

ФІЗИКА

УДК 539.2:543.42

© 2007

А. А. Фоя, Я. В. Зауличный, В. И. Зарко, В. Л. Бекенев

Сужение ультрамягких рентгеновских спектров и изменение зонной энергии электронов вследствие диспергирования порошков рутилоподобного ${
m TiO_2}$ до наноразмеров

(Представлено членом-корреспондентом НАН Украины Ю. М. Солониным)

The investigation of X-ray $OK\alpha$ - and $TiL\alpha$ -emission bands in coarse- $(\overline{d} > 5 \mu m)$ and nanopowders $(\overline{d} = 107 \text{ and } 10 \text{ nm})$ reveals the narrowing and a change of their shape, that is due to the energy redistribution of valence electrons in the Op-states after the break of atomic bonds during the dispersion of the material to nanosizes. It is shown that the band energy increases by 2% when the average size of particles decreases to 107 nm and by 18% after it decreases to 10 nm.

Диоксиды титана, кристаллизирующиеся в структурных модификациях анатаза, рутила и брукита, широко изучаются благодаря их электрическим, магнитным, каталитическим и электрохимическим и фотокаталитическим свойствам [1]. Поскольку все эти свойства определяются, главным образом, электронной структурой ${\rm TiO_2}$, то ее изучение проводилось многократно экспериментальными [2, 3] и теоретическими [1, 4] методами, особенно ${\rm TiO_2}$ со структурой рутила ${\rm (r-TiO_2)}$.

Однако при переходе к наноразмерным системам, особенно в полупроводниках, многие их физико-химические свойства существенно отличаются от аналогичных свойств макроскопических объектов [5].

Все эти свойства полупроводниковых наночастиц, в числе которых и TiO_2 , должны быть связаны с некоторыми изменениями их электронной структуры. Ранее в работах [6–8] был обнаружен эффект сужения и изменения формы ультрамягких рентгеновских эмиссионных полос (УМРЭП) благодаря измельчению частиц порошков до наноразмеров и установлена зависимость их удельного сужения от характера химической связи в исследованных материалах. Однако среди изученных фаз не было соединений с высокой степенью ионности связи, в частности TiO_2 , в которых основной вклад в зонную энергию вносят заполненные [3, 4] р-состояния анионов.

Цель настоящей работы — определить относительное изменение зонной энергии в результате энергетического перераспределения валентных электронов при диспергировании $r-\mathrm{TiO}_2$ до размеров $\overline{d}=10$ нм. Поэтому в задачу работы входило: измерение в одинаковых условиях $\mathrm{OK}\alpha$ -, $\mathrm{TiL}\alpha$ -полос эмиссии в крупных и наноразмерных порошках $r-\mathrm{TiO}_2$; сравнение их в единой энергетической шкале с рассчитанными Op- и Tisd-состояниями, которые отражают эти спектры; анализ энергетического перераспределения этих состояний и оценка вызванного им изменения зонной энергии вследствие уменьшения порошков $r-\mathrm{TiO}_2$ до наноразмеров.

Для исследования были выбраны химически чистые крупные (5 мкм) и нанопорошки рутилоподобного ${\rm TiO_2}$. Удельные поверхности порошков составляли 161 и 14 м $^2/\Gamma$, что для шарообразных частиц соответствует размерам 10 и 107 нм.

Эмиссионные ОК α - и ТіL α -полосы от всех трех объектов получены на одном приборе РСМ-500 в одинаковых экспериментальных условиях в высоком вакууме 10^{-6} торр при возбуждении спектров электронным пучком, ускоренным до 5 кэВ. Угол падения электронов на образец и угол отбора излучения при исследовании формы полос оставались постоянными. Энергетическое положение каждой точки ОК α -, ТіL α -спектров определялось с точностью 0,1 эВ, а аппаратурные искажения $\Delta E_{\rm an} < 0,3$ эВ для ТіL α - и $\Delta E_{\rm an} < 0,4$ эВ для ОК α -полос.

Плотность электронного пучка не превышала $0.5~{\rm BT/mm^2}$, а температура образца была меньше $400~{\rm ^{\circ}C}$. Это не разрушало образец и обеспечивало очистку от слабосвязанных адсорбированных молекул, стабильную интенсивность спектров. Для определения влияния температуры (мощности электронного пучка) на исследуемые образцы были получены ${\rm OK}\alpha$ -полосы от $10~{\rm HM}$ нанопорошка ${\rm TiO}_2$ при более жестких режимах.

Совмещения полос $OK\alpha$ - и $TiL\alpha$ -полосы в единой энергетической шкале выполнены по энергиям связи O1s- и $Ti2p_{3/2}$ -электронов.

Для интерпретации особенностей рентгеновских спектров и выяснения того, какие электронные состояния в крупном ${\rm TiO_2}$ соответствуют сужающимся участкам спектров при переходе к нанопорошкам, проведены вычисления зонной структуры и плотности состояний. Вычисления проводились полнопотенциальным линеаризованным методом плоских волн (FLAPW) с помощью программного комплекса WIEN97 [9]. Для расчета использовались экспериментальные параметры решетки рутила [10]: a=4,593 Å, c=2,959 Å, u=0,3048. Миffin-tin радиусы для ${\rm Ti}$ и O были взяты равными 1,013 и 0,821 Å, соответственно. Параметр $RK_{\rm max}$, который определяет число базисных функций, включаемых в расчет, взят равным ${\rm 7}$, а $G_{\rm max}-{\rm 15}$. Обменно-корреляционные эффекты учитывались в обобщенно-градиентном приближении. Интегрирование по зоне Бриллюэна проводилось методом тетраэдров с использованием ${\rm 70}$ неэквивалентных точек k.

Рекомбинация разорванных связей и образование новых при высокобарических консолидациях нанопорошков TiC и TiN приводила к обратному расширению TiL α -, OK α - и NK α -полос [7, 8]. Аналогичное расширение ОК α -полос эмиссии должно также наблюдаться в результате рекомбинации разорванных связей при увеличении частиц нанопорошков благодаря процессу рекристаллизации.

Действительно, повышение температуры нанапорошка $r-TiO_2$ с размером 10 нм из-за увеличения мощности электронного пучка от 8 до 45 Вт привело к увеличению полуширины $OK\alpha$ -полос (рис. 1) от 3,6 эВ до 4,1 эВ (табл. 1). Это свидетельствует об уменьшении вклада в валентную полосу вырожденных Ор-состояний вследствие их расщепления при рекомбинации разорванных в наночастицах связей из-за рекристаллизации.

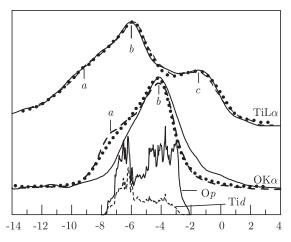


Рис. 1. Сравнение расчетных Tid- и Ор-состояний и $TiL\alpha$ - и $KO\alpha$ -рентгеновских эмиссионных полос $r-TiO_2$, полученных от грубого (штриховая линия) и нанопорошков с средними размерами 107 (пунктирная) и 10 нм (сплошная кривая)

Сравнение изученных нами $TiL\alpha$ - и $OK\alpha$ -рентгеновских эмиссионных полос крупного r-TiO₂ в таких же условиях, как и нанопорошков, показало, что его спектры по всем параметрам идентичны спектрам, полученным ранее [2], с такими же, как и у нас, аппаратурными искажениями. Из совмещенных в единой энергетической шкале $TiL\alpha$ - и $OK\alpha$ -полос эмиссии крупного порошка TiO_2 и нанопорошков ($\overline{d} = 107$ и $\overline{d} = 10$ нм) видим, что энергетическое перераспределение валентных электронов, в основном, проявляется в сужении и изменении формы ОКа-полос. Так, при переходе от крупного порошка до нанопорошка с размерами частиц 10 нм максимальное сужение $TiL\alpha$ в интервале энергий $(-6.0 \div -4.0 \text{ sB})$ составляет всего 0.3 ± 0.1 эВ и совсем немного превышает аппаратурные искажения ($\Delta E_{\rm an}$ < 0.3 эВ для ${\rm TiL}\alpha$). В то же время полуширина ${\rm OK}\alpha$ нанопорошка с размерами частиц 107 нм уже на 0.4 эB, а с 10 нм — на 0.8 эB, чем в крупном порошке. Это сужение происходит за счет особенно резкого снижения интенсивности $OK\alpha$ -спектра в ее низкоэнергетической ветви при переходе от крупного до самого мелкого исследованного нами нанопорошка. При этом в высокоэнергетической ветви $OK\alpha$ нанопорошка ($\overline{d}=107$ нм) интенсивность спектра остается почти неизменной (если не учитывать очень малого ее повышения на коротковолновом хвосте). В то же время интенсивность $OK\alpha$, полученной от 10 нм нанопорошка, в высокоэнергетической части очень резко возросла. Это свидетельствует об очень большом энергетическом перераспределении соответствующих разорванным связям Ор-состояний к потолку валентной зоны. Следует отметить, что небольшое сужение $TiL\alpha$ в области высокоэнергетического склона ее пика "b" наблюдается в том же интервале энергий, где находится припиковая часть низкоэнергетической ветви $OK\alpha$.

Tаблица 1. Зависимость полуширины OКa-полосы нанопорошка r-Ti O_2 ($\overline{d}=10$ нм) от мощности электронного пучка, возбуждающего эти спектры

Мощность потока, Вт	Полуширина ОКа-полосы
8	3,56
20	3,56 $3,83$
40	3,91
45	4,11

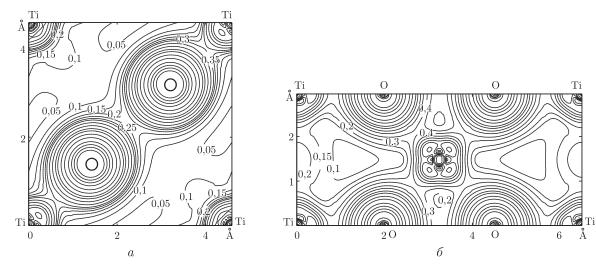


Рис. 2. Расчетные контуры постоянной зарядовой плотности $r-TiO_2$ е/Å 3 в плоскостях, содержащих атомы кислорода, расстояния между которыми равны 2,5364 Å: a- в плоскости (001); b- в плоскости ($\overline{1}10$) (в центре этой плоскости — атом Ti)

Поскольку валентная полоса TiO_2 содержит намного больше Op-состояний, чем Tisd-состояний, то в валентной зоне наночастиц соотношение вырожденных Op- и Tisd-состояний, принадлежащих поверхностным атомам с разорванными связями, должно быть таким же. Для определения их вкладов в уменьшение ширины $TiL\alpha$ - и $OK\alpha$ –эмиссионных полос необходимо вычислить удельное сужение этих полос

$$\eta = \frac{\Delta E_{mc}^K - \Delta E_{mc}^H}{\Delta E_{mc}^K}.$$

Здесь ΔE_{mc}^K и ΔE_{mc}^H — ширины Ті $L\alpha$ - или ОК α -спектров эмиссии кристаллического и нанопорошков, соответственно, на уровнях интенсивностей, соответствующих наибольшей их разности $\Delta E_{mc}^K - \Delta E_{mc}^H$. Вычисленные таким образом $\eta_{\text{Ті}L\alpha} = 0.07$ и $\eta_{\text{ОК}\alpha} = 0.25$, а их отношение $\eta_{\text{ОК}\alpha}/\eta_{\text{Ті}L\alpha} = 3.5 \pm 0.3$, тогда как заселенности Ор- и Тіd-состояний, взятых из [11], $Q_{Op}/Q_{\text{Тid}} = 5.33/1.46 = 3.65$.

В ионно-ковалентном $r-TiO_2$ с кристаллической структурой рутила два расстояния между анионами [12] O-O=0.25327, которое меньше удвоенного ионного радиуса кислорода $(2R(O^{2-})=0.270 \text{ нм})$. Следовательно, их электронные оболочки должны перекрываться, благодаря чему между этими анионами возможно существование ковалентной составляющей химической связи. Кроме этой ковалентной и ионной составляющей, рутилоподобному диоксиду титана присуща еще и ковалентная компонента Ti-O-связей, обеспечиваемая $Tide_g + Op$ -связующими гибридными состояниями. Поэтому интересно выделить особенности энергетического перераспределения электронных состояний, задействованных в каждой из указанных компонент связей в результате их разрыва. Для этого необходимо проанализировать сравнение совмещенных в единой энергетической шкале $TiL\alpha$ - и $OK\alpha$ -полос, полученных от крупных и нанопорошков, с данными проведенных нами расчетов зонной структуры идеального кристалла $r-TiO_2$ (рис. 2). Из этого сравнения видно, что в низкоэнергетических особенностях "a" и в максимуме "b" $TiL\alpha$ -полос в интервале энергий $-8.0 \div -5.5$ эВ отражаются гибридные Tid + Op-связующие состояния [13]. Однако плотность Dp-состояний в этой низкоэнергетической подполосе в 1.5 раза больше, чем $N(E)Tide_g + N(E)Tide_2$

Это подтверждает, вместе с представленными на рис. 3 результатами расчетов контуров электронной зарядовой плотности вдоль расстояний O-O = 0,25327 нм, предположение о существовании двух O-O-связей, обеспечиваемых Орр-связующими состояниями, которые сосредоточены в той же связующей подполосе, что и Tid + Op-гибридные состояния. В высокоэнергетической подполосе, ширина которой вдвое больше, содержатся несвязующие, в основном Ор-состояния, заполненные очевидно электронами, перенесенными от титана, за счет которых обеспечивается ионная составляющая химической связи.

Из проведенного анализа сравнения расчетов плотностей электронных состояний с ${\rm TiL}\alpha$ - и ${\rm OK}\alpha$ -полосами эмиссии, полученных от крупных и наноразмерных порошков, следует, что их сужение вследствие ультрадиспегирования, особенно ${\rm OK}\alpha$ -полос, наблюдается именно в том интервале энергий, где в массивном кристалле сосредоточены указанные выше связующие ${\rm Tid}+{\rm Op}$ и ${\rm Opp}$ -состояния. Это свидетельствует о том, что в результате разрыва ${\rm Ti-O}$ и ${\rm O-O}$ связей дегибридизованные и вырожденные ${\rm Tid}$ - и ${\rm Op}$ -состояния после исчезновения расщепления их энергетических уровней перераспределяются в интервал энергий $-4,0\div 0$ эВ, где сосредоточены несвязывающие состояния. Это отражается достаточно большим увеличением, в данной области энергий, интенсивности ${\rm OK}\alpha$ -полосы эмиссии и приводит к высокоэнергетическому сдвигу на $0,3\div 1,0$ эВ ее высокоэнергетического контура, а также к незначительному (в пределах ошибки эксперимента) увеличению интенсивности максимума "c" ${\rm TiL}\alpha$ -полосы эмиссии самого мелкого ${\rm r-TiO}_2$. Такое энергетическое перераспределение валентных электронов должно привести к изменению их зонной энергии:

$$\varepsilon = \int_{E_0}^{E_F} N(E)E \, dE,$$

где N(E) — полная плотность электронных состояний в валентной зоне, энергетическое положение дна которой E_0 , а E_F — энергия уровня Ферми. Пренебрегая изменением вероятности перехода в пределах интервала энергий E_F – E_0 и учитывая, что аппаратурные искажения и ширина внутреннего O1s-уровня неизменны, можно считать что $N(E) \sim I(E)$ (здесь I(E) — интенсивность эмиссионного спектра). Тогда в таком приближении, исходя из рентгеновских спектров,

$$\frac{\varepsilon^K}{\varepsilon^H} = \frac{\int\limits_{E_0}^{E_F} N_K(E)E \, dE}{\int\limits_{E_F}^{E_F} N_H(E)E \, dE} \approx \frac{\int\limits_{E_0}^{E_F} I_{\text{OK}\alpha}^K(E)E \, dE}{\int\limits_{E_0}^{E_F} I_{\text{OK}\alpha}^H(E)E \, dE}.$$

В итоге получаем соотношения: $\varepsilon^K/\varepsilon^{H_1}=0.98$ и $\varepsilon^K/\varepsilon^{H_2}=0.83$. То есть, при измельчении порошков r—TiO₂ до средних размеров частиц $\overline{d}_1=107$ нм их зонная энергия возрастает на 2%, а до наноразмеров $\overline{d}_2=10$ нм — на 17%.

Известно, что увеличение зонной энергии электронов приводит к изменению или проявлению новых свойств, которые напрямую зависят от нее. Кроме того, зонная энергия составляет около 70–80% вклада во внутреннюю энергию, изменение которой влияет на большой круг свойств материалов. Поэтому, если $\Delta \varepsilon = \varepsilon^K - \varepsilon^H$ превышает энергетический

барьер, необходимый для проявления наноразмерных свойств, то они будут обнаружены. Если же параметры свойств меняются непрерывно, то их изменение становится ощутимым тогда, когда увеличение зонной энергии приводит к превышению точности измерения этих параметров.

Таким образом, исследование рентгеновских эмиссионных полос, отражающих энергетическое распределение валентных Tid- и Ор-электронов в рутилоподобном диоксиде титана, показало следующее.

- 1. Измельчение порошков рутилоподобного ${\rm TiO_2}$ от макро- до наноразмеров приводит к энергетическому перераспределению валентных электронов из ${\rm Opp}$ и ${\rm Tid}+{\rm Op}$ -связывающей подполосы крупного порошка в высокоэнергетическую несвязывающую подполосу нанопорошка после исчезновения их расщепления при разрыве химических связей.
- 2. Сужение и изменение формы ультрамягких рентгеновских эмиссионных полос проявляются при достижении числа поверхностных атомов с разорванными связями в наночастицах, которое соизмеримо с количеством атомов в их объеме. Это подтверждается тем, что при увеличении удельной поверхности от $14~{\rm m}^2/{\rm r}~(\overline{d}=107~{\rm hm})$ до $161~{\rm m}^2/{\rm r}~(\overline{d}=10~{\rm hm})$ площадь сужения ${\rm OK}\alpha$ в низкоэнергетической ветви в $10~{\rm pas}$ больше при переходе к нанопорошку с $\overline{d}=10~{\rm hm}$, чем к нанопоршку с $\overline{d}=107~{\rm hm}$.
 - 1. Mo Shang-Di, Ching W. Y. Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase and brookite // Phys. Rev. B. 1995. 51. P. 13023–13032.
 - 2. Ромащенко Ю. Н., Брытов И. А., Антоева Т. М. и ∂p . Рентгеноспектральные исследования характеристики химической связи в стеклах системы SiO_2-TiO_2 и кристаллических титанатах // Физика и химия стекла. 1981. 7, N 4. С. 441–445.
 - 3. Hardman P. J., Raikar G. N., Muryn C. A. et al. Valence band structure of TiO₂ along the Γ - Δ -X and Γ - Σ -M directions // Phys. Rev. B. 1994. 49. 7170–7177.
 - 4. $Glassford\ K.\ M.$, $Chelikowsky\ J.\ R.$ Structural and electronic properties of titanium dioxide // Ibid. 1992. 46. P. 1284–1298.
 - 5. *Хайрутдинов Р. Ф.* Химия полупроводниковых наночастиц // Усп. химии. 1998. **67**, № 2. С. 125–139.
 - 6. Жураковский Е. А., Зауличный Я. В., Нешпор В. С. и др. Особенности электронного строения ультрадисперсных порошков кубического нитрида бора // Порошк. металлургия. 1991. \mathbb{N} 1. С. 72–76.
 - 7. *Зауличный Я.В.* Рентгеноспектральное исследование электронной структуры и химической связи в ультрадисперсных порошках и полученных из них мелкокристаллических материалах. І. Нитрид титана // Там же. − 1999. − № 7/8. − С. 75–85.
 - 8. *Зауличный Я.В.* Рентгеноспектральное исследование электронной структуры и химической связи в ультрадисперсных порошках и полученных из них мелкокристаллических материалах. II. Карбид титана // Там же. № 9/10. С. 75–84.
 - 9. Blaha P., Schwarz K., Luitz J. WIENo 97. Vienna University of Technology, 1997. P. 127.
 - 10. Abrahams S. C., Bernstein J. L. Rutile: Normal probability plot analysis and accurate measurement of crystal structure // J. Chem. Phys. 1971. 55. P. 3206–3211.
 - 11. Верязов В. А., Леко А. В., Эварестов Р. А. Локальные характеристики электронной структуры кристалла в методе Хартри-Фока // Физика тв. тела. 1999. **41**, № 8. С. 1407–1411.
 - 12. Sugiyama K., Takeuchi Y. The crystal structure of rutile as a function of temperature up to 1600 $^{\circ}$ C // Zeitschrift für Kristallographie. 1991. 194. P. 305–313.
 - 13. Zhang Z., Jeng S.-P., Henrich V. Cation-ligand hybridization for stoichiometric and reduced TiO₂ (110) surfaces determined by resonant photoemission // Phys. Rev. B. 1991. 43. P. 12004. 12011.

Институт проблем материаловедения им. И. Н. Францевича НАН Украины, Киев Институт химии поверхности НАН Украины, Киев Поступило в редакцию 19.07.2006