- Xiaohong Zhang, Dong Li, Yang Dan. Impulsive Control of T-S Fuzzy Systems // Fuzzy Systems and Knowledge Discovery: Fourth Internat. Conf. – Japan, 2007. – P. 321–325.
- Simeonov P. S., Bainov D. D. Stability with respect to part of the variables in systems with impulse effect // J. of Math. Anal. and Appl. – 1986. – 117, No 1. – P. 247–263.
- 7. Hahn W. Stability of Motion. Berlin: Springer, 1967. 448 p.

Институт механики им. С. П. Тимошенко НАН Украины, Киев Поступило в редакцию 07.04.2008

УДК 622.023.623:622.411.332

© 2008

С.И. Скипочка, Т.А. Паламарчук, Н.А. Куцева, В.В. Трачевский, Ю.А. Загородний

К вопросу о механизме метанообразования в угольных пластах

(Представлено академиком НАН Украины А. Ф. Булатом)

The results of researches of the atomic-molecular coal's substance structure with different degrees of metamorphism using electronic microscopy, X-ray diffraction analysis, and nuclear magnetic resonance are adduced. The interpretation of the results from positions of the process of methane's generation in coal layers is offered.

С возрастанием глубины разработки угольных месторождений и интенсификацией процессов добычи угля создаются условия для существенного увеличения метана в рудничной атмосфере. Кроме того, увеличивается вероятность возникновения газодинамических явлений, при которых выделяется количество метана, на порядок превышающее естественную газоносность пласта. Замечено, что основная масса метана выделяется при разрушении угля, а также в зонах тектонических нарушений.

События последних лет, происшедшие на угольных шахтах Украины, Китая и России, подтверждают, что прогнозирование и борьба с газопроявлениями являются ключевыми для увеличения эффективности работы угольных шахт и повышения безопасности работы горняков. Кроме того, не следует забывать, что метан угленосных отложений является достаточно перспективным энергоносителем. Особенно это важно для Украины, в структуре запасов органического топлива которой газ составляет лишь 2,6% (среднемировые — 15%), а уголь — 95,4% (среднемировые — 67%). Поэтому попутная добыча и утилизация шахтного метана смогли бы сыграть существенную роль в топливно-энергетическом комплексе нашей державы.

Отметим, что фазовые состояния метана и физические механизмы его выделения в шахтах остаются недостаточно изученными [1–3]. Существует несколько форм существования метана в породах угольных формаций: свободный, адсорбированный, газогидратный, в твердом растворе и др. В последнее время ряд ученых считают, что метан в значительной мере образуется в процессе горных работ в угольном пласте путем физико-химических реакций углерода с водородом под влиянием перераспределения напряженного состояния,

ISSN 1025-6415 Доповіді Національної академії наук України, 2008, №11

которое приводит к деструкции угля [4]. Информация о формах существования метана в угле конкретных месторождений имеет не только научное, но и большое практическое значение, так как структура системы уголь — метан определяет прочность связей ее элементов в угольном веществе, а, следовательно, и выбор способа ее деструкции при решении вопросов дегазации угольных пластов и извлечения содержащегося в них метана. [5]

В работе мы никоим образом не претендуем на окончательную формулировку механизма метанообразования, а только приводим результаты экспериментальных исследований, полученных в последние годы, и комментарии к ним, приглашая к дискуссии всех заинтересованных специалистов в данной области.

Выполненные экспериментальные исследования включали электронную микроскопию угольного вещества, его рентгеноструктурный анализ (PCA) и ЯМР спектроскопию.

Исследованиям были подвергнуты образцы углей различной степени метаморфизма: от слабометаморфизованных углей Западного района Донбасса до антрацитов. Наиболее опасные по газовыделению и внезапным выбросам угли были представлены пробами, отобранными на шахте им. А.Ф. Засядько, причем часть из них была отобрана в зонах геологических нарушений, а часть — непосредственно в зоне внезапного выброса.

Химический состав проб углей определяли по результатам стандартного спектрального и технического анализов. Для углей, отобранных из места выброса, были определены материнская зольность $A^d = 1,9-4,82\%$ и выход летучих $V^{daf} = 33,1-38,1\%$. В качестве, своего рода, эталонов были использованы пробы антрацита, а также осажденный углерод.

Исследования микроструктуры углей осуществляли с помощью оптического микроскопа "Аксиоверт 250 M MAT". Отобранные образцы предварительно вываривались в расплаве на основе канифоли при температуре 100 °C в течение 15 мин. Затем проводились мокрая шлифовка, полировка и доводка образцов.

В методике РСА анализа учтено, что ископаемые угли представляют собой сложную систему фаз переменного состава, содержащих различного рода дефекты сплошности на молекулярном и надмолекулярном уровнях [6]. Поэтому расчетные методы оценки интенсивности дифракционных спектров не использовались (при оценке интенсивности дифракционных отражений ископаемых углей особенно существенен недостаток рентгенографического метода — заметное влияние химического состава и дисперсности пробы). Особенно неблагоприятным фактором является содержание в ископаемых углях тяжелых элементов, обладающих большой рассеивающей способностью. Рентгеноструктурные исследования углей проводились на установке ДРОН 1УМ с фокусировкой по Брэггу-Брентано в монохроматическом Мо K_{α} -излучении (монохроматор — графит на дифрагируемом пучке). Съемка кривых интенсивности образцов проводилась в дифференциальном режиме с шагом сканирования $0,1^{\circ}$ в области первого максимума и $0,5^{\circ}$ — в области больших углов рассеяния.

Спектры ¹Н и ¹³С исследуемых образцов были получены на ЯМР-спектрометре серии "Avance" фирмы "Bruker", с резонансной частотой на протонах 400 МГц. Напряженность магнитного поля — 9,4 Тл. Образцы исследовались с вращением под магическим углом $\theta = 54,74^{\circ}$ ($(3\cos^2 \theta - 1) = 0$) на частоте 14 кГц, что позволяет избавиться от диполь-дипольных взаимодействий и приводит к усреднению химических сдвигов до их изотропного значения. Наряду с этим, получены спектры с использованием кросс-поляризации (CP/MAS), позволяющей переносить поляризацию от распространенных ядер с высоким значением γ_I (в данном случае ¹Н) к малораспространенным ядрам с низким γ_S (¹³C), что приводит к увеличению интенсивности сигнала, равному отношению γ_I/γ_S .

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2008, № 11

74

Рис. 1. Микроструктура углей: невыбросоопасных (*a* – антрацитов, *б* – Западного Донбасса, *e* – Восточного Донбасса); выбросоопасных (*z* – пл. *m*₃, шахта им. А. Ф. Засядько)

На рис. 1 приведена микроструктура углей разной степени метаморфизма, относящихся к классам как выбросоопасных, так и невыбросоопасных углей.

Для микроструктуры антрацита и угля Павлоградского региона характерно наличие на фоне основной матрицы аморфной фазы (АФ) небольших пор, равномерно распределенных по всему объему образца. Объемная доля пор, определенная по методу секущих, составила 1–2% и 2–4%, а размеры пор — 5–16 мкм и 15–60 мкм, соответственно. На микроструктурах невыбросоопасных углей Восточного района Донбасса на фоне основной матрицы АФ отчетливо видны протяженные трещины. Кроме того, в структуре присутствуют включения других фаз. Относительная доля пор и трещин составляет 4–5%, а размеры пор — 3–18 мкм.

Отличительной особенностью микроструктур выбросоопасных углей средней степени метаморфизма (шахта им. А.Ф. Засядько) является наличие более протяженных пор по всему объему образца. Из рис. 1 видно, что включения располагаются, в основном, в этих порах. Относительная доля пор для углей составляет 6–8%, размеры пор — 40–100 мкм.

РСА показал, что все исследованные угли имеют аморфно-кристаллическую структуру с разной долей кристаллических составляющих (табл. 1).

Рассчитанные по формулам Уоррена межслоевые расстояния d_{002} , среднего размера углеродного слоя L_a и степени их упорядоченности (средней высоты пачки слоев) L_c представлены в табл. 2, откуда видно, что межслоевое расстояние уменьшается при переходе выбросоопасных углей средней степени метаморфизма к антрациту и порошковому углероду, в то время как средний размер углеродных слоев практически не изменяется.

ISSN 1025-6415 Доповіді Національної академії наук України, 2008, №11

Наиболее характерные результаты исследований ближнего порядка образцов приведены в табл. 3, где S_i — положения максимума структурного фактора; $i(S_1)$ — высота первого максимума; r_i — значения межатомных расстояний; n — число ближайших соседей. Установлено, что для всех исследованных образцов угля кратчайшее межатомное расстояние составляет 1,41–1,43 Å, а координационное число (n) — около 1,5, что близко к параметрам ближнего порядка графита. Как правило, в качестве доминирующего мотива структуры углей используются шестичленные ароматические кольца, связанные между собой в кластеры. Длина связи между арильными углеродами (двойные связи между атомами углерода) составляет 1,39 Å, а расстояние между алкиловыми атомами углерода, т.е. имеющими тройную связь, — 1,54 Å. Значения кратчайшего межатомного расстояния для исследованных углей находится между этими двумя расстояниями. Кроме того, из табл. 3 видно, что 73–80% составляет доля арильных связей углерода и 20–27% — доля атомов углерода, в котором содержатся тройные связи.

Известно, что в материалах возможно существование в свободном состоянии частиц, содержащих трех- или двухвалентный углерод (свободные радикалы). Свободные радикалы более активны, чем обычные молекулы, и могут взаимодействовать с другими молекулами,

Место отбора пробы либо марка угля	Фазовый состав				
Шахты Западного района Донбасса Шахта им. А. Ф. Засядько, пл. <i>m</i> ₃	$A\Phi$, FeS ₂ , Al ₂ O ₃ , Fe ₂ O ₃ аморфная фаза ($A\Phi$), малая доля кристаллической фарт. FeS ₂ , FeO ₂ – адолу Al ₂ O ₂ – очислов и Si				
Шахта им. А. Ф. Засядько, уголь из выброса Шахта "Лутугинская" Антрацит Осажденный углерод (размер фракции 30–40 нм)	фазы, FeS2, FeO, Fe2O ₃ , следы Al ₂ O ₃ , окислов и Sl A Φ , малая доля кристаллической фазы, FeS ₂ , Fe ₂ O ₃ A Φ , FeS ₂ , β -SiO ₂ , CaCO ₃ , следы Si, S, Fe ₂ O ₃ A Φ A Φ				

Таблица 1. Усредненный фазовый состав углей

Таблица 2. Средние значения структурных параметров углей

Место отбора либо марка угля	$d_{002},$ Å	$L_a, \mathrm{\AA}$	$L_c, \mathrm{\AA}$
Шахта им. А. Ф. Засядько, пл. m_3	3,730	12,7	11,7
То же, уголь из выброса	$3,\!674$	8,0	13,0
Шахта "Лутугинская"	3,884	$_{9,0}$	6,5
Антрацит	$3,\!632$	10,0	10,0
Осажденный углерод	3,578	11,0	7,0
Графит	$3,\!42$	—	_

Таблица 3. Усредненные параметры ближнего порядка образцов угля

Место отбора либо марка угля	$\overset{S_1,}{\mathbb{A}^{-1}}$	$i(S_1)$	$\overset{S_2,}{\mathbb{A}^{-1}}$	$\overset{S_3,}{\mathbb{A}^{-1}}$	$\overset{r_1,}{\mathbb{A}}$	n	$\overset{r_2,}{\mathbb{A}}$	$\stackrel{r_3,}{\mathbb{A}}$	Ароматич- ность, %
Шахта им. А.Ф. Засядько,	1,71	$3,\!04$	$3,\!14$	5,4	$1,\!43$	$1,\!52$	$2,\!55$	—	77
пл. <i>m</i> ₃ Шахта им. А. Ф. Засядько, уголь из выброса	1,71	2,1	3,11	$5,\!17$	1,43	1,5	2,57		73
Шахта "Лутугинская"	1,76	1,8	$3,\!09$	5,37	$1,\!42$	1,2	$2,\!41$	_	80
Антрацит	_	_	—	_	$1,\!43$	_	$2,\!60$	_	—
Осажденный углерод	1,76	2,1	$3,\!04$	$5,\!24$	$1,\!45$	1,4	$2,\!53$	_	—
Графит	—		_	—	$1,\!42$	—	$2,\!45$	$2,\!83$	

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2008, № 11

Рис. 2. ЯМР-спектры 13 С невыбросоопасных углей: a - c кросс-поляризацией; $\delta - b$ ез кросс-поляризации; звездочкой обозначены вращательные сателлиты от ароматических углеродов

что, в свою очередь, может привести к цепной реакции. Из анализа фазового состава углей следует, что в структуре выбросоопасных углей присутствуют окислы железа и алюминия, которые могут способствовать протеканию различного рода химических реакций.

Для образцов углей шахт "Лутугинская" и им. А. Ф. Засядько были получены ЯМР спектры на ядрах ¹Н и ¹³С. Отбор проб угля осуществлялся непосредственно в шахтах с двумя видами консервации: путем парафинирования и замораживания в жидком азоте (77° К). Перед измерениями образцы предварительно измельчались (замороженные — в жидком азоте) и упаковывались в ротор диаметром 4 мм. Частота вращения для всех образцов составляла 14 кГц. Для получения спектров на ядрах ¹³С (рис. 2, кривая *a*) использовалась кросс-поляризация с вращением под магическим углом. Контактное время в последовательности кросс-поляризации для всех образцов составляло 1 мс. Кроме того, были дополнительно получены спектры без применения кросс-поляризации, но с вращением под магическим углом (рис. 2, кривая *б*). Основное отличие в области алифатических групп для спектров, полученных с использованием кросс-поляризации и без нее, расположено в диапазоне химических сдвигов, обозначенных цифрой 1.

Для серии образцов углей обнаружена зависимость отношения интегральных интенсивностей сигналов ароматических и алифатических групп от расстояния до центра тектонического нарушения (рис. 3). Выявленная зависимость может быть обусловлена изменением абсолютного количества ароматических и алифатических групп, как в результате механохимических реакций, так и на стадии формирования (метаморфизма) угольного пласта.

Для выяснения природы обнаруженной зависимости были проведены эксперименты по кросс-поляризации с различным контактным временем для двух образцов угля. Контактное время изменялось от 35 мкс до 10 мс. Для каждого образца в таком временном интервале выполнено 25 экспериментов. Сравнивая характер огибающей кривой для ароматических групп двух образцов, можно отчетливо заметить различия в динамике их кросс-поляризации (рис. 4). Более быстрый спад интегральной интенсивности в зависимости от контактного времени для образца 1063, в сравнении с 1072, может свидетельствовать о том, что степень конденсации бензольных колец в последнем образце выше, так как при большем контактном времени происходит перенос поляризации на атомы углерода, находящиеся на

ISSN 1025-6415 Доповіді Національної академії наук України, 2008, №11

Рис. 3. Зависимость отношения интегральных интенсивностей сигналов ароматических (Ar) и алифатических (Al) групп от расстояния до тектонического нарушения (образцы №№ 1063–1073, шахта "Лутугинская")

Рис. 4. Динамика двух крайних значений кросс-поляризации ароматических (*a*) и алифатических (*б*) групп углей

большем расстоянии от протонов. Что касается поведения алифатических групп этих же образцов, то изучение динамики кросс-поляризации не выявило каких-либо существенных отличий. По-видимому, алифатические группы не вовлечены в процессы формирования кристаллических структур.

Сравнительный анализ ЯМР-спектров водорода, полученных на выбросоопасных (зона внезапного выброса на шахте им. А. Ф. Засядько) и невыбросоопасных (шахта "Лутугинская") углях, свидетельствует об их незначительных различиях. Одной из причин может быть недостаточное, для однозначных заключений о фазовых состояниях протонов водорода, количество полученной информации. Всего было исследовано 20 образцов углей, в том

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2008, № 11

числе отобранных и "законсервированных" непосредственно в шахте методом замораживания в жидком азоте.

Анализ экспериментальных данных свидетельствует, что кроме трех основных устойчивых модификаций углерода — sp³ (алмаз), sp² (графит), sp (карбин), имеются достаточно устойчивые, но диссипативные и, поэтому, переходные модификации, к которым относятся структуры с максимальным размером областей делокализации, формирующиеся из органических остатков при метаморфизме [7]. Значительная часть углерода в них находится в sp² состоянии, что обеспечивает существование полисопряженных систем и делокализацию электронов по π -системе. sp² углерод содержится в углеродных цепочках, сшитых между собой непосредственно, либо через мостики углерода в sp³ состоянии, либо через гетероатомы. Незначительное поглощение в ультрафиолетовой области дает основание полагать, что при метаморфизме и пиролизе, наряду с процессом ароматизации твердых остатков, происходит увеличение размеров областей делокализации электронов по схеме сопряжения неароматического характера.

Несмотря на то что отдельные вопросы, касающиеся атомарно-молекулярного строения угольного вещества, остаются открытыми, полученные результаты, в сочетании с результатами других исследователей, позволяют построить более точную модель процесса газообразования в угольном пласте. Такая модель нами разработана и в ближайшее время, после уточнения отдельных результатов, будет опубликована. Однако прежде, не навязывая своего видения этих явлений, хотелось бы ознакомиться с трактовкой полученных результатов другими специалистами. Основная же цель данной работы — стимулировать исследования в данной области путем привлечения представителей других областей науки, в частности, физики твердого тела, физической и физико-органической химии, сорбции, химии высокомолекулярных соединений и др.

- 1. *Малинникова О. Н.* Условия образования метана из угля при разрушении // Горн. инф.-анал. бюл. Моск. гос. горн. ун-та. 2001. № 5. С. 95–99.
- 2. Захаров А. Г. Адсорбция реальных газов и ее взаимосвязь с параметрами их состояния // Химия тверд. топлива. 2006. № 3. С. 53–67.
- Фейт Г. Н., Малинникова О. Н. Энергетическая модель развития геомеханических и физико-химических процессов при возникновении газодинамических явлений в угольных пластах // Деформирование и разрушение материалов с дефектами и динамические явления в горных породах и выработках: Матер. XVII Междунар. научн. школы. – Симферополь: Таврич. нац. ун-т, 2007. – С. 295–300.
- 4. *Фролков Г. Д., Фролков А. Г.* Механохимическая концепция выбросоопасности угольных пластов // Уголь. 2005. № 2. С. 18–21.
- 5. Крейнин Е.В., Силвестров Л.К. К вопросу о происхождении метана угольных месторождений и способах его добычи: новая информация // Там же. 2004. № 7. С. 52–55.
- 6. *Булат А. Ф., Скипочка С. И., Куцева Н. А.* О некоторых особенностях атомной структуры ископаемых углей // Геотехн. механика. – 2006. – № 61. – С. 3–11.
- 7. *Попов В. К., Русъянова Н. Д., Пластун С. Н.* Метаморфизм и пиролиз твердых остатков // Химия тверд. тела. 1984. № 2. С. 37–42.

Поступило в редакцию 03.03.2008

Институт геотехнической механики им. Н. С. Полякова НАН Украины, Днепропетровск Институт металлофизики им. Г. В. Курдюмова НАН Украины, Киев Днепропетровский национальный университет