- 4. Gorenstein D. Finite groups. New York: Harper and Row, 1968. 527 p.
- 5. Черников С. Н. О строении групп с конечными классами сопряженных элементов // Докл. АН СССР. 1957. № 115. С. 60—63.
- 6. *Кузенний М. Ф., Семко М. М.* Метагамільтонові групи та їх узагальнення. Київ: Ін-т математики НАН України, 1996. 232 с.
- 7. *Курош А. Г.* Теория групп. Москва: Наука, 1967. 648 с.

Міжнародний Соломонів університет, Київ

Надійшло до редакції 05.06.2006

УДК 517.962.2

© 2007

Г. П. Пелюх

О структуре общего непрерывного решения систем линейных разностных уравнений с непрерывным аргументом

(Представлено академиком НАН Украины Ю. А. Митропольским)

We consider the structure of a set of continuous solutions of one class of systems of linear difference equations with continuous argument.

Настоящая работа посвящена исследованию структуры множества непрерывных решений системы линейных разностных уравнений вида

$$x(t+1) = [\Lambda + A(t)]x(t), \tag{1}$$

где $t \in \mathbb{R}^+ = [0, +\infty)$, Λ — постоянная вещественная $(n \times n)$ -матрица, $A(t) = (a_{ij}(t))$ — вещественная $(n \times n)$ -матрица. При различных предположениях относительно матриц Λ , A(t) эта задача изучалась многими математиками и во многих случаях достаточно хорошо исследована (см. [1–7] и цитируемую в них литературу). Основной целью настоящей работы является построение общего непрерывного при $t \geqslant T > 0$ решения системы уравнений (1) и изучение его структуры.

Так как общее непрерывное решение достаточно просто строится для систем линейных уравнений с постоянными коэффициентами, то при решении поставленной задачи мы используем метод, состоящий в преобразовании системы уравнений (1) к линейному виду

$$y(t+1) = \Lambda y(t). \tag{2}$$

Тем самым решение нашей задачи сводится к исследованию вопроса о существовании взаимно однозначной замены переменных, приводящей систему уравнений (1) к линейному виду (2). Положительный ответ на этот вопрос дает следующая теорема.

Теорема 1. Пусть выполняются условия:

1)
$$\det A(t) \neq 0$$
, $\det(\Lambda + A(t)) \neq 0$ npu $\sec x \ t \in \mathbb{R}^+$;

2) при всех $t \in \mathbb{R}^+$ существует непрерывная, положительная функция a(t) такая, что $\|A(t)\| \leqslant a(t),$

$$e \partial e \|A\| = \max_{1 \leqslant i \leqslant n} \sum_{j=1}^{n} |a_{ij}|;$$

3) ряд

$$h(t) = \sum_{i=0}^{\infty} (\lambda_* \lambda^*)^i a(t+i),$$

где $\lambda_* = \|\Lambda^{-1}\|$, $\lambda^* = \|\Lambda\|$, равномерно сходится при всех $t \in \mathbb{R}^+$, и выполняется соотношение¹

$$\lambda_* h(t) \leqslant \theta < 1.$$

Тогда при $t \geqslant T$, где T достаточно велико, существует замена переменных

$$x(t) = \gamma(t)y(t),\tag{3}$$

 $(\gamma(t) - \text{непрерывная ограниченная неособенная при } t \geqslant T$ матрица, имеющая непрерывную ограниченную при $t \geqslant T$ обратную матрицу $\gamma^{-1}(t)$), приводящая систему уравнений (1) κ виду (2).

Доказательство. Нетрудно показать, что если матричная функция $\gamma(t)$ является решением системы уравнений

$$\gamma(t+1) = [\Lambda + A(t)]\gamma(t)\Lambda^{-1},\tag{4}$$

удовлетворяющим указанным в теореме условиям, то замена переменных (3) приводит систему уравнений (1) к линейному виду (2).

Следовательно, для доказательства теоремы достаточно доказать, что система уравнений (4) имеет решение $\gamma(t)$ с указанными в теореме свойствами.

Сначала рассмотрим случай n=1. В этом случае уравнение (4) принимает, очевидно, вид

$$\gamma(t+1) = [1 + \Lambda^{-1}A(t)]\gamma(t). \tag{5}$$

Непосредственной подстановкой в (5) можно убедиться, что функция

$$\gamma(t) = \frac{1}{\prod_{i=0}^{\infty} [1 + \Lambda^{-1} A(t+i)]}$$
 (6)

является формальным решением этого уравнения. Действительно, подставляя (6) в (5), получаем

$$\gamma(t+1) = \frac{1}{\prod_{i=0}^{\infty} [1 + \Lambda^{-1}A(t+1+i)]} = \frac{1 + \Lambda^{-1}A(t)}{\prod_{i=0}^{\infty} [1 + \Lambda^{-1}A(t+i)]} = [1 + \Lambda^{-1}A(t)]\gamma(t),$$

что и требовалось показать.

¹Так как $h(t) \to 0$ при $t \to +\infty$, то соотношение $\lambda_* h(t) \leqslant \theta < 1$ всегда имеет место при $t \geqslant T$, где T достаточно велико.

Более того, поскольку в силу условий 2, 3 теоремы функция $\gamma^{-1}(t) = \prod_{i=0}^{\infty} [1 + \Lambda^{-1}A(t+i)]$ является непрерывной и ограниченной при всех $t \in [T, +\infty)$ (T - достаточно большое положительное число) и такой, что $|\gamma^{-1}(t)| \geqslant d > 0$, то функция $\gamma(t)$ также является непрерывной и ограниченной при всех $t \geqslant T$.

Предположим теперь n > 1 и докажем, что система уравнений (4) имеет решение $\gamma(t)$, удовлетворяющее указанным в теореме условиям.

Запишем систему уравнений (4) в виде

$$\gamma(t+1) = \Lambda \gamma(t) \Lambda^{-1} + A(t) \gamma(t) \Lambda^{-1}. \tag{7}$$

Тогда непосредственной подстановкой в (7) можно показать, что произвольное решение системы уравнений

$$\gamma(t) = E - \sum_{i=0}^{\infty} \Lambda^{-(i+1)} A(t+i) \gamma(t+i) \Lambda^{i}$$
(8)

удовлетворяет (7) и, следовательно, (4).

Для построения решения системы уравнений (8) воспользуемся методом последовательных приближений. При этом последовательные приближения $\gamma_m(t)$, $m=0,1,\ldots$ к решению $\gamma(t)$ определим с помощью соотношений

$$\gamma_0(t) = E, \qquad \gamma_m(t) = E - \sum_{i=0}^{\infty} \Lambda^{-(i+1)} A(t+i) \gamma_{m-1}(t+i) \Lambda^i, \qquad m = 1, 2, \dots$$
(9)

Используя метод математической индукции, покажем, что при всех $t \in \mathbb{R}^+$ и $m \geqslant 1$ выполняется оценка

$$\|\gamma_m(t) - \gamma_{m-1}(t)\| \leqslant \theta^m. \tag{10}$$

В самом деле, в силу (9) и условий теоремы при m=1 имеем

$$\|\gamma_1(t) - \gamma_0(t)\| \le \sum_{i=0}^{\infty} \|\Lambda^{-1}\|^{i+1} \|A(t+i)\| \|\Lambda\|^i \le \lambda_* \sum_{i=0}^{\infty} (\lambda_* \lambda^*)^i a(t+i) \le \theta,$$

и, таким образом, в этом случае оценка (10) имеет место. Предположим, что она доказана уже для некоторого $m \geqslant 1$ и покажем ее справедливость для m+1. Действительно, принимая во внимание (9), (10) и условия теоремы, получаем

$$\|\gamma_{m+1}(t) - \gamma_m(t)\| \leqslant \sum_{i=0}^{\infty} \|\Lambda^{-1}\|^{i+1} \|A(t+i)\| \|\gamma_m(t+i) - \gamma_{m-1}(t+i)\| \|\Lambda\|^i \leqslant$$
$$\leqslant \lambda_* \theta^m \sum_{i=0}^{\infty} (\lambda_* \lambda^*)^i a(t+i) \leqslant \theta^{m+1}.$$

Тем самым доказано, что оценка (10) имеет место при всех $t \in \mathbb{R}^+$ и $m \geqslant 1$.

Непосредственно из (10) вытекает, что последовательность матричных функций $\gamma_m(t)$, $m=0,1,\ldots$, определяемых соотношениями (9), равномерно сходится при $t\in\mathbb{R}^+$ к некоторой непрерывной при $t\in\mathbb{R}^+$ матричной функции $\gamma(t)=\lim_{m\to+\infty}\gamma_m(t)$, удовлетворяющей при $t\in\mathbb{R}^+$ условию $\|\gamma(t)\|\leqslant \frac{1}{1-\theta}$. Более того, переходя в (9) к пределу при $m\to+\infty$, можно убедиться, что матричная функция $\gamma(t)=\lim_{m\to+\infty}\gamma_m(t)$ является решением системы уравнений (8) и, следовательно, системы уравнений (7) или, что то же самое, системы уравнений (4).

Для завершения доказательства теоремы остается показать, что матрица $\gamma(t)$ имеет ограниченную обратную матрицу $\gamma^{-1}(t) \in \mathbb{C}^0_{[T,\infty)}$. Действительно, поскольку

$$\gamma(t) = E - \widetilde{\gamma}(t),$$

где $\widetilde{\gamma}(t)=\sum_{i=0}^{\infty}\Lambda^{-(i+1)}A(t+i)\gamma(t+i)\Lambda^i$, то, принимая во внимание свойства определителя матрицы $\gamma(t)$, получаем

$$|\det \gamma(t)| \geqslant 1 - M \|\widetilde{\gamma}(t)\|,$$

где M — некоторая положительная постоянная. Кроме того, поскольку $\|\widetilde{\gamma}(t)\| \to 0$ при $t \to +\infty$ (вытекает из 2, 3 и неравенства $\|\gamma(t)\| \leqslant 1/(1-\theta)$), то при всех $t \in [T,+\infty)$ имеем $|\det \gamma(t)| \geqslant \beta > 0$. Отсюда непосредственно вытекает, что матрица $\gamma(t)$ имеет непрерывную и ограниченную при $t \geqslant T$ матрицу $\gamma^{-1}(t)$. Теорема доказана.

Рассмотрим теперь систему уравнений (2) и для простоты предположим, что собственные числа $\lambda_i, i=1,\ldots,n$, матрицы Λ являются вещественными. Тогда, как известно, существует замена переменных

$$y(t) = C\widetilde{y}(t), \tag{11}$$

где C — некоторая неособенная матрица, приводящая систему уравнений (2) к виду

$$\widetilde{y}(t+1) = \widetilde{\Lambda}\widetilde{y}(t), \tag{12}$$

где $\widetilde{y}=(\widetilde{y}^1,\ldots,\widetilde{y}^k),\,\widetilde{y}^i=(\widetilde{y}^i_1,\ldots,\widetilde{y}^i_{p_i}),\,1\leqslant i\leqslant k\leqslant n,\,\widetilde{\Lambda}=\mathrm{diag}(\widetilde{\Lambda}_1,\ldots,\widetilde{\Lambda}_k),\,\widetilde{\Lambda}_i,\,1\leqslant i\leqslant k\leqslant n-(p_i\times p_i)$ -матрицы вида

$$\widetilde{\Lambda}_i = \begin{pmatrix} \lambda_i & 1 & 0 & \dots & 0 \\ 0 & \lambda_i & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda_i \end{pmatrix},$$

причем $\sum\limits_{i=1}^k p_i=n.$ Следовательно, исследование системы уравнений (2) сводится к исследованию k подсистем вида

$$\widetilde{y}^i(t+1) = \widetilde{\Lambda}_i \widetilde{y}^i(t), \tag{13}$$

где $\widetilde{y}^i(t)=(\widetilde{y}^i_1(t),\dots,\widetilde{y}^i_{p_i}(t)),\ 1\leqslant i\leqslant k.$ Используя вид системы уравнений (13), нетрудно построить ее общее непрерывное при $t\geqslant T$ решение.

Таким образом, принимая во внимание (3), (11) и представление общего непрерывного при $t \ge T$ решения системы уравнений (12), можно получить представление общего непрерывного при $t \ge T$ решения системы уравнений (1):

$$x(t) = \gamma(t)C\widetilde{y}(t). \tag{14}$$

- 1. Birkhoff G. D. General theory of linear difference equations // Trans. Amer. Soc. 1911. 12, No 2. P. 242–284.
- 2. *Быков Я. В.*, *Линенко В.* Γ . О некоторых вопросах качественной теории систем разностных уравнений. Фрунзе: Илим, 1968. 127 с.
- 3. *Митропольский Ю. А., Самойленко А. М., Мартынюк Д. И.* Системы эволюционных уравнений с периодическими и условно-периодическими коэффициентами. Киев: Наук. думка, 1985. 216 с.
- 4. *Халанай А., Векслер Д.* Качественная теория импульсных систем. Москва: Мир, 1971. 307 с.
- 5. *Пелюх Г. П.* Общее решение одного класса систем линейных разностных уравнений с периодическими коэффициентами // Дифференц. уравнения. − 1994. − **30**, № 3. − C. 514–519.
- 6. *Пелюх Г. П.* К теории линейных разностных уравнений с периодическими коэффициентами // Докл. АН. 1994. **336**, № 4. С. 451–452.
- 7. Пелюх Г. П. К теории систем линейных разностных уравнений с непрерывным аргументом // Там же. -2006. -73, No. 2. C. 269-272.

Институт математики НАН Украины, Киев

Поступило в редакцию 22.06.2006

УДК 517.9

© 2007

В. В. Потороча, В. Г. Самойленко, Ю. І. Самойленко

Про залежність розв'язку від параметра виродженої системи диференціальних рівнянь

(Представлено академіком НАН України Ю.О. Митропольським)

We prove the theorem on the continuous dependence of a solution to a degenerate system of differential equations on a parameter in the case of non-fulfilment of the condition "rank-degree".

При асимптотичному інтегруванні [1] диференціальних рівнянь з малим параметром істотно використовуються теореми про неперервну залежність їх розв'язку від малого параметра. Якщо така система регулярним чином залежить від малого параметра, то використовуються класичні теореми [2–4] про неперервну (нескінченно неперервну) диференційовність розв'язку від параметра, а у випадку, коли розглядаються сингулярно збурені диференціальні рівняння, — теорема Тихонова [5], доведена автором для систем, які називаються системами Тихонова [6]. Ця ж теорема фактично може бути використана як підгрунтя для обгрунтування асимптотичного характеру так званих формальних розв'язків у випадку сингулярно збурених диференціальних рівнянь цілого рангу [7–9].

Проблема залежності розв'язку від параметра істотно ускладнюється у випадку сингулярно збурених систем диференціальних рівнянь з виродженням, тобто у випадку, коли такі системи містять деяку особливу матрицю при похідній і коли, як наслідок, таку систему