem with the Bernoulli condition on a free boundary is proved. By using the Ritz method, an approximate solution convergent to the exact solution in the metric C is constructed.

1. Постановка задачи потенциального течения. Введем следующие обозначения:

$$A = (0 \le x \le a, y = 0),$$
 $Q_1 = (x = 0, 0 \le y \le c),$ $Q_2 = (x = a, 0 \le y \le b),$

где 0 < c < b. Далее, пусть P — дважды непрерывно дифференцируемая, монотонно возрастающая кривая, заданная уравнением $y = g(x), \ 0 \le x \le a$, причем $g(0) = c, \ g(a) = b, \ g'(0) = 0, \ g'(a) = 0$. Обозначим D — область, ограниченную отрезком A, кривой P и образующими Q_1 и Q_2 , а γ — достаточно гладкую кривую без самопересечений, расположенную в $D \bigcup P$. При этом одним концом γ является точка (0,c), а другой лежит на образующей Q_2 , разбивая ее на две части: верхнюю $Q_{1\gamma}$ и нижнюю $Q_{2\gamma}$, т.е. $Q_2 = Q_{1\gamma} \bigcup Q_{2\gamma}$; $D_{\gamma} \subset D$ — область, ограниченная отрезком A, образующими Q_1 и $Q_{2\gamma}$ и кривой γ .

Рассмотрим следующую нелинейную краевую задачу со свободной границей γ . Требуется определить односвязную область D_{γ} и определенную в ней функцию тока $\psi(x,y)$ по таким условиям:

$$\psi_{xx} + \psi_{yy} = 0, \qquad (x, y) \in D_{\gamma}, \tag{1}$$

$$\psi(x,y) = 0, \qquad (x,y) \in A, \tag{2}$$

$$\psi_x(x,y) = 0, \qquad (x,y) \in Q_1 \bigcup Q_{2\gamma}, \tag{3}$$

$$\psi(x,y) = 1, \qquad (x,y) \in \gamma, \tag{4}$$

$$\psi_x^2(x,y) + \psi_y^2(x,y) \geqslant v^2, \qquad (x,y) \in \gamma, \qquad v = \text{const} > 0,$$
(5)

причем на части γ , лежащей внутри D, в (5) всегда должно выполняться равенство.

Задача (1)–(5) возникает при изучении струйных течений жидкости в достаточно удлиненной, но конечной части D бесконечно длинного сопла.

2. Вариационная постановка задачи. Рассмотрим функционал с переменной областью интегрирования

$$I(\psi, D_{\gamma}) = \iint\limits_{D_{\gamma}} (\psi_x^2 + \psi_y^2 + v^2) \, dx dy \tag{6}$$

на множестве R допустимых пар (ψ, D_{γ}) , удовлетворяющих следующим условиям: γ — жорданова дуга, расположенная в $D \cup P$, одним концом которой является точка (0,c), а другим — точка (a,b), причем все точки γ , исключая конец (0,c), расположены выше горизонтали y=c; функция $\psi(x,y)$ непрерывна в замыкании области D_{γ} , равна единице на γ ,

нулю на отрезке A и имеет непрерывно дифференцируемые производные в D_{γ} , при этом $I(\psi, D_{\gamma}) < \infty$.

Перейдем теперь к описанию симметризации области D_{γ} относительно осей координат по Штейнеру [1]. Определим симметризацию области D_{γ} относительно оси. Для этого дополним $\Omega = \Pi \setminus D_{\gamma}$, где $\Pi = \{0 \leqslant x \leqslant a, 0 \leqslant y \leqslant b\}$ областью, симметричной относительно оси y. Просимметризируем ее относительно этой оси и правую половину полученной области обозначим Ω^* . Тогда $D_y^* = \Pi \setminus \Omega^*$ есть результат симметризации области D_{γ} относительно оси y.

Симметризацию области D_{γ} относительно оси x определим так. Дополним Ω областью, симметричной относительно прямой y=b. Просимметризируем ее относительно этой прямой и нижнюю половину полученной области обозначим G^* . В результате этой симметризации получим новую область $D_y^* = \Pi \setminus G^*$, являющуюся результатом симметризации D_{γ} относительно оси x. Справедлива лемма о симметризации ([1], лемма 1.4).

Лемма. Пусть $\psi(x,y)$ — решение задачи (1)–(4) в области D_{γ} , а $\psi^*(x,y)$ — решение этой задачи в области D^* со свободной границей γ^* , полученной из D_{γ} при помощи симметризации относительно осей координат. Тогда $I(\psi^*, D^*) \leq I(\psi, D_{\gamma})$, причем $\psi^*_y(x,y) > 0$ в D^* , а γ^* может быть задана уравнением

$$x = x(t),$$
 $y = y(t),$ $0 \le t \le T,$

 $r\partial e \ x(t), \ y(t) \ - \ neyбывающие функции при \ t \in [0,T].$

Используя вариационную природу задачи (1)–(5), лемму о симметризации и метод внутренних вариаций Шиффера [1], доказывается теорема.

Теорема 1. Пусть P- дважсды непрерывно дифференцируемая, монотонно возрастающая кривая, заданная уравнением $y=g(x), g=0, 0 \leqslant x \leqslant a, g(0)=c, g(a)=b, g'(0)=0, g'(a)=0, u$ пусть выполнены условия:

$$vc < 1,$$

$$\frac{a}{c\int\limits_{0}^{a}\sqrt{1+g_{x}^{2}}dx} < v.$$

Тогда существует пара (ψ, γ) , являющаяся классическим решением задачи (1)–(5). При этом пара (ψ, γ) удовлетворяет следующим условиям: γ — монотонно возрастающая дуга, аналитическая в окрестности каждой своей внутренней точки, лежащей внутри D и $\psi_y > 0$ в D_γ .

Справедлива также теорема.

Теорема 2 ([2], теорема 1). Пусть выполнены условия

$$vb < 1,$$
 $v \int_{a_1}^{a_2} \sqrt{1 + g_x^2} dx + \frac{a - a_2}{b} > \frac{a - a_1}{c},$

и пусть $g(x) \in C^2[0,a]$, g(x) = c при $x \in [0,a_1]$, g(x) = b при $x \in [a_2,a]$, где $a_1 < a_2$, и, кроме того, g(x) — монотонно возрастающая кривая при $x \in [0,a]$. Тогда существует пара (ψ,γ) , являющаяся решением задачи (1)–(5) и удовлетворяющая следующим условиям: $\psi(x,y)$ — функция, непрерывная в \overline{G}_{γ} , непрерывно дифференцируемая в \overline{G}_{γ} , $\psi_y(x,y) > 0$, в G_{γ} ; γ — монотонно возрастающая кривая, аналитическая в окрестности каждой своей точки, лежащей внутри G.

3. Вихревое течение со свободной границей. Изучается вихревое течение жидкости в достаточно длинной области в случае двух геометрических переменных, когда интенсивность вихря характеризуется величиной $\omega = \text{const} > 0$. Требуется определить односвязную область D_{γ} и определенную в ней функцию тока $\psi(x,y)$, удовлетворяющую уравнению

$$\psi_{xx} + \psi_{yy} = \omega, \qquad (x, y) \in D_{\gamma} \tag{7}$$

и условиям (2)–(5).

Теорема 3. Пусть P- дважсды непрерывно дифференцируемая, монотонно возрастающая кривая, заданная уравнением $y=g(x),\ 0\leqslant x\leqslant a,\ g(0)=c,\ g(a)=b,\ причем$ $g'(0)=0,\ g'(a)=0,\ u$ пусть выполнены условия:

$$v < \frac{1}{c} + \frac{\omega}{2}c,$$

$$\frac{\omega \operatorname{mes} D + \left(1 - \frac{\omega}{2}c^2\right)\frac{a}{c}}{\int\limits_{0}^{a} \sqrt{1 + g_x^2}dx} < v.$$

Тогда существует пара (ψ, γ) , являющаяся классическим решением задачи (1)–(5). При этом пара (ψ, γ) удовлетворяет таким условиям: γ — монотонно возрастающая дуга, аналитическая в окрестности каждой своей внутренней точки, лежащей внутри D, и $\psi_y > 0$ в D_γ .

Теорема существования в осесимметрическом случае изложена в [3] для v = const и для аналитической функции v = v(x, y) в [4].

4. Построение приближений Ритца. Согласно известной методике Фридрихса [1], представим функционал (6) в виде

$$I_1(z) = \iint_{\Lambda} \left[\left(z_x + \frac{g_x}{g} z \right)^2 + \frac{1}{g^2} + v^2 z_{\varphi}^2 \right] \frac{g}{z_{\varphi}} dx d\varphi \tag{8}$$

где $\Delta=(0< x< a,\ 0< \varphi< 1),\ \varphi(x,z)=\psi(x,zg(x)),\ a\ z(x,\varphi)$ — решение уравнения $\varphi(x,z)-\varphi=0.$ Функционал (8) будем минимизировать на множествах

$$D_z^1 = \{z \colon z \in C^1(\overline{\Delta}), \ z(a_1, 1) = 1, \ z(x, 0) = 0, \ \min_{(x, \varphi) \in \overline{\Delta}} z_{\varphi} > 0\}$$

ИЛИ

$$D_z^2 = \{z \colon z \in C^1(\overline{\Delta}), \ z(a_1, 1) = 1, \ z(a_2, 1) = 1, \ z(x, 0) = 0, \ \min_{(x, \varphi) \in \overline{\Delta}} z_{\varphi} > 0\}.$$

Здесь множество D_z^1 используется в случае теоремы 1, а D_z^2 — для теоремы 2. Будем минимизировать функционал (7) на множествах при помощи сумм

$$z_n(x,\varphi;a_{kj}(g)) = z_n(x,\varphi;g) = z_n(x,\varphi) = \sum_{k=1}^m \sum_{j=0}^{m_k} a_{kj}(g) x^j \varphi^k, \qquad \sup_{1 \leqslant k \leqslant m} (k+m_k) = n.$$

Выделим в пространстве E_r коэффициентов a_{kj} область допустимости D_r^1 и D_r^2 , где

$$r = \sum_{k=1}^{m} (m_k + 1), \qquad D_r^1 = E_r^0 \cap G_r^+, \qquad E_r^0 \colon \sum_{k=1}^{m} \sum_{j=0}^{m_k} a_{kj} a_1^j - 1 = 0,$$

$$G_r^+ = \left\{ a_{kj} \colon \min_{(x,\varphi) \in \overline{\Delta}} z_{n\varphi}(x,\varphi) > 0 \right\}, \quad D_r^2 = E_r^1 \cap G_r^+, \quad E_r^1 \colon \sum_{k=1}^{m} \sum_{j=0}^{m_k} a_{kj} a_2^j - 1 = 0.$$

$$(9)$$

Неизвестные коэффициенты $a_{kj} \in D^1_r$ и множитель Лагранжа λ определяются из нелинейной системы Ритца:

$$\frac{\partial I_2(a_{kj})}{\partial a_{pq}} + \lambda a_1^q = 0, \qquad q = 0, 1, 2, \dots, m_p, \qquad p = 1, 2, \dots, m,
\sum_{k=1}^m \sum_{j=0}^{m_k} a_{kj} a_1^j - 1 = 0, \qquad I_2(a_{kj}) = I_1 \left(\sum_{k=1}^m \sum_{j=0}^{m_k} a_{kj} x^j \varphi^k \right).$$
(10)

Аналогичным образом строится система Ритца в случае множества D_r^2 .

В работе [2] доказана сходимость приближений Ритца к точному решению $z_0(x,\varphi)$, соответствующему классическому решению (ψ,γ) задач (1)–(5) (в случае множества D_z^1) или (2)–(5), (7) (для множества D_z^2) по норме в $C(\overline{\Delta})$ и $W_2^1(\Delta)$. Построение приближений Ритца для вихревого течения в осесимметрическом случае изложено в [3].

5. Построение первого приближения. Рассмотрим следующее приближение: $z_1(x,\varphi) = (\alpha + \beta x^2)/g(x)$, где α и β — коэффициенты, подлежащие определению, а $(x,\varphi) \in \overline{\Delta}$. Учитывая, что $z_1(0,1) = 1$, а $z_1 \in D_z$, находим $\alpha = c$. Далее, подставляя выражение для $z_1(x,\varphi)$ в функционал (8), после интегрирования получаем

$$I_1(z_1) = \frac{4}{3}\beta \left[a - \sqrt{\frac{c}{\beta}} \arctan a \sqrt{\frac{\beta}{c}} \right] + \frac{1}{\sqrt{c\beta}} \arctan a \sqrt{\frac{\beta}{c}} + v^2 a c + \frac{1}{3}v^2 \beta a^3.$$

Неизвестный коэффициент β найдем из условия $dI_1(z_1)/d\beta = 0$. Решим это уравнение, считая параметр a достаточно большим. Тогда получим

$$\beta = \frac{c}{a^2} \frac{\frac{1}{c^2} - v^2}{2v^2 + \frac{2}{3a^2} + \frac{1}{c^2}} + O\left(\frac{1}{a^2}\right).$$

Заметим, что в силу теоремы 1 всегда cv < 1. Таким образом, построив приближение $z_1(x,\varphi)$, можно записать уравнение свободной границы $y(x,1) = g(x)z_1(x,1)$ и вычислить "ширину струи" при x=a, что имеет практический интерес при исследовании струйных течений.

6. Оптимальное управление свободной границей. Обозначим U — множество допустимых управлений, элементами которого являются функции y = g(x) ($0 \le x \le a$), удовлетворяющие условиям теоремы 1. Очевидно, что коэффициенты Ритца a_{kj} , определяемые при решении системы (10), будут теперь зависеть от элемента $g \in U$, т. е. $a_{kj} = a_{kj}(g)$.

Далее, пусть γ_0 — заданная допустимая кривая. Введем в рассмотрение функционал

$$F(g) = \int_{0}^{a} [y(x;g) - y_0(x)]^2 dx, \qquad g \in U,$$

где γ_0 : $y = y_0(x)$, $\gamma(g)$: y = y(x;g), $x \in [0;a]$. Задача состоит в нахождении элемента $g \in U$ (оптимальное управление), доставляющего наименьшее значение функционалу F(g) на множестве U. В терминах функции $z(x,\varphi;g)$ этот функционал имеет вид

$$F(g) = \int_{0}^{a} [g(x) \cdot z(x, 1; g) - y_0(x)]^2 dx.$$
(11)

Здесь $\gamma(g)$: $y=g(x)\cdot z(x,1;g)$. Допустим, что U не только замкнутое, но и компактное множество. Например, если имеются две функции $g_1(x)$ и $g_2(x)$, удовлетворяющие условиям теоремы 1 и такие, что $g_1'(x)\geqslant g_2'(x)$ при $x\in[0;a]$, то в качестве U можно взять множество вида:

$$U = U(\varepsilon) = \{ g_{\varepsilon}(x) : g_{\varepsilon}(x) = g_1(x) + \varepsilon (g_2(x) - g_1(x)), \ 0 \leqslant \varepsilon \leqslant 1, \ 0 \leqslant x \leqslant a \}.$$

Множество U по теореме Арцела компактно в C[0,a], так как оно равномерно ограничено и равностепенно непрерывно. Выбирая теперь минимизирующую относительно функционала F(g) последовательность $g_n \in U$, заметим, что в силу [2] функционал (11) будет непрерывным по g.

Теорема 4. Пусть множество U является замкнутым и компактным. Тогда существует управление $g^* \in U$ доставляющее наименьшее значение функционалу (11) на множестве U для каждого конечномерного приближения, основанного на методе Pumua.

Замечание. В работах [5, 6] вариационный подход был использован при исследовании теплофизической задачи типа Стефана.

- 1. Миненко А. С. Вариационные задачи со свободной границей. Киев: Наук. думка, 2005. 341 с.
- 2. *Миненко А. С.* О минимизации одного интегрального функционала методом Ритца // Укр. мат. журн. -2006. -58, № 10. С. 1385–1394.
- 3. *Миненко А. С.* Осесимметричное течение со свободной границей // Там же. 1995. **47**, № 4. С. 477–488.
- 4. *Миненко А. С.* Аналитичность свободной границы в одной задаче осесимметричного течения // Там же. -1998. **50**, № 2. C. 1692–1700.
- 5. Данилюк И. И., Миненко А. С. О методе Ритца в одной нелинейной задаче со свободной границей // Докл. АН УССР. Сер. А. − 1978. − № 4. − С. 291–294.
- 6. Миненко А. С. Об одной теплофизической задаче со свободной границей // Там же. 1979. № 6. С. 413–416.

Институт проблем искусственного интеллекта НАН Украины, Донецк Поступило в редакцию 17.04.2007