

ІНФОРМАТИКА ТА КІБЕРНЕТИКА

УДК 621.3(075.8)

© 2007

Член-корреспондент НАН Украины А.Е. Божко, С.Г. Попов

Передаточные функции электрических колебательных систем

The transfer functions of electrical oscillating systems are defined. The structures of these systems with negative feedbacks are shown.

При исследовании процессов в электрических цепях эффективным является знание их передаточных функций относительно физических величин (токов, напряжений). Анализ литературных источников показал, что в настоящее время недостаточно справочных данных по передаточным функциям электрических колебательных цепей, представляющих собой последовательное и параллельное соединение активных и реактивных сопротивлений [1–3]. Обычные дифференциальные уравнения колебательных цепей не дают четкого представления функциональной связи элементов и тем более не отражают наличия обратных связей в этих цепях.

Из исследований механических колебательных систем [4, 5] видно, что в этих системах имеются как отрицательные, так и положительные обратные связи. Поэтому возникает вопрос: имеется ли аналогия в электрических колебательных системах? Для ответа, по нашему мнению, необходимо определить передаточные функции этих систем. В связи с такой постановкой рассмотрим схемы, изображенные на рис. 1 *a*, *б*, *в*, *г*, представляющие собой последовательное соединение резистора *R*, индуктивности *L*, емкости C (рис. 1, *a*), последовательное соединение *R* с параллельным соединением *L* и C (рис. 1, *б*) и систему соединения *n*-схем (рис. 1, *в*), каждая из которых собрана по схеме на рис. 1, *б*.

Определение передаточных функций будем осуществлять последовательно, начиная со схемы рис. 1, а. Для этой схемы дифференциальное уравнение имеет вид [3]

$$U = U_R + U_L + U_C = \operatorname{Ri} + L\frac{di}{dt} + \frac{1}{C}\int idt,$$
(1)

где U — входное напряжение; U_R, U_L, U_C — падения напряжений на R, L, C соответственно; I — электрический ток.

Будем определять передаточные функции

$$W_{\text{I}a}(p) = \frac{I(p)}{U(p)}, \qquad W_{\text{II}a}(p) = \frac{U_C(p)}{U(p)}, \qquad W_{\text{III}a}(p) = \frac{U_L(p)}{U(p)}, \qquad W_{\text{IV}a}(p) = \frac{U_R(p)}{U(p)},$$

ISSN 1025-6415 Доповіді Національної академії наук України, 2007, №7

где p = d/dt — оператор дифференцирования; $U(p), I(p), U_C(p), U_L(p), U_R(p)$ — изображения Карсона [6] напряжений U, U_C, U_L, U_R и тока i.

Для определения $W_1(p)$ продифференцируем (1) по времени. В результате получим уравнение

$$\frac{dU}{dt} = L\frac{d^2i}{dt^2} + R\frac{di}{dt} + \frac{i}{C},$$

которое в операционной форме имеет вид $pU(p) = I(p)(Lp^2 + Rp + 1/C)$, откуда передаточная функция

$$W_{Ia}(p) = \frac{I(p)}{U(p)} = \frac{p}{Lp^2 + Rp + \frac{1}{C}} = \frac{p}{Lp^2} \cdot \frac{1}{1 + \frac{Rp + 1/C}{Lp^2}} = \frac{W_{1ia} \cdot W_{2ia}}{1 + W_{2ia} \cdot W_{3ia}},$$
(2)

где $W_{1ia} = W_{1ia}(p) = p, W_{2ia} = W_{2ia}(p) = 1/(Lp^2), W_{3ia} = W_{3ia}(p) = Rp + 1/C.$ Структурная схема, соответствующая (2), изображена на рис. 2, *a*, где $W'_{3ia} = Rp, W''_{3ia} =$

= 1/C.

Перейдем к определению $W_{IIa}(p)$. Относительно U_C уравнение (1) запишется в виде

$$U = LC \frac{d^2 U_C}{dt^2} + RC \frac{dU_C}{dt} + U_C,$$

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2007, № 7

или, в операционной форме, $U(p) = U_C(p)(LCp^2 + RCp + 1)$, откуда

$$W_{\text{II}a}(p) = \frac{U_C p}{U(p)} = \frac{1}{LCp^2 + RCp + 1} = \frac{1}{LCp^2} \frac{1}{1 + \frac{RCp + 1}{LCp^2}} = \frac{W_{1U_Ca}}{1 + W_{1U_Ca}W_{2U_Ca}},$$
(3)

где $W_{1U_{C}a} = W_{1U_{C}a}(p) = 1/(LCp^2), W_{2U_{C}a} = W_{2U_{C}a}(p) = RCp + 1.$ Структурная схема, соответствующая (2), представлена на рис. 2, *б*, где $W'_{2U_{C}a} = RCp$, $W_{2U_C6}'' = 1.$

Далее найдем $W_{\rm IIIa}(p)$. С учетом того, что

$$i = \frac{1}{L} \int U_L dt,$$

уравнение (1) принимает вид

$$U = \frac{R}{L} \int U_L dt + U_L + \frac{1}{LC} \int \left(\int U_L dt \right) dt$$

Продифференцировав это уравнение по t два раза, получим

$$\frac{d^2U}{dt^2} = \frac{R}{L} \cdot \frac{dU_L}{dt} + \frac{d^2U_L}{dt^2} + \frac{1}{C}U_L,$$

или, в операционной форме,

$$p^{2}U(p) = \left(p^{2} + \frac{R}{L}p + \frac{1}{LC}\right)U_{L}(p),$$

откуда

$$W_{\text{III}a}(p) = \frac{U_L(p)}{U(p)} = \frac{p^2}{p^2 + \frac{R}{L}p + \frac{1}{LC}} = \frac{p^2}{p^2 \left(1 + \frac{(R/L)p + 1/C}{p^2}\right)} = \frac{W_{1U_La}W_{2U_La}}{1 + W_{2U_La}W_{3U_La}}, \quad (4)$$

где $W_{1U_La} = W_{1U_La}(p) = p^2$, $W_{2U_La} = W_{2U_La}(p) = 1/p^2$, $W_{3U_La} = W_{3U_La}(p) = (R/L)p + (R/L)p^2$ + 1/(LC).

ISSN 1025-6415 Доповіді Національної академії наук України, 2007, №7

Структура, соответствующая (4), изображена на рис. 2, а. Здесь $W'_{3U_La} = (R/L)p$, $W''_{3U_La} = 1/(LC)$ и все передаточные функции имеют индекс IV. Для определения $W_{IVa}(p)$ представим (1) в виде

$$\frac{dU}{dt} = \frac{L}{R}\frac{d^2U_R}{dt^2} + \frac{dU_R}{dt} + \frac{U_R}{CR},$$

или, в операционной форме,

$$pU(p) = U_R(p)\left(\frac{L}{R}p^2 + p + \frac{1}{CR}\right),$$

откуда

$$W_{\text{IV}a}(p) = \frac{U_R(p)}{U(p)} = \frac{p}{\frac{L}{R}p^2 + p + \frac{1}{CR}} = \frac{p}{\frac{L}{R}p^2} \frac{1}{1 + \frac{p + 1/(CR)}{(L/R)p^2}} = \frac{W_{1U_Ra}W_{2U_Ra}}{1 + W_{2U_Ra}W_{3U_Ra}},$$
 (5)

где $W_{1U_Ra} = W_{1U_Ra}(p) = p, W_{2U_Ra} = W_{2U_Ra}(p) = L/(Rp^2), W_{3U_Ra} = W_{3U_Ra}(p) = p + 1/(CR).$

Структура, соответствующая (5), аналогична структуре, изображенной на рис. 2, *a*. Но здесь вместо W_{1ia} , W_{2ia} , W'_{3ia} , W''_{3ia} должны быть W_{1U_R6} , W_{2U_R6} , $W'_{3U_R6} = p$, $W''_{3U_R6} = 1/(CR)$.

Как видно из данного исследования, электросхема с последовательным соединением R, L, C представляет собой относительно U_R , U_L , U_C , i замкнутую систему, охваченную отрицательными обратными связями, которые, в принципе, не нарушают устойчивость функционирования схемы. Кроме того, в передаточную функцию $W_{IIIa}(p)$ входит звено двойного дифференцирования, а в передаточные функции $W_{Ia}(p)$, $W_{IVa}(p)$ — звенья дифференцирования.

Перейдем к схеме рис. 1, б. Будем определять передаточные функции

$$W_{\rm I6}(p) = \frac{U_C(p)}{U(p)}, \qquad W_{\rm I16}(p) = \frac{I(p)}{U(p)}, \qquad W_{\rm I116}(p) = \frac{I_L(p)}{U(p)}, \qquad W_{\rm IV6}(p) = \frac{I_C(p)}{U(p)}$$

Уравнения, соответствующие процессам в этой системе, следующие [3]:

$$i = i_L + i_C, \qquad U_C = L \frac{di_L}{dt}, \qquad i_C = C \frac{dU_C}{dt}, \qquad (6)$$
$$U = Ri + U_C,$$

где i — общий ток; i_L , i_C — токи, идущие через L и C соответственно.

Для нахождения $W_{I6}(p) = U_C(p)/U(p)$ на основании (6) получим

$$U = \frac{R}{L} \int U_C dt + RC \frac{dU_C}{dt} + U_C.$$
⁽⁷⁾

Продифференцировав по времени уравнение (7), имеем

$$\frac{dU}{dt} = \frac{R}{L}U_C + RC\frac{d^2U_C}{dt^2} + \frac{dU_C}{dt},$$

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2007, № 7

или, в операционной форме,

$$pU(p) = \left(RCp^2 + p + \frac{R}{L}\right)U_C(p),$$

откуда

$$W_{\rm I6}(p) = \frac{U_C(p)}{U(p)} = \frac{p}{RCp^2 + p + \frac{R}{L}} = \frac{p}{RCp^2} \frac{1}{1 + \frac{p + R/L}{RCp^2}} = \frac{W_{1U_C6}W_{2U_C6}}{1 + W_{2U_C6}W_{3U_C6}},\tag{8}$$

где $W_{1U_C6} = p, W_{2U_C6} = \frac{1}{RCp^2}, W_{3U_C6} = p + R/L.$

Структура, соответствующая (8), аналогична структуре рис. 2, *a*. Здесь вместо W_{kia} , $k = \overline{1,3}$, необходимо подставить W_{kU_C6} , $k = \overline{1,3}$, и на выходе должно быть U_C .

Для определения $W_{\rm II6}(p) = I(p)/U(p)$ из (6) составляем уравнения

$$U_C = \frac{1}{C} \int i_C dt = \frac{1}{C} \int (i - i_L) dt = \frac{1}{C} \int i dt - \frac{1}{C} \int i_L dt = \frac{1}{C} \int i dt - \frac{1}{CL} \int \left(\int U_C dt \right) dt.$$

Продифференцируем два раза по времени это уравнение. В результате получаем $\frac{d^2 U_C}{dt^2} + \frac{1}{CL}U_C = \frac{1}{C}\frac{di}{dt}$. Выразив это уравнение в операционной форме, получим

$$U_C(p) = I(p)\frac{p}{C}\frac{1}{p^2 + \frac{1}{CL}}.$$
(9)

Подставим (9) в (7), которое также выразим в операционной форме, и тогда имеем $U(p) = I(p)(RCp^2 + p + R/L)$, откуда

$$W_{\rm II6}(p) = \frac{I(p)}{U(p)} = \frac{1}{RCp^2 + p + \frac{R}{L}} = \frac{1}{RCp^2 \left(1 + \frac{p + R/L}{RCp^2}\right)} = \frac{W_{1i6}}{1 + W_{1I6}W_{2I6}},\tag{10}$$

где $W_{1I6} = 1/(RCp^2), W_{2I6} = p + R/L = W'_{2I6} + W''_{2I6}, W'_{2I6} = p, W''_{2I6} = R/L.$

Структура, соответствующая (10), аналогична структуре, изображенной на рис. 2, *б*. Здесь только другие (см. (9)) передаточные функции составляющих элементов.

Для определения $W_{\text{III6}}(p) = I_L(p)/U(p)$ из уравнения (7) с учетом того, что $i_L = (1/L) \int U_C dt$, получаем уравнение

$$U = RCL\frac{d^2i}{dt^2} + L\frac{di_L}{dt} + Ri_L,$$

или, в операционной форме, $U(p) = I_L(p)(RCLp^2 + Lp + R)$, откуда

$$W_{\text{III6}}(p) = \frac{I_L(p)}{U(p)} = \frac{1}{RCLp^2 + Lp + R} = \frac{1}{RCLp^2} \frac{1}{1 + \frac{Lp + R}{RCLp^2}} = \frac{W_{1I_L6}}{1 + W_{1I_L6}W_{2I_L6}},$$
(11)

где $W_{1I_L6} = W_{1I_L6}(p) = 1/(RCLp^2), W_{2I_L6} = W_{2I_L6}(p) = Lp + R.$

ISSN 1025-6415 Доповіді Національної академії наук України, 2007, № 7

Структура, соответствующая (11), аналогична структуре, изображенной на рис. 2, *б*. Здесь необходимо подставить свои W_{1I_L6} , W_{2I_L6} и $W'_{2I_L6} = Lp$, $W''_{2I_L6} = R$.

Далее определим $W_{IV6}(p)$. Из уравнения (6) имеем

$$U = R(i_L + i_C) + \frac{1}{C} \int i_C dt = Ri_C + \frac{R}{L} \int U_C dt + \frac{1}{C} \int i_C dt = Ri_C \int \left(\int i_C dt \right) + \frac{1}{C} \int i_C dt$$

Продифференцировав два раза по времени это уравнение, получаем

$$\frac{d^2U}{dt^2} = R\frac{d^2i_C}{dt^2} + \frac{1}{C}\frac{di_C}{dt} + \frac{R}{LC}i_C,$$

или, в операционной форме,

$$p^{2}U(p) = I_{C}(p)\left(Rp^{2} + \frac{1}{C}p + \frac{R}{LC}\right),$$

откуда

$$W_{\rm IV6}(p) = \frac{I_C(p)}{U(p)} = \frac{p^2}{Rp^2 + \frac{1}{C}p + \frac{R}{LC}} = \frac{p^2}{Rp^2 \left(1 + \frac{(1/C)p + R/(LC)}{Rp^2}\right)} = \frac{W_{1I_C6}}{1 + W_{2I_C6}W_{3I_C6}},$$
(12)

где $W_{1I_C6} = W_{1I_C6}(p) = p^2$, $W_{2I_C6} = W_{2I_C6}(p) = 1/(Rp^2)$, $W_{3I_C6} = W_{3I_C6}(p) = (1/C)p + R/(LC)$.

Структура, соответствующая (12), аналогична структуре, изображенной на рис. 2, *а.* Здесь только необходимо подставить значения передаточных функций $W_{3I_C6} = W'_{3I_C6} + W''_{3I_C6}$, где $W'_{3I_C6} = (1/C)p$, $W''_{3I_C6} = R/(LC)$.

Определим передаточную функцию системы, изображенной на рис. 1, *e*, $W_{\Sigma}(p) = U_{Cn}(p)/U(p)$. Для этого определим передаточную функцию системы $R_k + L_k ||C_k, k = \overline{1, n}$, на входе которой напряжение $U_{C(k-1)}$, а на выходе U_{Ck} . На основании (6) и (7)

$$W_k(p) = \frac{W_{1k}(p)}{1 + W_{2k}(p)W_{3k}(p)},$$
(13)

где $W_{1k}(p) = p, W_{2k}(p) = 1/(R_k C_k p^2), W_{3k}(p) = p + R_k/L_k.$

Структура, соответствующая (13), изображена на рис. 2, *а.* Здесь только необходимо подставить $W_{1k}(p)$, $W_{2k}(p)$, $W'_{3k}(p) = p$, $W''_{3k}(p) = R_k/L_k$. Общая передаточная функция системы рис. 2, *в* имеет вид

$$W_{\Sigma}(p) = \prod_{k=1}^{n} W_k p.$$
(14)

Структура, соответствующая всей системе рис. 1, в, изображена на рис. 3.

Теперь определим передаточную функцию $W_{\Sigma}(p) = U_{Cn}/U$ колебательной системы, изображенной на рис. 1, *г*. Как для схемы рис. 1, *в*, так и в данном случае, будем считать

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2007, № 7

 $z_{C(k-1)} \ll R_k, k = \overline{1, n}$. Тогда для каждой отдельной схемы $R_k \to L_k \to C_k$ справедлива передаточная функция вида (3), т.е.

$$W_k(p) = \frac{U_{Ck}(p)}{U_{C(k-1)}(p)} = \frac{W_{1k}}{1 + W_{1k}W_{2k}},$$
(15)

где $W_{1k} = 1/(L_k C_k p^2), W_{2k} = R_k C_k p + 1.$

Структурная схема, соответствующая $W_k(p)$, аналогична схеме, изображенной на рис. 2, б. Здесь только необходимо вместо $W_{1U_C}, W'_{2U_C}, W''_{2U_C}$ подставить $W_{1k}, W'_{2k} = R_k C_k p$, $W''_{2k} = 1$ соответственно. Передаточная функция всей системы, изображенной на рис. 1, ϵ , имеет вид

$$W_{\Sigma}(p) = \prod_{k=1}^{n} W_k(p), \tag{16}$$

где $W_k(p)$ определяются по формуле (15).

Структура, соответствующая (16), изображена на рис. 4.

Проанализируем все полученные передаточные функции. Как видно из данных исследований, в структуре колебательных электрических систем имеются отрицательные обратные связи, позволяющие этим системам устойчиво функционировать. Эти отрицательные обратные связи формируются из суммы дифференцирующего и безынерционного звеньев. Звеном, которое охватывается отрицательной обратной связью, в этих системах является двойной интегратор, соответствующий в механических колебательных системах инерционному элементу. Заметим, что в механических колебательных системах имеются положительные обратные связи [4, 5], которые в некоторых случаях обусловливают неустойчивость в функционировании. Предполагаемое отсутствие в электрических колебательных системах положительных обратных связей приводит к предварительному выводу о дополнительном анализе в справедливости теории электродинамической аналогии механических и электрических колебательных систем. Знание полученных передаточных функций облегчает анализ функционирования рассматриваемых систем и позволяет выявить более детально энергетику их колебаний.

С учетом проведенного анализа можно отметить следующий факт. Пусть имеется объект, передаточная функция которого

$$W(p) = \frac{A}{a_n p^n + a_{n-1} p^n + \dots + a_1 p + a_0} = \frac{A}{\sum_{k=0}^n a_k p^k}.$$
(17)

ISSN 1025-6415 Доповіді Національної академії наук України, 2007, № 7

В (17) осуществим преобразования

$$W(p) = \frac{1}{a_n p^n} \frac{A}{\sum_{\substack{n=0\\n+p^n}}^{n} a_k p^k} = \frac{AW_{1n}}{1 + W_{1n}W_{2(n-1)}}.$$
(18)

Как видно из (18), объект представляет собой звено с $W_{1n}(p)$, охваченное суммой отрицательных обратных связей $W_{2(n-1)} = \sum_{k=0}^{n-1} a_k p^k$. В свою очередь

$$W_{2(n-1)} = \sum_{k=0}^{n-1} a_k p^k = \frac{1}{a_{n-1}p^{n-1}} \frac{1}{1 + \frac{\sum_{k=0}^{n-1} a_k p^k}{1 + \frac{a_{n-1}p^{n-1}}{a_{n-1}p^{n-1}}}} = \frac{W_{1(n-1)}}{1 + W_{2(n-2)}W_{1(n-1)}},$$

т. е. звено с $W_{1(n-1)} = 1/(a_{n-1}p^{n-1})$ охватывается отрицательными обратными связями с передаточной функцией $W_{2(n-2)} = \sum_{k=0}^{n-2} a_k p^k$.

Такую процедуру с дополнительным умножением и делением на выносимый член можно продолжить, вплоть до звена с передаточной функцией $W_{11}(p) = 1/(a_1p)$, которое охватывается отрицательной обратной связью с передаточной функцией $W_{20}(p) = a_0$. Приведем упрощенный пример. Пусть $W(p) = 1/(ap^3 + bp^2 + cp + d)$. Преобразуем W(p) так:

$$W(p) = \frac{1}{ap^{3}\left(1 + \frac{bp^{2} + cp + d}{ap^{3}}\right)} = \frac{1}{ap^{3}} \frac{1}{1 + \frac{(bp^{2})^{2}(1 + (cp + d)/(bp^{2}))}{bp^{2}ap^{3}}} = \frac{1}{ap^{3}} \frac{1}{1 + \frac{(bp^{2})^{2}[1 + (cp)^{2}/(cpbp^{2})(1 + d/(cp))]}{bp^{2}ap^{3}}} = \frac{W_{1}}{1 + W_{1}W_{2}W_{3}[1 + W_{3}W_{4}W_{5}(1 + W_{5}W_{6})]},$$

$$W_{1} = W_{1}(p) = \frac{1}{ap^{3}}, \qquad W_{2} = W_{2}(p) = (bp^{2})^{2}, \qquad W_{3} = W_{3}(p) = \frac{1}{bp^{2}},$$

$$W_{4} = W_{4}(p) = (cp)^{2}, \qquad W_{5}(p) = \frac{1}{cp}, \qquad W_{6} = W_{6}(p) = d.$$
(19)

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2007, № 7

Таким образом, общая передаточная функция W(p), определяемая (18) и на примере (19), может быть выражена последовательностью дробей. При таком рассмотрении каждое предыдущее по индексу k, начиная от n и до 1, охватывается отрицательными обратными связями. Вызывает интерес такой вопрос: может ли в системе W(p) = (18) наличие последовательности отрицательных обратных связей создать положительные обратные связи, обусловленные неустойчивостью в функционировании системы. В этом плане, по нашему мнению, целесообразно осуществить сравнение критериев устойчивости [1, 2] с последовательным определением знака обратной связи с рассматриваемой системе (18).

Кроме того, следует заметить, что представленные ООС ставить в абсолют неправомерно по следующей причине. Индуктивное и емкостное сопротивления в символической форме записываются в виде [3] $x_L = j\omega L$, $x_C = 1/(j\omega c) = -j\omega/(\omega^2 c)$, где $j = \sqrt{-1}$. В операционной форме [3, 6] эти сопротивления записываются так: $x_L(p) = pL$, $x_C(p) = -p/(\omega^2 c)$. Тогда в ООС $x_L(p)$ формирует ООС, а $x_C(p)$ — положительную ОС (ПОС). А это означает, что устойчивость или неустойчивость функционирования схем с L и C определяется превалированием друг перед другом $x_L(p)$ или $x_C(p)$. При $x_L(p) = x_C(p)$ в рассматриваемых схемах имеется явление резонанса.

- 1. *Теоретические* основы связи и управления / Под ред А.А. Фельдбаума. Москва: Физматгиз, 1963. 932 с.
- 2. *Теория* автоматического управления / Под ред. д. т. н., проф. А. В. Нетушина. Москва: Высш. шк., 1976. 400 с.
- 3. *Бессонов Л.А.* Теоретические основы электротехники (электрические цепи). Москва: Высш. шк., 1978. 528 с.
- 4. Божко А. Е. Синтез оптимального управления колебательных систем. Киев: Наук. думка, 1990. 164 с.
- 5. *Божко А.Е.* К анализу колебательных механических систем // Доп. НАН України. 2004. № 3. С. 37–40.
- 6. *Гинзбург С. Г.* Методы решения задач по переходным процессам в электрических цепях. Москва: Сов. радио, 1959. 404 с.

Институт проблем машиностроения им. А. Н. Подгорного НАН Украины, Харьков Поступило в редакцию 09.10.2006