Ю.А. Фомин, М.О. Витык, Ю.Н. Демихов, Е.Е. Лазаренко

Криометрические и термометрические исследования флюидных включений в кварце золоторудного месторождения Балка Широкая

(Представлено академиком НАН Украины Е.А. Кулишом)

The investigation of fluid inclusions for the gold deposit shows the evolution of the regressive mineral-forming system in the completed geological cycle. At the beginning of the cycle, the metamorphism destroyed inclusions of the volcanic stage and formed a new system of high-temperature inclusions rich in CO_2 and CH_4 . The next tectonic-metasomatic activity transformed the system to the epithermal one revealed by rich liquid inclusions with gas and, sometimes, solid phases.

В настоящем сообщении отражены результаты исследования флюидных включений в кварце золоторудного месторождения Балка Широкая [1, 2], которое расположено в северо-восточной краевой части Чертомлыкской зеленокаменной структуры архея Украинского щита. Проявления приурочены к метабазит-кварцитосланцевой пачке конкской серии, обрамляющей с востока Чкаловский гранитоидный массив. В составе пачки метабазиты чередуются с горизонтами железистых кварцитов и кварцитосланцев, хлоритовых парасланцев, дацитовых метатуфов, местами тальк-карбонатных сланцев, развитых по ультрабазитам. Породы метаморфизованы в условиях зеленосланцевой (до эпидот-амфиболитовой) фации, тектонически нарушены и метасоматически изменены; среди тектоно-метасоматических изменений установлены как дометаморфические, вулканогенного, так и постметаморфические, активизационного этапов проявления. Первые представлены пропилитами и связанными с ними кварц-карбонат-слюдистыми метасоматитами с Аu-содержащей сульфидной минерализацией, вторые — золоторудными лиственито-березитами [3].

Серия образцов кварца, отобранных из Au–Fe и Au–Ag–Pb–Zn руд месторождения (табл. 1), исследована в лаборатории Государственного университета штата Виржиния, США (М.О. Витык). Ниже приведена краткая характеристика исследованных фрагментов.

1. Разрез скважин 2882–2843, характеризующий Au–Fe тип руд, представлен четырмя образцами в интервале глубин от 141,0 до 388,7 м. Руды связаны с тектонической зоной в висячем боку крутозалегающего горизонта магнетит-хлорит-карбонатных (сидероплезит, сидерит) кварцитов на контакте с метабазитами; породы преобразованы в березиты кварц-карбонат-мусковит-биотитового + сульфиды состава с внешней хлоритовой оторочкой [1]. Железистые кварциты тектонически нарушены, окварцованы и сульфидизированы (образцы 2882/141,0¹и 2843/388,7), местами превращены в брекчии на кварц-карбонат-сульфидном цементе (образцы 2882/262,5 и 2882/269,7). В образце 2882/141,0 проявлен кварцево-карбонатный прожилок, содержащий золотоносный пирит с включениями арсенопирита, пирротина, халькопирита, сфалерита, Zn–Fe тетраэдрита; образец 2843/388,7 относится к безрудному участку окварцевания и пиритизации вблизи рудных кварцитов. Два

¹Здесь и далее глубина приведена в метрах

других образца представляют собой рудные брекчии кварцитов с кварцево-карбонатным цементом + магнетит, пирит, пирротин, халькопирит, сфалерит, тетраэдрит и самородное золото.

2. Скважина 3261 вскрыла Au-Fe минерализацию в пределах описанной выше рудной зоны и представлена пятью образцами из узкого интервала глубин от 265,2 до 279,6 м. Разрез здесь сложен деформированными и измененными кварцито-сланцами и железистыми кварцитами магнетит-хлорит-карбонатного состава, расположенными среди березитизированных метабазитов. Интенсивность катаклаза нарастает в направлении основного тектонического шва (270,0 м), проявленного будинажем, окварцеванием и сульфидизацией (пирит-мельниковит, пирротин, халькопирит). Образцы характеризуют различную степень деформаций и минералообразования: 3261/265,2 — катаклазированный кварцитосланец безрудный с гнездами пирита, пирротина и жильным кварцем; 3261/268,0 — будина безрудного кварца, рекристаллизованного с сидеритом и гнездами пирротина и халькопирита среди железистых кварцитов; 3261/268,3 — рудный катаклазит железистого кварцита с жильным кварцем + карбонат, магнетит, пирит, пирротин, халькопирит; 3261/278,6 — кварцевое ядро, в котором (наряду с гранулированным кварцем) присутствует кварц жильный (рудный) с мусковитом, карбонатом, Au- и Ag-содержащим магнетитом, пиритом в зальбандах и карбонатом + пирит, галенит, сфалерит в участках дробления; 3261/279,6 — брекчия квар

N⁰	Номер образца	Содержание	Существенно газовые, $^\circ\mathrm{C}$		Существенно жидкие	
π/π	/ глубина, м	Au, Γ/Τ	<i>T_m</i> (эвтектика)	T_h	T_m (льда)	T_h
1	2882/141,0	0,1-1,0	-56, 6 56, 4	33, 0 33, 5	_	100
2	2882/262,5	24,0	-57,256,4	-9,331,4	—	581; 576;
						$560^*; 326$
3	2882/269,7	9,2	-67,757,5	-29,37,0	—	—
4	2843/388,7	$0,\!01\!-\!0,\!1$	-57,957,6	-2, 2 2, 1	—	376; 373;
						310; 260
5	3261/265,2	0,01-0,03	-55,755,1;	-5,35,0;	-0,20,1	284;178;140
			-57,456,0	1,72,5		
6	3261/268,0	0,03-0,1	-57, 3 56, 1;	-14, 2 4, 8;	_	—
			-56,956,7	15, 616, 0		
7	$3261/268,\!3$	0,1-0,3;	-58, 6 56, 2;	$-10,0\ldots -0,9;$	$-0,\!6$	280
		до 4,0	-56,856,7	$13,2 \ldots 13,8$		
8	$3261/278,\!6$	$1,\!0\!-\!3,\!0$	-60,756,1;	$-22,6\ldots -13,6;$	-0,2;	320; 220; 200
			-56,556,2	6, 3 23, 2	-10, 0 9, 0	
9	$3261/279,\!6$	$0,\!01\!-\!0,\!03$	-57,056,7	12,012,6	—	265
10	$3264/240,\!3$	$0,\!01\!-\!0,\!03$	-57, 6 57, 3	-6,46,2	-3,61,4;	300; 290; 234;
					-2,4	190; 130
11	$3264/211,\!2$	$0,\!18\!-\!0,\!52$	$-57,\!6.\ldots-55,\!9$	-2,219,5	—	300; 290;
						269; 218
12	$3264/195,\!2$	0,04-0,14	-56, 6 55, 3	0, 2 28, 2	—	360; 348; 300
13	$3264/185,\!3$	$0,\!16\!-\!3,\!0$	-56, 6 56, 1;	-15,313,3;	—	412; 410; 390;
			-56, 6 56, 4	13, 814, 6		314; 280
14	3264/158,0	0,06-0,12;	-56, 6 56, 2	11, 628, 8	-4,0	220; 208; 150
		до 1,29				
15	323/241,3	8,0	-56, 6 56, 1	14, 315, 1		

Таблица 1. Флюидные включения в кварце золоторудных участков Балки Широкой

Примечание. Содержание Au в породах и рудах приведено по материалам ГГП "Кировгеология" В. Н. Петько, А. И. Корниенко, а также ЦНИГРИ (Москва) Л. М. Ганжи (обр. 2882/262,5 и 2882/269,7). * Включения с температурой гомогенизации 581–560 °С содержат твердую фазу, температура плавления которой 361–350 °С.

ISSN 1025-6415 Доповіді Національної академії наук України, 2008, №3

123

цитосланецев безрудная, с кварцем, гранулированным в обломках и жильным + карбонат, пирит, пирротин, халькопирит в цементе.

3. Разрез скважин 3238–3264 вскрывает зону Au-Ag-Pb-Zn руд, которые представленных шестью образцами, отобранными с глубины 158,0–241,0 м. В составе разреза здесь, как и в двух других фрагментах, преобладают хлорит-карбонатные с магнетитом кварцитосланцы + два горизонта железистых кварцитов, зажатые между метабазитами. Среди метабазитов в висячем боку зоны отмечен горизонт метатуфов дацитового состава, превращенных в кварц-альбит-хлорит-слюдистые сланцы [2]. Породы эдукта испытали неоднократные тектоническое (катаклаз, дробление) и метасоматическое изменения. Рудовмещающим является морфологически сложный ореол березитов кварц-карбонат-мусковит-биотитового состава + поздний хлорит, сфен, турмалин, шпинель и рудная минерализация. Изучены три рудные зоны, а также безрудные березиты, развитые по ортосланцам лежачего бока. Последние охарактеризованы образцом 3264/240,3 жильного кварца с карбонатом, турмалином и гнездами пирита в зональных светлослюдистых метасоматитах, содержащих альбит, хлорит и гнезда магнетита + ильменит. Зоны лежачего бока и центральная представлены образцами 3264/211,2 и 3264/185,3 дробленых и минерализованных (рудных) кварцитосланцев. Обособления рекристаллизованного, активного кварца перемежаются с березитами, содержащими турмалин, сфен, ильменит, шпинель; слюды (мусковит и биотит) на контакте с кварцем также перекристаллизованы. В составе рудных шлир установлены пирит-марказит, пирит метакристаллический, сфалерит, халькопирит, галенит, фрейбергит, электрум. Между ними взят образец 3264/195,2, в общем аналогичный, но менее измененный, кварц дроблен и залечен карбонатом + пирит, арсенопирит, галенит. Зона висячего бока исследована на двух уровнях образцами 3264/158,0 и 3238/241,3. Если в верхнем ее сечении она слаборудна, то во втором сечении — наиболее продуктивна: по данным ГГП "Кировгеология", кроме Au (8 г/т), содержит Ag (434 г/т), Pb (2,9%), Zn (2,7%). Состав эдукта здесь также кварцитосланцевый, образцы представлены дробленым и перекристаллизованным кварцем, березиты имеют аналогичный состав. Но в образце 3264/158,0 рудные минералы представлены гнездами пирита-марказита и редкими включениями метакристаллического пирита, арсенопирита, пирротина, халькопирита, сфалерита, тогда как в образце 3238/241.3 они проявлены наиболее полно. Кроме названных сульфидов, обнаружены галенит, сульфосоли Cu, Pb, Sb, Ag (Ag тетраэдрит, фрейбергит, буланжерит, фрейеслебенит), самородное Au (высоко- и низкопробное), электрум.

Все изученные фрагменты сходны между собой по геологическим особенностям, в том числе по составу эдукта, морфологии и строению рудных зон, типу околорудных изменений (березитизации с внутренним окварцеванием), а также проявлением во всех образцах кварца нескольких (минимум двух) генетических типов (генераций). Во-первых, это метаморфогенный кварц железистых кварцитов и кварцитосланцев, присутствующий в виде полос различной ширины, отчетливо гранулированный, участками структурированный сочетанием грануляции, полосчатости и несовпадающей с ней сланцеватости, и, во-вторых, кварц регенерированный, гидротермально-метасоматический, вплоть до типично жильных модификаций, т. е. генетически связанный с березитами.

Предполагается присутствие в образцах также и дометаморфического кварца, в том числе и жильного, который, имея первично вулканогенную природу, испытал метаморфическое преобразование и по своим структурным характеристикам (будинаж, сланцеватость, грануляция, насыщенность минеральными включениями) аналогичен первому.

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2008, Nº 3

124

Система флюидных включений, сформировавшаяся в этап собственно вулканогенного (дометаморфического) рудообразования, в условиях регионального метаморфизма даже низких фаций, очевидно, была разрушена. В кварце внешних зон ореола золотополиметаллических руд, где сохранились следы дорудных хрупких деформаций, обнаружены включения, разгерметизированные сухими трещинами [2]. В центральной части ореола, в рудных березитах, нарушенные вакуоли не установлены, т. е. изученные включения могут быть отнесены к более поздним этапам — регионального метаморфизма либо постметаморфической активизации [3], отражая формирование единой регрессивной системы.

Исследованные флюидные включения отчетливо разделяются на две группы, которые обогащены газом и жидкостью (табл. 1). В двенадцати образцах выявлены и те, и другие, с большой долей уверенности можно предположить присутствие их и в остальных образцах. Так, для рудных интервалов 259,3–271,3 м — скважина 2882 и 240,0–241,3 м — скважина 3238, куда относятся образцы 2, 3, 15, включения с преимущественно жидким наполнением весьма характерны [1, 2].

Существенно газовые включения. Как показано нами ранее [3] и подтверждено настоящим исследованием, именно участки структурного преобразования кварца, обусловленного процессами метаморфизма, проявляются обилием мелких (1–3 мкм) флюидных включений, которые обычно тяготеют к внутригранулярным микротрещинам и имеют в основном газовое наполнение. Криометрические исследования таких включений, при всех известных ограничениях метода, позволяют выявить две объективные температурные характеристики: температуру плавления содержимого включений (T_m) и температуру гомогенизации включений (T_h), соответствующие эвтектике газовой смеси (твердое состояние жидкость) и критической температуре CO₂ (жидкость — газ) или температуре гомогенизации [4].

Оттаивание вещества этих включений происходит в температурном интервале -67,7...-55,1 °C. Для большинства из них (около 63%) данный показатель T_m составляет -57...-56 °C, т. е. близок к температуре эвтектики для чистого CO₂ (-56,6 °C). Часть включений (30%) обнаруживает отклонение в сторону понижения температуры (< -57 °C), для трех (рудных) образцов (3, 7, 8) это отклонение значительное, до -67,7...-58,6 °C. В 7% случаев установлено повышение Tm, достигающее максимальных значений -55,7...-55,1 °C в безрудных образцах 5 и 12, что может быть связано с ограничениями (точностью) метода. Будучи достаточно чутким индикатором качественного состава флюидов, температура эвтектики, с одной стороны, указывает на существенно углекислотный состав включений, а с другой — свидетельствуют о более сложном составе газа, в частности, о наличии во включениях метана и, возможно, других составляющих. Так, по данным H. E. C. Swanenberg [4], температура окончательного таяния газовой смеси CO₂–CH₄ от -57,0 до -62,5 °C соответствует объемному составу (X) CH₄ до 0,3.

Температура гомогенизации обогащенных газом включений варьирует от -29,3 до 33,5 °C. Часть этих включений (14%), установленная в образцах 1, 2, 12, 14 с различной золотоносностью, является собственно углекислотной: T_h (27,4 ... 33,5 °C) близка к критической точке CO₂ (31 °C); T_m (-56,6...-56,3 °C) соответствует чистой CO₂. Превышение Th критического значения также может быть обусловлено точностью метода. Большинство же включений этой группы гомогенизируется при температуре ниже критической, что подтверждает участие в их составе (наряду с CO₂) метана и других компонентов. Из диаграммы фазового соотношения системы CO₂–CH₄ [4] следует, что добавление CH₄ систематически снижает температуру жидкогазового равновесия по сравнению с критической

ISSN 1025-6415 Доповіді Національної академії наук України, 2008, № 3

точкой CO₂ в одинарной углекислотной системе. Сходное воздействие, хотя и в меньшей степени, на такие фазовые равновесия может оказывать и примесь N₂.

Ранее [1, 2] методом газовой хроматографии в этих образованиях в составе газов установлено как преобладание CO₂ (82–99%), так и наличие CO, CH₄ и C₂H₆, N₂, H₂S, а также в отдельных пробах C₃H₈ и C₄H₁₀ (изобутана и нормального бутана). Поэтому представляется вполне реальной продемонстрированная Ю. П. Мельником [5] возможность формирования именно в результате метаморфизма карбонатсодержащих железистых пород сложной газовой смеси (H₂O, CO₂, CO, H₂, CH₄), равновесной с ассоциацией сидерит-магнетит.

Существенно жидкие включения обнаружены в разных модификациях кварца и исследовались путем замораживания и нагревания с определением температуры плавления льда (T_m) и гомогенизации (T_h) соответственно.

По данным Е. Е. Лазаренко [1–3], в гранулированном кварце могут формироваться сложные, трехфазовые включения размером 5–7 мкм, содержащие, кроме газа и жидкости, твердую фазу — кристаллики соли. Минералы-узники, представленные, по-видимому, сильвином и галитом, растворяются при ~ 145–80 °C. Кроме того, на границе с водно-солевой фазой, в них может присутствовать жидкость темно-бурого цвета, вероятно, углеводородного состава; такие включения выдерживают нагрев до 450 °C без гомогенизации [1]. В настоящей коллекции трехфазовые включения обнаружены в обломках кварцитов образца 2; T_h их (581–560 °C) соответствует объективно проявленной в пределах изученных участков зеленосланцевой (эпидот-амфиболитовой) фации метаморфизма; T_m твердой фазы составляет 361–350 °C. Криометрическое изучение этих включений не проводилось.

В основном газово-жидкие (преимущественно двухфазовые) включения связаны с участками регенерации кварца, которые проявляются укрупнением зерен, очищением их от минеральных примесей и активными, реакционными границами, хотя на ранних ступенях гидротермально-метасоматического процесса разные генерации минерала иногда трудно различать.

Температура плавления льда для этих включений меняется от близкой к 0 (-0,1 ... -0,6 °C) — в сторону снижения (-1,4 ... -4,0 °C) до -9,0 ... -10,0 °C, что связано с возрастанием концентрации солей во флюиде. Корреляции золотоносности образцов с T_m и T_h (T_h жидких включений, интервал 320–130 °C) не обнаружено.

Увязывая T_h в общем диапазоне от 581 до 100 °C с особенностями состава и строения изученных образцов, получаем последовательную цепь геологических событий. Остывание системы до 412–390 °C, т. е. до критической точки воды, сопровождается преобразованием этой системы в типично гидротермальную, иначе говоря, при такой температуре минералообразующая система получает некий импульс и начинает функционировать как регрессивно-гидротермальная.

В диапазоне температур от 376 до 140 °C флюидные включения существенно жидкие; кварц испытал перекристаллизацию (регенерацию) вплоть до образования типичных гидротермально-метасоматических жильных зон с околожильной березитизацией боковых пород, унаследовавшей состав синвулканических метасоматических продуктов. Полученные данные (см. табл. 1) позволяют согласиться с Б. И. Омельяненко [6] в том, что интервал температур 330–250 °C является наиболее реальным в образовании березитов.

Собственно рудный процесс начинается с отложения ассоциации кварц + Аu-пирит + арсенопирит, по-видимому, при 280–260 °C и ниже [1, 2]. Температура, рассчитанная по изотопно-кислородным отношениям кварц — вода в образцах фрагментов 1 и 3, дает более низкие, хотя и вполне сопоставимые, значения: от 255–220 °C — во внешних, безруд-

ных частях зон до 230–200 °C — в рудных [2]. Дальнейшее снижение температуры (до 220–150 °C), вероятно, совпало по времени с внутриминерализационными тектоническими подвижками, которые выразились в дроблении кварца с последующим отложением (или переотложением) карбонатов, сульфидно-сульфосольных ассоциаций, галенита, электрума и самородного золота, т.е. основной массы рудного вещества.

Согласно ранее опубликованным данным [2], водно-солевые включения этого этапа соответствуют составу растворов, близкому к CaCl₂—NaCl—H₂O, при концентрации последних 11,5%. Кроме жидкости и газа, они могут содержать твердое битумное вещество с начальной температурой плавления около 220 °C. Отмечаются также включения жидкого CO₂, количество которых (как и их плотность) возрастает в рудных образованиях. Этим процесс эволюции флюидной системы, по-видимому, завершается. Включения с температурой гомогенизации 140–100 °C, обнаруженные в кварце боковых, безрудных участков зон, скорей всего, консервируют остывшие отработанные растворы.

Таким образом, изменение фазового состава включений, в том числе водно-солевой, углекислотной и углеводородной составляющих, отражает эволюцию, естественную для регрессивной системы (газ — жидкость — твердое вещество) в рамках законченного геологического цикла. Начало цикла связано с региональным метаморфизмом: разогрев коры, разрушение вулканогенной флюидной системы и формирование новой с включениями, обогащенными газом, или трехфазными с температурой гомогенизации 581–560 °C. В условиях тектоно-метасоматической активизации эта система трансформируется в эпитермальную, проявленную существенно жидкими (иногда с твердой фазой) включениями (412–100 °C). Важным результатом криометрических исследований явилось установление в составе минералообразующего флюида золоторудного месторождения больших концентраций CO_2 и наличия углеводородов.

- 1. Фомин Ю. А., Савченко Л. Т., Демихов Ю. Н. и др. Золото-джеспилитовое оруденение Балки Широкая (Среднее Приднепровье) // Геол. журн. – 1994. – № 3. – С. 84–95.
- 2. Фомин Ю.А., Демихов Ю.Н., Шибецкий Ю.А. и др. Золото-полиметалическое оруденение Балки Широкой (Среднее Приднепровье) // Минер. журн. 1996. **18**, № 1. С. 74–87.
- Фомин Ю. А., Демихов Ю. Н., Лазаренко Е. Е., Блажко В. И. Два типа рудной минерализации золото-полиметаллического рудопроявления Балки Широкой (Среднее Приднепровье) // Доп. НАН України. – 2007. – № 10. – С. 118–123.
- Swanenberg H. E. C. Phase equilibria in carbonic systems and their application to freezing studies of fluid inclusions // Contrib. to Mineralogy and Petrology. – 1979. – 68. – P. 303–306.
- 5. *Мельник Ю. П.* Генезис докембрийских полосчатых железистых формаций. Киев: Наук. думка, 1986. 236 с.
- 6. Омельяненко Б. И. Околорудные гидротермальные изменения пород. Москва: Недра, 1978. 215 с.

Институт геохимии окружающей среды НАН Украины и МЧС Украины, Киев Вирджинский технологический университет, Блекбург, США Поступило в редакцию 05.07.2007

127