© 2008

Т.А. Мельник, Г.А. Чечкин

Асимптотический анализ краевых задач в густых каскадных соединениях

(Представлено членом-корреспондентом НАН Украины М. Л. Горбачуком)

We consider the homogenization problem in a singularly perturbed two-dimensional domain of a new type, which consists of a body of junction and a great number of alternating thin rods belonging to two classes. Under the assumption that one class consists of rods of finite length and the other consists of rods of small length and inhomogeneous Fourier boundary conditions (boundary conditions of the third type) with perturbed coefficients are set on the boundaries of thin rods, we prove the homogenization theorems and the convergence of the energy integrals.

В настоящей работе анонсируются результаты усреднения для одной эллиптической краевой задачи в новом типе сингулярно возмущенных областей (густые каскадные соединения). Предполагается, что модельное плоское каскадное соединение состоит из тела соединения и двух классов присоединенных тонких стержней (рис. 1). Первый класс состоит из тонких стержней конечной длины, а второй — из тонких стержней малой длины. Кроме того, стержни из разных классов периодически чередуются и имеется большой перепад длин стержней при переходе из одного класса в другой. Такие густые каскадные соединения являются прототипами многих физических и биологических систем, например, строение стенки желудка и кишечника с разными уровнями поглощения полезных веществ на разных участках тканей. Области рассматриваемого типа являются симбиозом областей с густым соединением стержней конечной длины (обзор результатов по этой тематике см. в [1–3]) и областей с быстро осциллирующей границей, краевые задачи в которых рассматривались в работах [4–8] (см. также цитируемую литературу).

1. Постановка задачи. Пусть *a*, *b*₁, *b*₂, *h*₁, *h*₂ — положительные действительные числа такие, что

$$0 < b_1 < b_2 < \frac{1}{2}, \qquad 0 < b_1 - \frac{h_1}{2}, \qquad b_1 + \frac{h_1}{2} < b_2 - \frac{h_1}{2}, \qquad b_2 + \frac{h_1}{2} < \frac{1}{2} - \frac{h_2}{2}.$$

Эти неравенства означают, что интервалы

$$\begin{pmatrix} b_1 - \frac{h_1}{2}, b_1 + \frac{h_1}{2} \end{pmatrix}, \qquad \begin{pmatrix} b_2 - \frac{h_1}{2}, b_2 + \frac{h_1}{2} \end{pmatrix}, \qquad \begin{pmatrix} \frac{1 - h_2}{2}, \frac{1 + h_2}{2} \end{pmatrix}, \\ \begin{pmatrix} 1 - b_2 - \frac{h_1}{2}, 1 - b_2 + \frac{h_1}{2} \end{pmatrix}, \qquad \begin{pmatrix} 1 - b_1 - \frac{h_1}{2}, 1 - b_1 + \frac{h_1}{2} \end{pmatrix}$$

содержатся в (0,1) и не пересекаются. Разобьем отрезок $I_0 := [0,a]$ на N ровных сегментов $[\varepsilon j, \varepsilon (j+1)], j = 0, \ldots, N-1$. Здесь N — большое натуральное число, поэтому величина $\varepsilon = a/N$ — малый дискретный параметр.

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2008, № 9

Рис. 1. Плоское модельное густое каскадное соединение Ω_{ε}

Модельное густое каскадное соединение Ω_{ε} (см. рис. 1) состоит из тела соединения $\Omega_0 = \{x \in \mathbb{R}^2 : 0 < x_1 < a, 0 < x_2 < \gamma(x_1)\},$ где $\gamma \in C^1([0, a]), \min_{[0, a]} \gamma > 0,$ и большого количества тонких стержней

$$G_{j}^{(1)}(d_{k},\varepsilon) = \left\{ x \in \mathbb{R}^{2} \colon |x_{1} - \varepsilon(j + d_{k})| < \frac{\varepsilon h_{1}}{2}, \ x_{2} \in (-\varepsilon l_{1}, 0] \right\}, \qquad k = 1, \dots, 4,$$
$$G_{j}^{(2)}(\varepsilon) = \left\{ x \in \mathbb{R}^{2} \colon \left| x_{1} - \varepsilon \left(j + \frac{1}{2} \right) \right| < \frac{\varepsilon h_{2}}{2}, \ x_{2} \in (-l_{2}, 0] \right\}, \qquad j = 0, 1, \dots, N - 1$$

где $d_1 = b_1, d_2 = b_2, d_3 = 1 - b_2, d_4 = 1 - b_1$. Итак $\Omega_{\varepsilon} = \Omega_0 \bigcup G_{\varepsilon}^{(1)} \bigcup G_{\varepsilon}^{(2)}$, где

$$G_{\varepsilon}^{(1)} = \bigcup_{j=0}^{N-1} \left(\bigcup_{k=1}^{4} G_j^{(1)}(d_k, \varepsilon) \right), \qquad G_{\varepsilon}^{(2)} = \bigcup_{j=0}^{N-1} G_j^{(2)}(\varepsilon).$$

В Ω_{ε} рассмотрим следующую краевую задачу:

$$-\Delta_{x}u_{\varepsilon}(x) = f_{\varepsilon}(x), \qquad x \in \Omega_{\varepsilon};$$

$$\partial_{\nu}u_{\varepsilon}(x) + \varepsilon^{\tau}k_{1}u_{\varepsilon}(x) = p_{\varepsilon}(x), \qquad x \in \Upsilon_{\varepsilon}^{(1)};$$

$$\partial_{\nu}u_{\varepsilon}(x) + \varepsilon^{\mu}k_{2}u_{\varepsilon}(x) = \varepsilon^{\beta}g_{\varepsilon}(x), \qquad x \in \Upsilon_{\varepsilon}^{(2)};$$

$$u_{\varepsilon}(x) = 0, \qquad x \in \Gamma_{1};$$

$$\partial_{\nu}u_{\varepsilon}(x) = 0, \qquad x \in \Gamma_{\varepsilon}.$$

(1)

Здесь $\partial_{\nu} = \partial/\partial \nu$ — производная по внешней нормали; постоянные k_1 и k_2 положительные; параметры $\beta \ge 1, \mu, \tau \in \mathbb{R}; \Upsilon_{\varepsilon}^{(i)}$ — объединение боковых сторон и нижних оснований стержней из *i*-класса, $i = 1, 2; \Gamma_1 = \{x: x_2 = \gamma(x_1), x_1 \in [0, a]\}; \Gamma_{\varepsilon} = \partial\Omega_{\varepsilon} \setminus (\Upsilon_{\varepsilon}^{(1)} \bigcup \Upsilon_{\varepsilon}^{(2)} \bigcup \Gamma_1)$. Относительно заданных функций будем предполагать, что выполняются следующие условия. Не ограничивая общности, считаем, что $f_{\varepsilon} \in L^2(\Omega_2)$, где $\overline{\Omega}_2 = \overline{\Omega}_0 \bigcup \overline{D}_2$, $D_2 = (0, a) \times$ $\times (-l_2, 0)$ — прямоугольник, который заполняется тонкими стержнями из второго класса,

ISSN 1025-6415 Доповіді Національної академії наук України, 2008, №9

и $f_{\varepsilon} \xrightarrow{s} f_0$ в $L^2(\Omega_2)$ при $\varepsilon \to 0$. Функция $g_{\varepsilon} \in H^1(D_2)$ и $g_{\varepsilon} \xrightarrow{w} g_0$ в $H^1(D_2)$ при $\varepsilon \to 0$. На функцию $p_{\varepsilon} \in H^1(D_{\varepsilon}^{(1)}), D_{\varepsilon}^{(1)} = (0, a) \times (-\varepsilon l_1, 0)$, накладываются следующие условия:

$$\|p_{\varepsilon}\|_{H^{1}(D_{\varepsilon}^{(1)})} \leqslant c\sqrt{\varepsilon}, \qquad p_{\varepsilon}(\cdot, 0) \xrightarrow{s} p_{0} \qquad \mathbf{B} \qquad L^{2}(0, a) \qquad \text{при} \qquad \varepsilon \to 0.$$
(2)

Замечание 1. Здесь и далее все константы c_i, C_i , которые появляются в неравенствах, не зависят от ε .

Для каждого фиксированного значения параметра $\varepsilon > 0$ существует единственное обобщенное решение задачи (1) — функция $u_{\varepsilon} \in H^1(\Omega_{\varepsilon}, \Gamma_1) = \{v \in H^1(\Omega_{\varepsilon}) : v|_{\Gamma_1} = 0\}$, которая удовлетворяет следующему интегральному тождеству

$$\int_{\Omega_{\varepsilon}} \nabla_{x} u_{\varepsilon} \cdot \nabla_{x} \psi \, dx + \varepsilon^{\tau} k_{1} \int_{\Upsilon_{\varepsilon}^{(1)}} u_{\varepsilon} \psi \, d\sigma_{x} + \varepsilon^{\mu} k_{2} \int_{\Upsilon_{\varepsilon}^{(2)}} u_{\varepsilon} \psi \, d\sigma_{x} =
= \int_{\Omega_{\varepsilon}} f_{\varepsilon} \psi \, dx + \int_{\Upsilon_{\varepsilon}^{(1)}} p_{\varepsilon} \psi \, d\sigma_{x} + \varepsilon^{\beta} \int_{\Upsilon_{\varepsilon}^{(2)}} g_{\varepsilon} \psi \, d\sigma_{x} \quad \forall \psi \in H^{1}(\Omega_{\varepsilon}, \Gamma_{1}).$$
(3)

Нашей целью является изучение асимптотического поведения обобщенного решения задачи (1) при $\varepsilon \to 0$, т.е. когда число тонких присоединяемых стержней из каждого класса неограниченно возрастает, а их толщина стремится к нулю. Исследуется также влияние параметров β , τ , μ в краевых условиях на асимптотическое поведение решения.

2. Вспомогательные асимптотические утверждения. Для усреднения краевых задач в густых соединениях с неоднородными краевыми условиями Неймана, Фурье или нелинейными краевыми условиями на границах тонких областей в работах [2, 3, 9] был предложен новый подход с использованием специальных интегральных тождеств (тип густого соединения определяет его вид). В нашем случае оно имеет следующий вид:

$$\frac{\varepsilon h_2}{2} \int\limits_{S_{\varepsilon}^{(2)}} v \, dx_2 = \int\limits_{G_{\varepsilon}^{(2)}} v \, dx - \varepsilon \int\limits_{G_{\varepsilon}^{(2)}} Y_2\left(\frac{x_1}{\varepsilon}\right) \partial_{x_1} v \, dx \qquad \forall v \in H^1(G_{\varepsilon}^{(2)}),\tag{4}$$

где $Y_2(\xi) = -\xi + [\xi] + 1/2$, $[\xi]$ — целая часть ξ ; $S_{\varepsilon}^{(i)}$ — объединение боковых сторон тонких стержней из *i*-класса, i = 1, 2. Обозначим через $Q_{\varepsilon}^{(i)} := \Upsilon_{\varepsilon}^{(i)} \setminus S_{\varepsilon}^{(i)}$ — объединение нижних оснований тонких стержней из *i*-класса, i = 1, 2. Учитывая, что $\max_{\mathbb{R}} |Y_2| \leq 1$, из (4) следует неравенство

$$\|v\|_{L^{2}(S_{\varepsilon}^{(2)})} \leq C_{2}\varepsilon^{-1/2}\|v\|_{H^{1}(G_{\varepsilon}^{(2)})}.$$
(5)

Стандартным способом получаем $\|v\|_{L^2(Q_{\varepsilon}^{(2)})} \leq C_3 \|v\|_{H^1(G_{\varepsilon}^{(2)})}$. С помощью тождества (4) и ограничений на g_{ε} доказывается следующая лемма.

Лемма 1. При выполнении условий на функцию g_{ε} для любой функции $\psi \in H^1(D_2)$ имеет место следующая сходимость:

$$\varepsilon \int_{\Upsilon_{\varepsilon}^{(2)}} g_{\varepsilon} \psi \, d\sigma_x \longrightarrow 2 \int_{D_2} g_0 \psi \, dx \qquad npu \qquad \varepsilon \to 0.$$

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2008, № 9

Пусть $\phi \in H^1(D^{(1)}_{\varepsilon})$. Тогда для почти всех $t \in [-\varepsilon l_1, 0]$ легко доказать неравенство

$$\|\phi(\cdot,t) - \frac{1}{\varepsilon l_1} \int_{-\varepsilon l_1}^{0} \phi(\cdot,x_2) \, dx_2 \|_{L^2(0,a)} \leqslant l_1 \sqrt{\varepsilon} \|\partial_{x_2} \phi\|_{L^2(D_{\varepsilon}^{(1)})}.$$

$$\tag{6}$$

Из (2) и (6) следует, что

$$\frac{1}{\varepsilon l_1} \int_{-\varepsilon l_1}^0 p_\varepsilon(x_1, x_2) \, dx_2 \xrightarrow{s} p_0(x_1) \qquad \mathbf{B} \qquad L^2(0, a) \qquad \text{при} \qquad \varepsilon \to 0.$$
(7)

Лемма 2. Для произвольной функции $\psi \in H^1(0,a)$ имеет место сходимость

$$\int_{\Upsilon_{\varepsilon}^{(1)}} p_{\varepsilon}(x)\psi(x_1) \, d\sigma_x \longrightarrow (4h_1 + 8l_1) \int_{I_0} p_0(x_1)\psi(x_1) \, dx_1 \qquad npu \qquad \varepsilon \to 0.$$
(8)

Доказательство. В этом случае мы используем аналогичный прием, который был применен для "длинных" стержней. Записываем интегральное тождество (аналогичное (4))

$$\int_{S_{\varepsilon}^{(1)}} p_{\varepsilon}\varphi \, dx_2 = \frac{2}{h_1 \varepsilon} \int_{G_{\varepsilon}^{(1)}} p_{\varepsilon}\varphi \, dx - \frac{2}{h_1} \int_{G_{\varepsilon}^{(1)}} Y_1\left(\frac{x_1}{\varepsilon}\right) \partial_{x_1}(p_{\varepsilon}\varphi) \, dx \qquad \forall \varphi \in H^1(G_{\varepsilon}^{(1)}), \tag{9}$$

где функция Y_1 определяется следующим образом: она равна $-t+b_1$, если $t \in [0, \delta_0)$; $-t+b_2$, если $t \in [\delta_0, 1/2)$; $-t+1-b_2$, если $t \in [1/2, 1-\delta_0)$; $-t+1-b_1$, если $t \in [1-\delta_0, 1)$. Здесь $\delta_0 = (b_1+b_2)/2$. Учитывая (2), (6) и (7), с помощью (9) выводим (8). Следствие 1. Пусть $\phi_{\varepsilon} \in H^1(D_{\varepsilon}^{(1)})$, норма $\|\phi_{\varepsilon}\|_{H^1(D_{\varepsilon}^{(1)})}$ — равномерно ограниченная

Следствие 1. Пусть $\phi_{\varepsilon} \in H^1(D_{\varepsilon}^{(1)})$, норма $\|\phi_{\varepsilon}\|_{H^1(D_{\varepsilon}^{(1)})}$ — равномерно ограниченная по ε и $\phi_{\varepsilon}(x_1, 0) \xrightarrow{s} \phi_0(x_1)$ в $L^2(0, a)$ при $\varepsilon \to 0$. Тогда имеет место сходимость

$$\int_{\Upsilon_{\varepsilon}^{(1)}} p_{\varepsilon}(x)\phi_{\varepsilon}(x) \, d\sigma_x \longrightarrow (4h_1 + 8l_1) \int_{I_0} p_0(x_1)\phi_0(x_1) \, dx_1 \qquad npu \qquad \varepsilon \to 0.$$
(10)

Лемма 3. Для любой функции $v \in H^1(\Omega_{\varepsilon}, \Gamma_1)$ имеют место оценки

$$\int_{\Upsilon_{\varepsilon}^{(1)}} v^2(x) \, d\sigma_x \leqslant C_1 \varepsilon \int_{G_{\varepsilon}^{(1)}} |\nabla v|^2 \, dx + 4 \int_{I_0} v^2(x_1, 0) \, dx_1, \tag{11}$$

$$\int_{\Upsilon^{(1)}} v^2(x) \, d\sigma_x \leqslant C_2 \|v\|^2_{H^1(\Omega_\varepsilon)}.$$
(12)

Доказательство. Представим значение функци
иvна вертикальной части границы "малого" отростка, которые составляю
т $S_{\varepsilon}^{(1)},$ в следующей форме:

$$v(x_1, y) = \int_{(x_1, y)}^{(\breve{x}_1, 0)} \frac{\partial v}{\partial s} \, ds + v(\breve{x}_1, 0).$$
(13)

19

ISSN 1025-6415 Доповіді Національної академії наук України, 2008, №9

Здесь $\ddot{x}_1 = x_1 + \frac{h_1}{4l_1} (\varepsilon l_1 - y)$, а *s* — натуральный параметр отрезка $[(x_1, y); (\breve{x}_1, 0)]$. С помощью неравенства Коши–Буняковского выводим неравенство

$$v^{2}(x_{1},y) \leq 2C_{3}\varepsilon \int_{(x_{1},y)}^{(\check{x}_{1},0)} \left(\frac{\partial v}{\partial s}\right)^{2} ds + 2v^{2}(\check{x}_{1},0).$$

Интегрируя по y от $-\varepsilon l_1$ до 0, суммируя по всем боковым сторонам "малых" отростков и оценивая следы по основаниям, получаем оценку (11), из которой вытекает (12).

Взяв $\varphi = u_{\varepsilon}$ в интегральном тождестве (3) и учитывая неравенства (5) и (12), выводим

$$\int_{\Omega_{\varepsilon}} |\nabla u_{\varepsilon}|^2 dx \leqslant C_4 \Big(\|f_{\varepsilon}\|_{L^2(\Omega_{\varepsilon})} + \|p_{\varepsilon}\|_{L^2(\Upsilon_{\varepsilon}^{(1)})} + \varepsilon^{\beta - (1/2)} \|g_{\varepsilon}\|_{L^2(\Upsilon_{\varepsilon}^{(2)})} \Big) \|u_{\varepsilon}\|_{H^1(\Omega_{\varepsilon})}.$$

Тогда, в силу условий на функции f_{ε} , p_{ε} , g_{ε} , имеем $||u_{\varepsilon}||_{H^{1}(\Omega_{\varepsilon})} \leq C_{5}$.

3. Основные результаты и их обсуждение. Введем операцию продолжение нулем для функций из пространства $H^1(G_{\varepsilon}^{(2)})$: $\tilde{y}_{\varepsilon}(x) = y_{\varepsilon}(x)$, если $x \in G_{\varepsilon}^{(2)}$, и $\tilde{y}_{\varepsilon}(x) = 0$, если $x \in D_2 \setminus G_{\varepsilon}^{(2)}$. Здесь $D_2 = (0, a) \times (-l_2, 0)$ — прямоугольник, который заполняется тонкими стержнями из второго класса в предельном переходе при $\varepsilon \to 0$. С помощью результатов пункта 2 доказываются следующие теоремы.

Теорема 1 (случай $\tau \ge 0$ и $\mu \ge 1$). Решение u_{ε} задачи (1) удовлетворяет соотношениям $u_{\varepsilon}|_{\Omega_0} \xrightarrow{w} v_0^+ \ e \ H^1(\Omega_0, \Gamma_1), \ \widetilde{u_{\varepsilon}} \xrightarrow{w} h_2 v_0^-, \ \widetilde{\partial_{x_2} u_{\varepsilon}} \xrightarrow{w} h_2 \partial_{x_2} v_0^-, \ \widetilde{\partial_{x_1} u_{\varepsilon}} \xrightarrow{w} 0 \ e \ L^2(D_2) \ npu \varepsilon \to 0.$ Причем функция v_0 , которая равна v_0^+ на Ω_0 и v_0^- на D_2 , является единственным решением задачи

$$-\Delta_{x}v_{0}^{+}(x) = f_{0}(x), \quad x \in \Omega_{0},$$

$$v_{0}^{+}(x) = 0, \quad x \in \Gamma_{1},$$

$$\partial_{\nu}v_{0}^{+}(x) = 0, \quad x \in \partial\Omega_{0} \setminus (\Gamma_{1} \bigcup I_{0}),$$

$$-h_{2}\partial_{x_{2}x_{2}}^{2}v_{0}^{-}(x) + 2\delta_{\mu,1}k_{2}v_{0}^{-}(x) = h_{2}f_{0}(x) + \delta_{\beta,1}g_{0}(x), \quad x \in D_{2},$$

$$v_{0}^{+}(x_{1}, 0) = v_{0}^{-}(x_{1}, 0), \quad (x_{1}, 0) \in I_{0},$$

$$(h_{2}\partial_{x_{2}}v_{0}^{-} - \partial_{x_{2}}v_{0}^{+} + \delta_{\tau,0}k_{1}\Xi v_{0}^{+})(x_{1}, 0) = \Xi p_{0}(x_{1}), \quad (x_{1}, 0) \in I_{0},$$

$$\partial_{x_{2}}v_{0}^{-}(x_{1}, -l_{2}) = 0, \quad (x_{1}, -l_{2}) \in I_{l_{2}},$$

$$(14)$$

которая называется усредненной задачей для задачи (1). Здесь $I_{l_2} = \{x : x_2 = -l_2, x_1 \in (0, a)\}; \delta_{\alpha,k}$ — символ Кронекера; $\Xi := (4h_1 + 8l_1)$ — длина границы "малых" стержней на ячейке периодичности в растянутых координатах.

Кроме того, имеет место сходимость интегралов энергии при $\varepsilon \to 0$:

$$E_{\varepsilon}(u_{\varepsilon}) := \int_{\Omega_{\varepsilon}} |\nabla_x u_{\varepsilon}|^2 dx + \varepsilon^{\tau} k_1 \int_{\Upsilon_{\varepsilon}^{(1)}} u_{\varepsilon}^2 d\sigma_x + \varepsilon^{\mu} k_2 \int_{\Upsilon_{\varepsilon}^{(2)}} u_{\varepsilon}^2 d\sigma_x \rightarrow \int_{\Omega_0} |\nabla v_0^+|^2 dx + \int_{D_2} (h_2 |\partial_{x_2} v_0^-|^2 + 2\delta_{\mu,1} k_2 |v_0^-|^2) dx + \delta_{\tau,0} k_1 \Xi \int_{I_0} |v_0^+(x_1,0)|^2 dx_1 =: E_0(v_0).$$

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2008, № 9

Теорема 2 (случай $\tau < 0$ в $\mu \ge 1$). Для решения u_{ε} задачи (1) имеют место пределы $u_{\varepsilon} \xrightarrow{w} v_{0}^{+}$ в $H^{1}(\Omega_{0}, \Gamma_{1}), \ \widetilde{u_{\varepsilon}} \xrightarrow{w} h_{2}v_{0}^{-}, \ \widetilde{\partial_{x_{2}}u_{\varepsilon}} \xrightarrow{w} h_{2}\partial_{x_{2}}v_{0}^{-}, \ \widetilde{\partial_{x_{1}}u_{\varepsilon}} \xrightarrow{w} 0$ в $L^{2}(D_{2})$ при $\varepsilon \to 0$, где функции v_{0}^{+} и v_{0}^{-} являются соответственно решениями следующих задач:

$$\begin{cases} -\Delta_x v_0^+(x) = f_0(x), & x \in \Omega_0, \\ v_0^+(x) = 0, & x \in \Gamma_1 \bigcup I_0, & \partial_\nu v_0^+(x) = 0, & x \in \partial\Omega_0 \setminus (\Gamma_1 \bigcup I_0); \end{cases}$$
(15)

$$\begin{cases} -h_2 \partial_{x_2 x_2}^2 v_0^-(x) + 2\delta_{\mu,1} k_2 v_0^-(x) = h_2 f_0(x) + \delta_{\beta,1} g_0(x), & x \in D_2, \\ v_0^-(x_1, 0) = 0, & (x_1, 0) \in I_0, & \partial_{x_2} v_0^-(x_1, -l_2) = 0, & (x_1, -l_2) \in I_{l_2}, \end{cases}$$
(16)

которые в совокупности называются усредненной задачей для задачи (1).

Кроме того, имеет место сходимость интегралов энергий при $\varepsilon \to 0$:

$$E_{\varepsilon}(u_{\varepsilon}) \to \int_{\Omega_0} |\nabla v_0^+|^2 \, dx + h_2 \int_{D_2} |\partial_{x_2} v_0^-|^2 \, dx + 2\delta_{\mu,1} k_2 \int_{D_2} |v_0^-|^2 \, dx =: E_0(v_0^+) + E_0(v_0^-).$$

Теорема 3 (случай $\mu < 1$). Для решения u_{ε} задачи (1) имеют место пределы $u_{\varepsilon} \xrightarrow{w} v_0^+$ в $H^1(\Omega_0, \Gamma_1), \ \widetilde{u_{\varepsilon}} \xrightarrow{s} 0$ в $L^2(D_2)$ при $\varepsilon \to 0$, где функция v_0^+ — решение задачи:

$$\begin{cases} -\Delta_x v_0^+(x) = f_0(x), & x \in \Omega_0, \\ v_0^+(x) = 0, & x \in \Gamma_1 \bigcup I_0, & \partial_\nu v_0^+(x) = 0, & x \in \partial\Omega_0 \setminus (\Gamma_1 \bigcup I_0). \end{cases}$$
(17)

Кроме того, имеет место сходимость интегралов энергий при $\varepsilon \to 0$:

$$E_{\varepsilon}(u_{\varepsilon}) \to \int_{\Omega_0} |\nabla v_0^+|^2 \, dx =: E_0(v_0^+).$$

Из приведенных результатов видно существенное влияние краевых условий на асимптотическое поведение решения задачи (1) (имеется три качественно разных случая). На стенках тонких стержней из второго класса задано третье краевое условие $\partial_{\nu}u_{\varepsilon} + \varepsilon^{\mu}k_{2}u_{\varepsilon} = \varepsilon^{\beta}g_{\varepsilon}$. На первый взгляд кажется, что нет никакой разницы между этим условием и однородным условием Неймана, поскольку член $k_{2}u_{\varepsilon}$ умножается на ε^{μ} , а g_{ε} — на ε^{β} ; $\mu \ge 1$, $\beta \ge 1$. Однако это верно только, если $\mu > 1$, $\beta > 1$. Если же $\beta = 1$ и $\mu \ge 1$, то слагаемое $\varepsilon g_{\varepsilon}$ трансформируется в правую часть усредненного дифференциального уравнения в области D_{2} (см. (14) и (16)). Если $\mu = 1$, то мы получаем новый член $2k_{2}v_{0}^{-}$ в этом усредненном уравнении в D_{2} , который описывает локальную экстракцию величины, плотность которой задается функцией v_{0}^{-} .

Отметим качественное и тонкое влияния параметров τ и μ . Во-первых, при $\tau \ge 0$ и $\mu \ge 1$ мы получаем нестандартное неоднородное условие сопряжения

$$h_2 \partial_{x_2} v_0^-(x_1, 0) - \partial_{x_2} v_0^+(x_1, 0) + \delta_{\tau, 0} k_1 \Xi v_0^+(x_1, 0) = \Xi p_0(x_1), \qquad (x_1, 0) \in I_0, \tag{18}$$

которое учитывает геометрию тонких стержней из первого класса и взаимодействие стенок этих стержней с внешней средой.

Во-вторых, при $\tau < 0$ и $\mu \ge 1$ задача (1) фактически распадается в пределе на две независимые задачи (15) и (16). Аналогичный эффект отмечался в работе [9] для многоуровневых густых соединений. Однако в [9] такое распадение происходило за счет присутствия

ISSN 1025-6415 Доповіді Національної академії наук України, 2008, № 9

однородных условий Дирихле на стенках тонких цилиндров из второго уровня, а в исследуемой задаче (1) эффект возникает как следствие очень большого взаимодействия стенок "малых" стержней с внешней средой. В этом случае также исчезает зависимость от величины p_{ε} . Заметим, что функция p_{ε} может совпадать с функцией g_{ε} . Тогда в правой части условия спряжения (18) появится след функции g_0 .

В случае $\mu < 1$ взаимодействие стенок "длинных" стержней с внешней средой играет превалирующую роль в асимптотическом поведении решения. Заметим, что оно (взаимодействие) локально может быть и не слишком большим при $0 \leq \mu < 1$, однако за счет суммарной длины границ "длинных" стержней дает такой эффект. В этом случае ($\mu < 1$) исчезает зависимость усредненной задачи (17) от величин g_{ε} , p_{ε} и параметров β и τ .

Работа Т. А. Мельника частично поддержана фондом имени Александра фон Гумбольдта, работа Г. А. Чечкина частично поддержана РФФИ.

- 1. *Мельник Т. А., Назаров С. А.* Асимптотика решения спектральной задачи Неймана в области типа "густого гребешка" // Тр. семинара им. И. Г. Петровского. 1996. **19**. С. 138–174.
- Mel'nyk T. A. Homogenization of a singularly perturbed parabolic problem in a thick periodic junction of type 3: 2: 1 // Ukr. Math. J. - 2000. - 52, No 11. - P. 1737-1749.
- 3. *Mel'nyk T. A.* Homogenization of a boundary-value problem with a nonlinear boundary condition in a thick junction of type 3: 2: 1 // Math. Models and Methods in Appl. Sciences. 2008. **31**, No 9. P. 1005–1027.
- Мельник Т. А. Усреднение эллиптических уравнений, описывающих процессы в сильно неоднородных тонких перфорированных областях с быстро изменяющейся толщиной // Докл. АН УССР. – 1991. – 10. – С. 15–19.
- 5. Пятницкий А. Л., Чечкин Г. А., Шамаев А. С. Усреднение. Методы и приложения. Белая серия в математике и физике Т. 3. Новосибирск: Изд-во "Тамара Рожковская", 2007. 246 с.
- 6. Беляев А.Г., Пятницкий А.Л., Чечкин Г.А. Асимптотическое поведение решения краевой задачи в перфорированной области с осциллирующей границей // Сиб. мат. журн. – 1998. – **39**, № 4. – С. 730–754.
- Chechkin G. A., Friedman A., Piatnitski A. L. The boundary value problem in domains with very rapidly oscillating boundary // J. Math. Anal. and Appl. – 1999. – 231, No 1. – P. 213–234.
- Чечкин Г. А., Чечкина Т. П. Об усреднении задач в областях типа "инфузории" // Тр. семинара им. И.Г. Петровского. – 2003. – 23. – С. 386–407.
- 9. *Мельник Т.А., Ващук П.С.* Усреднение краевой задачи со сменным типом граничных условий в густом соединении // Дифференц. уравнения. 2007. **43**, № 5. С. 677–685.

Киевский национальный университет им. Тараса Шевченко Московский государственный университет им. М.В. Ломоносова Поступило в редакцию 09.01.2008