

ЕНЕРГЕТИКА

УДК 621.318.001.2

© 2008

Член-корреспондент НАН Украины А. Е. Божко

О двухтактном электромагнитном вибростенде с полигармоническим управлением

The possibility for the reproduction of polyharmonic vibrations on a two-stroke electromagnetic vibrobench is investigated.

Двухтактные электромагнитные вибровозбудители (ДЭМВ) рассматриваются в работах [1—3]. Однако в них отсутствует решение задачи о воспроизведении ДЭМВ полигармонических вибраций. Известно [4, 5], что в эксплуатационных условиях транспортных средств вибрации представляют собой полигармонические процессы и поэтому испытания деталей, узлов и самих транспортных и других объектов на действие полигармонических вибраций позволяет более точно оценить надежность испытуемых изделий. В связи с этим важно знать поведение ЭМВ в системе испытательного стенда при подаче на его вход полигармонического сигнала

$$U(t) = \sum_{kj=1}^{n} U_{ak} \sin \omega_k t, \tag{1}$$

где $U_{ak},\,\omega_k$ — амплитуда и круговая частота k-й гармоники соответственно; t — время; n — число гармоник.

В работе [4] изложены принципы и особенности воспроизведения полигармонических вибраций однотактными электромагнитными вибраторами. В отличие от однотактных ЭМВ, ДЭМВ воспроизводят управляющие сигналы в виде вибраций подвижных частей с теми же частотами, что и задающие входные напряжения [3]. А это значит, что на ДЭМВ стенде можно более точно воспроизводить необходимые гармонические воздействия. Но ДЭМВ с одной обмоткой и последовательным диодом с ней на каждом магнитопроводе не позволяет точно воспроизводить полигармонические вибрации [2]. Возникает вопрос: как быть? На наш взгляд, имеется, кроме нескольких магнитопроводов со своими обмотками, два варианта включения в ДЭМВ полигармонического сигнала. Схемы ДЭМВ, соответствующие этим вариантам, изображены на рис. 1, 2, где Я1, Я2 — якори; М1, М2 — магнитопроводы; ПР1, ПР2 — пружины; Ш — штоки; К — корпус; δ — воздушный зазор; О11-О1n,

Рис. 1

На рис. 2 приведена только схема соединения U_1 – U_n с одной обмоткой на М1 и на М2, в схеме на рис. 1 — несколько обмоток О1 — Оn, а в схеме на рис. 2 — по одной обмотке на каждом магнитопроводе, но имеется два сумматора — СМ1 и СМ2.

Принцип функционирования электрических и магнитных цепей в этих вариантах ДЭМВ разный. В первом варианте по каждой обмотке O_k , $k = \overline{1,n}$, идет ток $i_k(t)$, который в силу закона полного тока [5]

$$i_k w_k G = \Phi_k, \tag{2}$$

где w_k — число витков обмотки O_k ; $G=\mu_0 S/(2\delta)$ — магнитная проводимость ЭМВ; μ_0 — магнитная проницаемость воздуха; S — площадь поперечного сечения магнитопровода, создает магнитный поток Φ_k . Суммарный магнитный поток $\Phi_\Sigma = \sum_{k=1}^n \Phi_k$ создает в одну полуволну $i_k(t)$ тяговое усилие $F_{1\Sigma}$, а во вторую — тяговое усилие $F_{2\Sigma}$, которые заставляют вибрировать систему якорей $\mathfrak{A}1+\mathfrak{A}2+2\mathbb{H}$, находящихся на пружинах $2\Pi p1$, $2\Pi p2$.

Во втором варианте в один полупериод $U_k,\ k=\overline{1,n},\ c$ выхода См1 на обмотку О1 поступает $\sum\limits_{k=1}^n U_k\Big|_0^{T_k/2},\$ где T — период k-й гармоники, создающей в О1 электрический ток

Рис. 2

 $\sum\limits_{k=1}^n i_k \Big|_0^{T_k/2}$, который, в свою очередь, в магнитной системе ЭМВ1 наводит магнитный поток $\Phi_{1\Sigma} = \sum\limits_{k=1}^n \Phi_{1k} \Big|_0^{T_k/2}$, обусловливающий возникновение тягового усилия $F_{1\Sigma}$, а во втором полупериоде $-\sum\limits_{k=1}^n U_k \Big|_0^{T_k/2}$ в О2 создается $\sum\limits_{k=1}^n i_k \Big|_0^{T_k/2}$, $\Phi_{2\Sigma} = \sum\limits_{k=1}^n \Phi_{2k} \Big|_0^{T_k/2}$ и $F_{2\Sigma}$. В результате действия $F_{1\Sigma}$ и $F_{2\Sigma}$ якорная система $\Pi_1 + \Pi_2 + 2\Pi$ вибрирует.

Представим математическую интерпретацию рассматриваемых вариантов ДЭМВ. В соответствии с [3] тяговое усилие ДЭМВ в каждый полупериод $U_k(t) = U_{ak} \sin \omega_k t$ при k=1 определяется по формуле

$$F_k(t) = \frac{U_{ak}^2}{4\omega_L^2 w_L^2 \mu_0 S} (1 - \cos \omega_k t). \tag{3}$$

Как видно из (3), тяговое усилие F_k имеет постоянную составляющую

$$F_{0k} = \frac{U_{ak}^2}{4\omega_k^2 w_k^2} \mu_0 S$$

и переменную

$$F_{nk} = \frac{-U_{ak}^2 \cos \omega_k t}{4\omega_k^2 w_k^2 \mu_0 S}.$$

Но так как в каждый полупериод U_k , F_k противоположны, то F_{0k1} компенсируется F_{0k2} , и этим самым происходят колебания подвижной системы ДЭМВ под действием F_{k1} и F_{k2} . Однако при полигармоническом управлении (1) ДЭМВ происходят в последнем процессы, несколько отличающиеся от ДЭМВ с моногармоническим управлением $U = U_a \sin \omega t$.

Так, в первом варианте (см. рис. 1) уравнение для тока в k-й обмотке следующее [4]:

$$i_k + \frac{w_k}{w_l \omega_k} \frac{d^2 i_k}{dt^2} = \frac{U_k}{\omega_k L_k} - \frac{1}{w_k} \sum_{\substack{l=1\\l \neq k}}^n \frac{w_l}{\omega_l} \frac{d}{dt} \left(\frac{U_l}{\omega_l L_l} - \frac{1}{w_l} \sum_{\substack{m=2, m \neq l\\l \neq k}}^n \frac{w_m}{\omega_m} \frac{di_m}{dt} \right), \qquad k = \overline{1, n}. \quad (4)$$

Интегрирование (4) осуществляется в течение каждого полупериода k, l, m-гармоник. Поэтому при использовании (2) получаем выражение тягового усилия в каждый полупериод с учетом работ [3, 5] в виде

$$F_{\text{I,II}} = \frac{1}{\mu_0 S} \left\{ \sum_{k=1}^n \frac{\Phi_{ak}^2}{2} (1 - \cos \omega_k t) + \sum_{\substack{k=1, \ k \neq l}}^{C_n^2} \Phi_{ak} \Phi_{al} \left[\cos \left(\frac{\omega_k - \omega_l}{2} \right) t - \cos \left(\frac{\omega_k + \omega_l}{2} \right) t \right] \right\}, \quad (5)$$

где $C_n^2 = n(n-1)/2$ — число сочетаний из n по два.

Как видно из (5), в $F_{\rm I}$ и $F_{\rm II}$ присутствуют постоянные составляющие

$$F_{\text{I,II}}(0) = \frac{1}{\mu_0 S} \sum_{k=1}^n \frac{\Phi_{ak}^2}{2},$$

которые направлены противоположно друг другу, компенсируя этим самым постоянное смещение подвижной части, т. е. постоянное смещение якоря $\mathfrak{A}1+\mathfrak{A}2$ $x_{\mathfrak{A}0}=0$. Кроме того, из (5) также видно, что в $F_{\rm I}$ и $F_{\rm II}$ присутствуют переменные гармонические составляющие с частотами ω_k , $(\omega_k-\omega_l)/2$, $(\omega_k+\omega_l)/2$. Число частот ω_k равно n, а других частот $C_n^2=n(n-1)/2$.

Во втором варианте (см. рис. 2), согласно [4], тяговые усилия в каждый полупериод $F_{\rm I}$ и $F_{\rm II}$ описываются тем же выражением (5) и обладают упомянутыми ранее свойствами. Исходя из того, что обычно в ЭМВ индуктивное сопротивление $x_L = \omega L$ значительно больше активного сопротивления r, амплитуда тока $I_{ak} = U_{ak}/(\omega_k w_k)$ и с учетом (2) в выражении (5) будут $\Phi_{ak} = U_{ak}/(\omega_k w_k)$, $\Phi_{al} = U_{al}/(\omega_l w_l)$. Подвижная часть ДЭМВ по рис. 1, являясь колебательной системой, описывается уравнением

$$m_{\rm H} \frac{d^2x}{dt^2} + b_{\rm H} \frac{dx}{dt} + c_{\rm H} x = F_{\rm I,II},$$
 (6)

где $m_{\rm s}$ — масса; $b_{\rm s}$, $c_{\rm s}$ — коэффициенты диссипации и упругости соответственно.

Правая часть $F_{I,II}$ в (6) обозначает то, что в один полупериод действует F_{I} , притягивая Я1 + Я2 к M1, а во второй полупериод действует F_{II} , притягивая Я1 + Я2 к M2. Этим самым получаются гармонические колебания подвижной системы совместно с испытуемым объектом в виде

$$x(t) = \sum_{k=1}^{n} x_{ak1} \cos(\omega_k t - \varphi_{xk1}) + \sum_{\substack{k=1, l=1\\k \neq l}}^{C_n^2} x_{ak2} \left\{ \cos \left[\frac{1}{2} (\omega_k - \omega_l) - \varphi_{xk2} \right] - \cos \left[\frac{1}{2} (\omega_k + \omega_l) - \varphi_{xk3} \right] \right\},$$
(7)

ISSN 1025-6415 — Доповіді Національної академії наук України, 2008, №11

Рис. 3

где x_{ak1} , x_{ak2} — амплитуды гармонических колебаний Я1+Я2; φ_{xk} — угол сдвига перемещения $x_k(t)$ относительно $F_k(t)$. В (7) величины $x_{ak1,2}$ и φ_{xk} определяются соотношениями [6]

$$x_{ak1,2} = \frac{F_{aI,II}}{m_{\pi} \sqrt{(\omega_k^2 - \omega_{0\pi}^2)^2 + \left(\frac{b_{\pi}\omega_k}{m_{\pi}}\right)^2}},$$
(8)

$$\varphi_{xk1} = \operatorname{arctg} \frac{\omega_k b_{\mathrm{g}}}{m(\omega_k^2 - \omega_{0\mathrm{g}}^2)},
\varphi_{xk2} = \operatorname{arctg} \frac{(\omega_k - \omega_l)b_{\mathrm{g}}}{m_{\mathrm{g}}[(\omega_k - \omega_l)^2 - \omega_{0\mathrm{g}}^2]},
\varphi_{xk3} = \operatorname{arctg} \frac{(\omega_k + \omega_l)b_{\mathrm{g}}}{m_{\mathrm{g}}[(\omega_k + \omega_l)^2 - \omega_{0\mathrm{g}}^2]},$$
(9)

 $\omega_{0 \mathrm{g}}^2 = \sqrt{c_{\mathrm{g}}/m_{\mathrm{g}}}$ — собственная частота колебаний подвижной системы ДЭМВ.

В электромагнитных вибростендах с целью уменьшения влияния колебаний (Я1 + Я2) на фундамент встраивают реактивную массу РМ, соединенную с (Я1 + Я2) пружинами, и так же — пружинами с корпусом. В нашем случае (см. рис. 1) корпус К может служить реактивной массой и ее можно соединить с фундаментом через дополнительные пружины (см. рис. 3), где $\Phi_{\rm H}$ — фундамент. Подвижная часть ДЭМВ с РМ представляет собой колебательную систему (КС) с двумя степенями свободы. Механическая схема этой КС изображена на рис. 4, где $m_{\rm H}$ — масса (Я1 + Я2); $m_{\rm P}$ — масса РМ; $c_{\rm H}$, $c_{\rm P}$ — коэффициенты жесткости; $b_{\rm H}$, $b_{\rm P}$ — коэффициенты диссипации; $x_{\rm H}$, $x_{\rm P}$ — перемещение $m_{\rm H}$ и $m_{\rm P}$ соответственно; F — тяговое усилие.

Уравнения движения этой КС следующие:

$$m_{\mathfrak{R}} \frac{d^{2}x_{\mathfrak{R}}}{dt^{2}} + b_{\mathfrak{R}} \frac{dx_{\mathfrak{R}}}{dt} + c_{\mathfrak{R}}x_{\mathfrak{R}} = F + b_{\mathfrak{R}} \frac{dx_{p}}{dt} + c_{\mathfrak{R}}x_{p},$$

$$m_{p} \frac{d^{2}x_{p}}{dt^{2}} + (b_{\mathfrak{R}} + b_{p}) \frac{dx_{p}}{dt} + (c_{\mathfrak{R}} + c_{p})x_{p} = b_{\mathfrak{R}} \frac{dx_{\mathfrak{R}}}{dt} + c_{\mathfrak{R}}x_{\mathfrak{R}}.$$

$$(10)$$

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2008, № 11

Рис. 4

Данная КС является линейной. Поэтому к ней может быть применен принцип суперпозиции и тогда при $F_{\rm I},\ F_{\rm II},\ F_{\rm I,II}\ {}_{(0)}$

$$x_{\mathfrak{A}} = \sum_{n=1}^{T} x_{k1} + \sum_{\substack{k=1, \ k \neq l}}^{C_n^2} x_{k2}. \tag{11}$$

Подставляя (7) в (10), получим

$$m_{\mathfrak{R}} \left(\sum_{k=1}^{n} \frac{d^{2}x_{\mathfrak{R}k1}}{dt^{2}} + \sum_{k=1, l=1}^{C_{n}^{2}} \frac{d^{2}x_{\mathfrak{R}k2}}{dt^{2}} \right) + b_{\mathfrak{R}} \left(\sum_{k=1}^{n} \frac{dx_{\mathfrak{R}k1}}{dt} + \frac{dx_{\mathfrak{R}k2}}{dt} \right) +$$

$$+ c_{\mathfrak{R}} \left(\sum_{k=1}^{n} x_{\mathfrak{R}k1} + \sum_{k=1, l=1}^{C_{n}^{2}} x_{\mathfrak{R}k2} \right) = \sum_{\mathfrak{R}=1}^{T} F_{k1} + \sum_{k=1, l=1}^{C_{n}^{2}} F_{k2} +$$

$$+ b_{\mathfrak{R}} \left(\sum_{k=1}^{n} \frac{dx_{\mathfrak{R}k1}}{dt} + \sum_{k=1, l=1}^{C_{n}^{2}} \frac{dx_{\mathfrak{R}k2}}{dt} \right) + c_{\mathfrak{R}} \left(\sum_{k=1}^{n} x_{\mathfrak{R}k1} + \sum_{k=1, l=1}^{C_{n}^{2}} x_{\mathfrak{R}k2} \right),$$

$$m_{\mathfrak{R}} \left(\sum_{k=1}^{n} \frac{d^{2}x_{\mathfrak{R}k1}}{dt^{2}} + \sum_{k=1, l=1}^{C_{n}^{2}} \frac{d^{2}x_{\mathfrak{R}k2}}{dt^{2}} \right) + (b_{\mathfrak{R}} + b_{\mathfrak{R}}) \left(\sum_{k=1}^{n} \frac{dx_{\mathfrak{R}k1}}{dt} + \frac{dx_{\mathfrak{R}k2}}{dt} \right) +$$

$$+ (c_{\mathfrak{R}} + c_{\mathfrak{R}}) \left(\sum_{k=1}^{n} x_{\mathfrak{R}k1} + \sum_{k=1, l=1}^{C_{n}^{2}} x_{\mathfrak{R}k2} \right) =$$

$$= b_{\mathfrak{R}} \left(\sum_{k=1}^{n} \frac{dx_{\mathfrak{R}k1}}{dt} + \sum_{k=1, l=1}^{C_{n}^{2}} \frac{dx_{\mathfrak{R}k2}}{dt} \right) + c_{\mathfrak{R}} \left(\sum_{k=1}^{n} x_{\mathfrak{R}k1} + \sum_{k=1, l=1}^{C_{n}^{2}} x_{\mathfrak{R}k2} \right).$$

$$= b_{\mathfrak{R}} \left(\sum_{k=1}^{n} \frac{dx_{\mathfrak{R}k1}}{dt} + \sum_{k=1, l=1}^{C_{n}^{2}} \frac{dx_{\mathfrak{R}k2}}{dt} \right) + c_{\mathfrak{R}} \left(\sum_{k=1}^{n} x_{\mathfrak{R}k1} + \sum_{k=1, l=1}^{C_{n}^{2}} x_{\mathfrak{R}k2} \right).$$

$$= b_{\mathfrak{R}} \left(\sum_{k=1}^{n} \frac{dx_{\mathfrak{R}k1}}{dt} + \sum_{k=1, l=1}^{n} \frac{dx_{\mathfrak{R}k2}}{dt} \right) + c_{\mathfrak{R}} \left(\sum_{k=1}^{n} x_{\mathfrak{R}k1} + \sum_{k=1, l=1}^{n} x_{\mathfrak{R}k2} \right).$$

Здесь

$$x_{\pi k1}(t) = x_{\pi k1} \cos(\omega_k t - \varphi_{x\pi k1}),$$

$$x_{\pi k2}(t) = x_{\pi k2} \{\cos[(\omega_k - \omega_l)t - \varphi_{x\pi k2}] - \cos[(\omega_k + \omega_l)t - \varphi_{x\pi k2}]\},$$

$$x_{pk1}(t) = x_{\pi k1} \cos(\omega_k t - \varphi_{pk1}),$$

$$x_{pk2}(t) = x_{\pi k2} \{\cos[(\omega_k - \omega_l)t - \varphi_{pk2}] - \cos[(\omega_k + \omega_l)t - \varphi_{pk2}]\},$$

где амплитуды $x_{agk1,2}$, $x_{apk1,2}$ и углы φ_{xki} , x_{pki} , i=1,2, могут определяться по формулам (8), (9). Причем в этих формулах для амплитуд x_{agki} , x_{apki} , i=1,2, должны включаться соответствующие амплитуды воздействий, представленных в (12), а для x_{apki} , i=1,2, в знаменателе должны быть $b_{\rm g}+b_p$. Также выражение $b_{\rm g}+b_p$ должно фигурировать в формуле, соответствующей (9) для φ_{pki} , $i=\overline{1,2}$.

Как было отмечено ранее, возможно проектирование ДЭМВ с несколькими электромагнитами (ЭМ), действующими на один якорь (Я). В этом случае, согласно работам [3, 4], тяговое усилие определяется суммой индивидуальных тяговых усилий в виде

$$F_k = \frac{1}{2\mu_0 S_k} \sum_{k=1}^n \left(\frac{U_{ak}}{\omega_k w_k}\right)^2 [1 - \cos(\omega_k t - \varphi_k)]. \tag{13}$$

Из (13) видно, что в тяговом усилии якоря, а также далее в его колебаниях присутствуют только заданные гармоники.

Данное конструктивное решение в проектировании ДЭМВ более громоздкое и дорогостоящее по сравнению с представленными, но жизнеспособно. Рассмотренные теоретические исследования прошли экспериментальную проверку в Институте проблем машиностроения им. А. Н. Подгорного НАН Украины и полностью были подтверждены правильностью решения.

- 1. *Вибрации* в технике: В 4-х т. / Под ред. Э. Э. Лавенделла. Москва: Машиностроение, 1981. Т. 4. 510 с.
- 2. *Божко А. Е., Мягкохлеб К. Б.* О некоторых особенностях двухтактных электромагнитных вибровозбудителей // Доп. НАН України. − 2005. − № 5. − С. 76–80.
- 3. *Боэкко А. Е.*, *Личкатый Е. А.*, *Мягкохлеб К. Б.* О двухтактном электромагнитном вибровозбудителе // Там само. -2006. -№ 5. С. 90–93.
- 4. *Боэско А. Е.* Принципы и особенности воспроизведения полигармонических вибраций электромагнитными вибраторами // Пробл. машиностроения. -2004. -7, № 2. -C. 32–38.
- 5. $Бессонов \ \mathcal{J}.\ A.$ Теоретические основы электротехники. Москва: Высш. шк., 1978. 528 с.
- 6. Божско А. Е., Голуб Н. М. Динамико-энергетические связи колебательных систем. Киев: Наук. думка, 1980. – 188 с.

Институт проблем машиностроения им. А. Н. Подгорного НАН Украины, Харьков Поступило в редакцию 14.08.2007