

MEXAHIKA

УДК 534.232.001.11:62.50

© 2007

Член-корреспондент НАН Украины А. Е. Божко

Коррекция системы электромагнитного вибростенда с учетом гибких связей

The compensation correction of distortional factors in the effort of an electromagnetic vibrobench is shown.

Электромагнитные вибростенды ЭМВС применяются для оценки вибрационной надежности испытуемых изделий [1]. В практике вибрационных испытаний выходные сигналы ЭМВС должны быть откалиброваны, т. е. не иметь в себе искажающих факторов. Последние могут появляться от действия на платформу ЭМВС колебаний составляющих стенд конструктивных элементов. Кроме того, испытания объектов на ЭМВС может осуществляться по методу качающей частоты [2], в котором частота вибраций изменяется в определенном диапазоне, начиная от низких и заканчивая высокими частотами. В этом случае система платформа стенда (якорь) совместно с испытуемым объектом ведет себя с особенностями. При низких частотах возбуждения вибраций эта система является жесткой и испытуемый объект колеблется синхронно и синфазно с якорем ЭМВС. На высоких частотах вибронагрузок между якорем ЭМВС и испытуемым объектом появляются гибкие связи [3], заключающиеся в том, что между якорем и испытуемым объектом возникают эффекты от сил диссипации $b_0 \dot{x}_0$ и упругости (жесткости) cx_0 , заключающиеся в том, что колебания испытуемого объекта x_0 отстают от колебания якоря $x_{\rm H}$ на угол $\varphi=\arctan((bm_0\omega)/(\omega_0^2-\omega^2))$, где m — масса объекта; ω — круговая частота вибраций якоря; ω_0 — круговая собственная частота объекта.

При отсутствии гибких связей (жесткое соединение якоря и объекта на низких частотах) $\varphi = 0$. Исходя из эффекта $\varphi > 0$ при наличии гибких связей, предлагаем метод оценки наличия гибких связей по углу φ_n и, в свою очередь, применение этого метода при коррекции системы ЭМВС. Для уяснения данного предложения представим механические схемы ЭМВС без и с гибкими связями и покажем существо предлагаемых методов. На рис. 1 и 2 представлены эти схемы для жесткого соединения якоря и испытуемого объекта (рис. 1) и гибкого соединения этих же элементов (рис. 2).

Обозначения на рис. 1, 2 следующие: М — магнитопровод ЭМВС; δ — воздушный зазор; К — электрическая катушка с током i_k ; m_π — масса якоря; m_0 — масса испытуемого

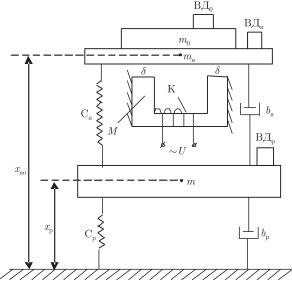


Рис. 1

объекта; $m_{\rm p}$ — реактивная масса; $c_{\rm g}$, $c_{\rm p}$, $c_{\rm 0}$ — жесткости якоря, реактивной массы и объекта соответственно; $b_{\rm g}$, $b_{\rm p}$, $b_{\rm 0}$ — элементы диссипации якоря, реактивной массы и испытуемого объекта соответственно; $x_{\rm g}$, $x_{\rm p}$, $x_{\rm 0}$ — координаты колебаний объекта, якоря, реактивной массы соответственно; U — входное задающее напряжение ЭМВС; ВД₀, ВД_{$\rm g$}, ВД_{$\rm p$} — вибродатчики, прикрепленные к $m_{\rm 0}$, $m_{\rm g}$ и $m_{\rm p}$ соответственно.

Запишем дифференциальные уравнения движения рассматриваемых схем (см. рис. 1, 2). Для схемы, изображенной на рис. 1, уравнения следующие:

$$\begin{cases}
(m_0 + m_{\mathfrak{H}})\dot{x}_{\mathfrak{H}0} + b_{\mathfrak{H}}\dot{x}_{\mathfrak{H}0} + c_{\mathfrak{H}}x_{\mathfrak{H}0} = F + b_{\mathfrak{H}}\dot{x}_{\mathfrak{p}} + c_{\mathfrak{H}}x_{\mathfrak{p}}; \\
m_p \ddot{x}_p + (b_{\mathfrak{H}} + b_p)\dot{x}_p + (c_{\mathfrak{H}} + c_{\mathfrak{p}})x_{\mathfrak{p}} = b_{\mathfrak{H}}\dot{x}_{\mathfrak{H}0} + c_{\mathfrak{H}}x_{\mathfrak{H}0}; \\
F = \frac{\Phi^2}{\mu_0 S} = \frac{\mu_0 S}{r^2 + (\omega L)^2} \left(\frac{Uw}{2\delta}\right)^2,
\end{cases} (1)$$

где Φ — магнитный поток в ЭМВС; F — тяговое усилие ЭМВС; μ_0 — магнитная проницаемость воздуха; r, w — активное сопротивление и число витков катушки; S — площадь поперечного сечения полюсов магнитопровода M в зазоре δ .

Для схемы, представленной на рис. 2, уравнения имеют вид

$$\begin{cases}
 m_0 \ddot{x}_0 + b_0 \dot{x}_0 + c_0 x_0 = b_0 \dot{x}_{\pi} + c_0 x_{\pi}; \\
 m_{\pi} \ddot{x}_{\pi} + (b_0 + b_{\pi}) \dot{x}_{\pi} + (c_0 + c_{\pi}) x_{\pi} = F + b_0 \dot{x}_0 + c_0 x_0 + b_{\pi} \dot{x}_{p} + c_{\pi} x_{p}; \\
 m_{p} \ddot{x}_{p} + (b_{\pi} + b_{p}) \dot{x}_{p} + (c_{\pi} + c_{p}) x_{p} = b_{\pi} \dot{x}_{\pi} + c_{\pi} x_{\pi}; \\
 F = \frac{\Phi^2}{\mu_0 S} = \frac{\mu_0 S}{r^2 + (\omega L)^2} \left(\frac{Uw}{2\delta}\right)^2.
\end{cases}$$
(2)

Как видим, для схемы с гибкими связями (см. рис. 2) уравнения движения сложнее, чем для ЭМВС с жестким креплением испытуемого объекта. Анализируя уравнения (1) и (2), с учетом заданного закона воспроизведения вибраций якорем ЭМВС, т.е. соответственно выражению тягового усилия F, видим, что в обоих случаях необходима коррекция системы

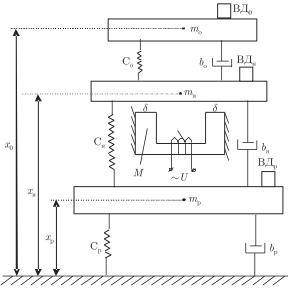


Рис. 2

ЭМВС, а именно: для схемы рис. 1 необходимо скомпенсировать силу $b_{\mathbf{x}}\dot{x}_{\mathbf{p}} + c_{\mathbf{x}}x_{\mathbf{p}}$, а для схемы рис. 2 необходима компенсация силы $b_{0}\dot{x}_{0} + c_{0}x_{0} + b_{\mathbf{x}}\dot{x}_{\mathbf{p}} + c_{\mathbf{x}}x_{\mathbf{p}}$, что сложнее, чем в первом случае. Однако, на наш взгляд, такая компенсационная коррекция возможна. Компенсация сил $b_{\mathbf{x}}\dot{x}_{\mathbf{p}} + c_{\mathbf{x}}x_{\mathbf{p}}$ и $b_{0}\dot{x}_{0} + c_{0}x_{0} + b_{\mathbf{x}}\dot{x}_{\mathbf{p}} + c_{\mathbf{x}}x_{\mathbf{p}}$ будет, если сформировать противоположные силы указанным. Покажем процедуру формирования корректирующих цепей последовательным изложением для схемы рис. 1, а затем для другой схемы (см. рис. 2).

Для схемы рис. 1 необходимо на реактивную массу $m_{\rm p}$ поставить вибродатчик (ВД_р), например, акселерометр. Выходной сигнал ВД_р надо два раза проинтегрировать и тогда получим сигналы, пропорциональные $\dot{x}_{\rm p}$ и $x_{\rm p}$. Пропуская полученные $\dot{x}_{\rm p}$ и $x_{\rm p}$ через звенья с коэффициентами передачи $b_{\rm g}^3$ и $c_{\rm g}^3$ соответственно и суммируя $b_{\rm g}^3 \dot{x}_{\rm p}$ и $c_{\rm g}^3 x_{\rm p}$, получим сигнал, соответствующий по форме силе, которую необходимо компенсировать. Затем пропустим суммирующий сигнал через инвертор [-1], т. е. получим сигнал $-b_{\rm g}^3 \dot{x}_{\rm p} - c_{\rm g}^3 x_{\rm p}$. Этот сигнал должен быть входным сигналом ЭМВС. Из (1) и (2) видим, что $F \approx kU^2$, т. е. квадрату входного напряжения U. При компенсации входное напряжение будет $U_k = U - b_{\rm g}^3 \dot{x}_{\rm p} - c_{\rm g}^3 x_{\rm p}$. Если следовать формуле $F \sim \alpha U_k 2$, где $\alpha = \frac{\mu_0 S}{r^2 + (\omega L)^2} \left(\frac{w}{2\delta}\right)^2$, то тогда необходимая компенсация невозможна.

Однако выход из этой, якобы невозможной, ситуации имеется. Решение задачи заключается в использовании звеньев суммирования и извлечение квадратного корня. Поясним данную мысль. Входное напряжение U суммируем в сумматоре с сигналом $-b_{\rm g}^{\rm s}\dot{x}_{\rm p}-c_{\rm g}^{\rm s}x_{\rm p}$ и из $U_k=U-b_{\rm g}^{\rm s}\dot{x}_{\rm p}-c_{\rm g}^{\rm s}x_{\rm p}$ извлекаем квадратный корень, т.е. получаем входной сигнал катушки K в виде $\sqrt{U-b_{\rm g}^{\rm s}\dot{x}_{\rm p}-c_{\rm g}^{\rm s}x_{\rm p}}$.

Тогда при таком входном напряжении ЭМВС тяговое усилие будет иметь вид

$$F = \frac{\mu_0 S}{r^2 + (\omega L)^2} \left(\frac{w}{2\delta}\right)^2 (U - b_{\mathfrak{R}}^{\mathfrak{I}} \dot{x}_{p} - c_{\mathfrak{R}}^{\mathfrak{I}} x_{p}) = \alpha U - \alpha b_{\mathfrak{R}}^{\mathfrak{I}} \dot{x}_{p} - \alpha c_{\mathfrak{R}}^{\mathfrak{I}} x_{p}.$$
(3)

Если (3) подставить в первое уравнение (1), получим

$$(m_0 + m_{\mathfrak{A}})\ddot{x}_{\mathfrak{A}0} + b_{\mathfrak{A}}\dot{x}_{\mathfrak{A}0} + c_{\mathfrak{A}}x_{\mathfrak{A}0} = \alpha U - \alpha b_{\mathfrak{A}}^{\mathfrak{A}}\dot{x}_{\mathfrak{p}} - \alpha c_{\mathfrak{A}}^{\mathfrak{A}}x_{\mathfrak{p}} + b_{\mathfrak{A}}\dot{x}_{\mathfrak{p}} + c_{\mathfrak{A}}x_{\mathfrak{p}}. \tag{4}$$

Уравнение (4) принимает вид

$$(m_0 + m_{\rm g})\ddot{x}_{\rm g0} + b_{\rm g}\dot{x}_{\rm g0} + c_{\rm g}x_{\rm g0} = \alpha U$$

при
$$(b_{\mathfrak{A}} - \alpha b_{\mathfrak{A}}^{\mathfrak{g}})\dot{x}_{\mathfrak{p}} = 0$$
 и $(c_{\mathfrak{A}} - \alpha c_{\mathfrak{A}}^{\mathfrak{g}})x_{\mathfrak{p}} = 0$.

Так как $\dot{x}_{\rm p}$ и $x_{\rm p} \neq 0$, то необходимо соблюсти условия $b_{\rm s} - \alpha b_{\rm s}^{\rm s} = 0$ и $c_{\rm s} - \alpha c_{\rm s}^{\rm s} = 0$.

Таким образом, в схеме рис. 1 получается четкое воспроизведение заданных вибраций без наличия искажающих факторов. Подобная по форме компенсация возможна и для схемы рис. 2, хотя трудностей в реализации здесь больше. Покажем суть и этой компенсации. Как было ранее отмечено, в этом случае необходимо компенсировать силу $b_0\dot{x}_{\rm я0}+c_0x_0+b_{\rm я}^3\dot{x}_{\rm p}+c_{\rm я}x_{\rm p}$. На основании компенсации в схеме рис. 1 понятно, что необходимо с помощью вибродатчиков, стоящих на испытуемом объекте и на реактивной массе и интеграторов, создаются сигналы x_0 , \dot{x}_0 , $x_{\rm p}$, $\dot{x}_{\rm p}$, которые проходят соответственно через звенья с коэффициентами передачи b_0' , c_0' , $b_{\rm я}'$, $c_{\rm я}'$ сумматор и инвертор. В результате получаем сигнал $-b_0'\dot{x}_0-c_0'x_0-b_{\rm я}^3\dot{x}_{\rm p}-c_{\rm я}^3x_{\rm p}$, который суммируем с входным задающим напряжением ЭМВС и пропускаем через звено извлечения квадратного корня. Тяговое усилие ЭМВС в этом случае будет иметь вид

$$F = \frac{\mu_0 S}{r^2 + (\omega L)^2} \left(\frac{w}{2\delta}\right)^2 (U - b_0^{\vartheta} \dot{x}_0 - c_0^{\vartheta} x_0 - b_{\mathfrak{R}}^{\vartheta} \dot{x}_{\mathbf{p}} - c_{\mathfrak{R}}^{\vartheta} x_{\mathbf{p}}) =$$

$$= \alpha U - \alpha (b_0^{\vartheta} \dot{x}_0 + c_0^{\vartheta} x_0 + b_{\mathfrak{R}}^{\vartheta} \dot{x}_{\mathbf{p}} + c_{\mathfrak{R}}^{\vartheta} x_{\mathbf{p}}). \tag{5}$$

Подставляя (5) во второе уравнение (2), получим

$$m_{\mathfrak{R}}\ddot{x}_{\mathfrak{R}} + (b_0 + b_{\mathfrak{R}})\dot{x}_{\mathfrak{R}} + (c_0 + c_{\mathfrak{R}})x_{\mathfrak{R}} =$$

$$= \alpha U + \dot{x}_0(b_0 - \alpha b_0') + x_0(c_0 - \alpha c_0') + \dot{x}_p(b_{\mathfrak{R}} - \alpha b_{\mathfrak{R}}') + x_p(c_{\mathfrak{R}} - \alpha c_{\mathfrak{R}}'). \tag{6}$$

Если в (6) принять $b_0 - \alpha b_0' = 0$; $c_0 - \alpha c_0' = 0$; $b_{\pi} - \alpha b_{\pi}' = 0$; $c_{\pi} - \alpha c_{\pi}' = 0$, то в правой части (6) будет αU , и колебания якоря будут осуществляться по заданному закону αU .

Таким образом, формируется компенсация дополнительных факторов в системе ЭМВС, изображенной на рис. 2. Такая компенсация осуществляется с помощью представленных корректирующих устройств. Однако в данной компенсации необходимо ввести устройство определения угла φ , звено переключения корректирующей цепи для схемы рис. 1 на корректирующую цепь для схемы рис. 2 при $\varphi > 0$. Все эти звенья реализуются в соответствии со структурной схемой, представленной на рис. 3, где CY_0 , CY_{g} , CY_{p} — согласующие усилители каналов вибродатчиков $\mathrm{B} Д_0$, $\mathrm{B} Д_{\mathrm{g}}$, $\mathrm{B} Д_{\mathrm{p}}$ соответственно; U_0 , U_{g} , U_{p} — интеграторы тех же каналов; b'_{g} , c'_{g} — звенья с коэффициентами передачи b'_{g} и c'_{g} ; $\mathrm{CM1}$, $\mathrm{CM2}$, $\mathrm{CM3}$ — сумматоры; $\boxed{-1}$ — инвертор; $\boxed{\sqrt{}}$ — звено извлечения квадратного корня; YM — усилитель мощности; YMB — вибровозбудитель; φ — звено измерения угла φ ; PS — релейный элемент с порогом срабатывания при $\varphi > 0$; Kn — ключ, срабатывающий от сигнала PS при $\varphi > 0$.

Данная система работает следующим образом. Сигналы с вибродатчиков ВД₀, ВД_я, ВД_р через согласующие усилители подаются на интеграторы. В результате на каждом канале получаем сигнал \dot{x}_0 , x_0 , \dot{x}_p , x_p . Заметим, в канале ВД_я интеграторы отсутствуют. После инверторов в каналах ВД₀ и ВД_р появляются сигналы $-(b_g^3\dot{x}_0+c_g^3x_0)$ и $-(b_g^3\dot{x}_p+c_g^3x_p)$ соответственно. Сигнал $-(b_g^3\dot{x}_0+c_g^3x_0)$ подается на вход ключа Кл, который открывается выходным сигналом РЭ. Выход ключа Кл соединен со входом сумматора СМЗ. На вход

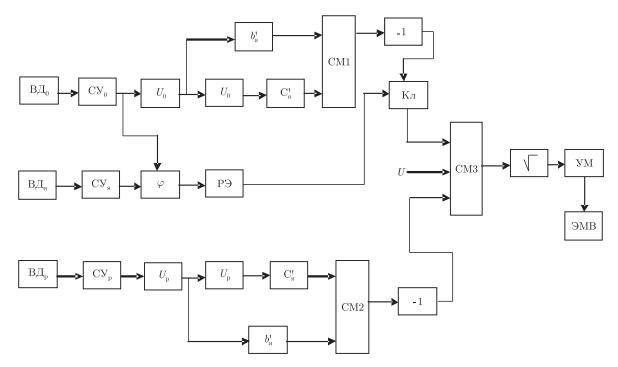


Рис. 3

этого сумматора (СМ3) подаются задающее напряжение U и сигнал $-(b_{\rm g}^{\mathfrak d}\dot x_{\rm p}+c_{\rm g}^{\mathfrak d}x_{\rm p})$. Далее выходной сигнал СМ3 подается на звено $\sqrt{}$ и затем на УМ и ЭМВ.

Если система якорь + испытуемый объект является жесткой, то на выходе Кл сигнал равен 0, так как $\varphi=0$ и РЭ не срабатывает. При гибкой связи $\varphi>0$ и РЭ подает сигнал на ключ Кл, который пропускает сигнал $-(b_{\mathfrak{g}}^{\mathfrak{g}}\dot{x}_0+c_{\mathfrak{g}}^{\mathfrak{g}}x_0)$ и таким образом добавляется еще один сигнал компенсации влияния колебаний объекта на якорь.

Заметим, что если необходимо иметь $F \sim U^2$, то входное напряжение U необходимо пропустить через звено возведения в квадрат, выход которого подается на вход CM3.

В результате представленный метод учета гибких связей в ЭМВС позволяет повысить точность воспроизведения стендом вибраций по заданному закону без влияния колебаний испытуемого объекта и реактивной массы.

- 1. Вибрации в технике. В 4-х т. / Под ред. Э. Э. Лавендела. Москва: Машиностроение, 1981. Т. 4. 510 с.
- 2. Испытательная техника. В 2-х т. / Под ред д. т. н. В. В. Клюева. Москва: Машиностроение, 1982. Т. 1. 560 с.
- 3. Божко А. Е. Воспроизведение вибраций. Киев: Наук. думка, 1975. 191 с.

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины, Харьков

Поступило в редакцию 25.09.2006