

МАТЕРІАЛОЗНАВСТВО

УДК 548:533:951

ОПОВІЛІ

УКРАЇНИ

НАЦІОНАЛЬНОЇ АКАДЕМІЇ НАУК

C) 2009

В. Ф. Бритун, член-корреспондент НАН Украины А. В. Курдюмов, член-корреспондент НАН Украины Ю. М. Солонин, В. В. Ярош

Использование метода высокотемпературного ударного сжатия для синтеза алмазных нановолокон

Алмазні нановолокна діаметром до 200 нм були одержані за допомогою високотемпературного ударного стиснення вуглецевих нановолокон з графітоподібною структурою при тиску 30 ГПа та температурі 3500 К. Збагачені продукти ударного стиснення разом з алмазом містять 20–50% (об.) аморфної вуглецевої фази з щільністю, проміжсною між щільностями графіту та алмазу.

Метод высокотемпературного ударного сжатия (ВТУС) основан на ударно-волновом сжатии порошковых смесей исследуемого вещества с добавками, обладающими более высокими значениями сжимаемости и меньшими значениями удельной теплоемкости, чем исследуемое вещество (такими добавками могут быть, например, щелочно-галлоидные соли [1, 2]). Благодаря этим свойствам указанные добавки позволяют сообщать исследуемому веществу дополнительный нагрев при сжатии, способствуя развитию термически активируемых фазовых превращений, и обеспечивают резкую закалку образующихся фаз при разгрузке, предотвращая обратные превращения под действием высоких остаточных температур. Использование метода ВТУС позволило существенно снизить давления, необходимые для ударно-волнового синтеза алмаза [2, 3], а также впервые синтезировать кубическую модификацию ВN в условиях ударного сжатия с выходом этой фазы более 50% [4].

В настоящей работе метод ВТУС использован для получения алмазных волокон путем реализации фазового превращения графит — алмаз в углеродных волокнах с графитной структурой.

Исходными образцами служили углеродные нановолокна двух видов, отличающихся между собой размером, морфологией и совершенством кристаллической структуры. Их электронно-микроскопические изображения приведены на рис. 1. Образец № 1 состоял в основном из волокон диаметром до 200 нм. В нем содержались также фракция полых нанотрубок диаметром до 50 нм и фракция округлых частиц (показаны стрелкой), но их объемная доля не превышала нескольких процентов. Основной объем образца № 2 был представлен полыми нанотрубками диаметром менее 20 нм (рис. 1, δ), в нем присутствовала также фракция (до 20%(об.)) равноосных частиц типа сажи.

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2009, № 11

Рис. 1. Исходные нановолокна углерода с графитоподобной структурой в образцах № 1 (а) и № 2 (б)

Рис. 2. Рентгеновские дифрактограммы исходных образцов № 1 (кривая 1) и № 2 (кривая 2)

Рентгеновские дифрактограммы исходных образцов представлены на рис. 2. Даже без привлечения количественных методов анализа видно, что структура образца № 1 значительно более совершенна. В табл. 1 приведены некоторые характеристики реальной структуры исходных образцов: B_{002} и d_{002} — ширина линии 002 на дифрактограмме и межслоевое расстояние, соответственно; P_3 — степень трехмерной упорядоченности графитоподобной структуры, определенная по зависимости P_3 от d_{002} [3]. Упорядоченная составляющая структуры образца № 1 включала как двухслойное чередование слоев *ABAB*, свойственное гексагональной модификации графита, так и чередование *ABCABC*, присущее ромбоэдрической модификации. Структура образца № 2 — турбостратна ($P_3 = 0$). Базисные слои (001) в нановолокнах обоих видов расположены преимущественно вдоль оси волокна.

В работах по изучению фазовых превращений в углеграфитовых материалах при высокотемпературном ударном сжатии показано, что наиболее эффективной добавкой, обеспечивающей максимальный выход плотных фаз, является соль KCl [3]. Поэтому в настоящей

груктурные характеристики исходных образдов				
	Номер образца	B_{002}	$d_{002}, { m mm}$	P_3
	1	0,8	0,341	$0,\!3$
	2	2,3	0,345	0

Таблица 1. Структурные характеристики исходных образцов

ISSN 1025-6415 Доповіді Національної академії наук України, 2009, №11

87

работе для осуществления фазовых превращений в углеродных волокнах была использована именно эта добавка. Порошок KCl смешивали с исходными углеродными волокнами в соотношении 9 : 1 (по массе) и полученные смеси помещали в кольцевой зазор стальной цилиндрической ампулы сохранения, конструкция которой описана в [3]. Методика расчета давлений и температур при ударном сжатии вещества в таких устройствах также описана в работе [3]. Благодаря многократным отражениям ударных волн от стенок ампулы и центрального стержня давление в порошковой смеси поднимается ступенчато и, соответственно, ступенчато поднимается температура. В настоящей работе максимальное давление составляло 30 ГПа, а температура была ограничена температурой плавления добавок KCl, составившей ≈ 3500 К при указанном давлении. Продукты ударного сжатия, отмытые от KCl, исследовали рентгенографически и методом просвечивающей электронной микроскопии, после чего их подвергали обогащению для удаления остаточной графитоподобной фазы и снова исследовали методами структурного анализа.

Рентгенограммы получали в медном фильтрованном излучении на дифрактометре HZG-4 A, исследования методом ПЭМ проводили в микроскопе JEM-100 CX. Для проведения рентгенографических исследований порошок без связки помещали в объектодержателе, который закрывали тонкой пленкой фторопласта. Толщина порошкового образца и его насыпная плотность, а также режим получения рентгенограмм были одинаковыми для исходных образцов и образцов после ударного сжатия и обогащения. Это позволило определять степень фазовых превращений по ослаблению интегральной интенсивности линии 002 графита на рентгенограммах образцов после ударного сжатия.

Установлено, что в результате ударного сжатия графитоподобная фаза превратилась в плотные модификации: в первом образце на 30, а во втором — на 50%. Различные степени превращения в образцах связаны с различной упорядоченностью их исходной структуры и, как следствие, — с различными механизмами образования плотных фаз: турбостратная структура в образце № 2 испытала диффузионный переход, а в частично упорядоченной структуре образца № 1, по-видимому, реализовались как диффузионный, так и мартенситный механизмы. Подобная закономерность наблюдалась при ударном сжатии нитрида бора — кристаллографического аналога углерода [5]. Кроме того, значительно более тонкие волокна образца № 2 могли эффективнее прогреваться до более высоких температур в результате более эффективного теплообмена с добавкой КСІ.

Характерные электронные микрофотографии обогащенных образцов приведены на рис. 3. Видно, что в образце № 1 большая часть продуктов ударного сжатия сохранила волокноподобную морфологию. При этом на волокнах появились многочисленные перегибы и изломы. Часть обогащенного продукта представляет собой фракцию частиц, которые образовались в результате разрушения волокон. В образце № 2 большая часть волокон после ударного воздействия превратилась в равноосные алмазные зерна и только небольшая часть частиц (менее 10%) сохранила волокноподобную морфологию. При этом волокна сильно деформированы и образуют сплетения (клубки). Особенности электронномикроскопического контраста на таких волокнах позволяют предполагать, что исходные нанотрубки в результате ударного воздействия сплющились и превратились в ленты.

Темнопольные ПЭМ изображения продуктов ударного сжатия образца № 1 показывают, что как волокна, так и равноосные частицы имеют нанокристаллическую структуру, состоящую из нанозерен алмаза размерами порядка 10 нм. Кроме того, особенности ПЭМ контраста позволяют предполагать наличие в обогащенном образце аморфной фазы. В продуктах ударного сжатия образца № 2 после обогащения также наблюдается нанокристалли-

Рис. 3. Нановолокна в образцах № 1 (*a*, *б*) и № 2 (*в*) после ударного сжатия и обогащения: *a*, *в* — инверсия светлопольных изображений; *б* — темнопольное изображение в рефлексе 111 алмаза

c

200 нм

Рис. 4. Рентгеновские дифрактограммы обогащенных образцов № 1 (кривая 1) и № 2 (кривая 2)

ческий алмаз и аморфная фаза. При этом встречаются группы алмазных зерен с размерами 20–40 нм, тогда как основная масса алмазных зерен имеет размеры, не превышающие 10 нм.

Об образовании аморфной фазы углерода в смеси с алмазом свидетельствуют рентгенограммы обогащенных образцов (рис. 4). На дифрактограмме образца № 2 хорошо видно, что линия 111 алмаза имеет оттяжку в сторону малых углов, причем картина дифракции в этой области аналогична дифракционной картине, полученной от смеси алмаза с аморфной фазой (С_{ам}), образующейся при ВТУС углеграфитовых материалов (УГМ) с турбостратной

ISSN 1025-6415 Доповіді Національної академії наук України, 2009, №11

структурой [6, 7]. Исследования [6, 7] показали, что C_{am} имеет плотность 2.9 ± 0.2 г/см³, промежуточную между плотностями алмаза и графита, и образуется в качестве промежуточной структуры на пути диффузионных превращений турбостратных УГМ в алмаз. Содержание C_{am} , определенное по методике [7], составило $\approx 20\%$ (об.) в образце № 1 и $\approx 50\%$ (об.) в образце № 2.

В заключение отметим, что сохранению морфологии исходных нановолокон, испытавших превращения в С_{ам} и алмаз, способствовали такие особенности использованного метода воздействия высоких давлений на вещество, как присутствие добавки с большей сжимаемостью, смягчающей дробящее действие ударных волн (особенно в случае плавления добавки при достаточно высоких температурах), а также ступенчатый подъем давления в процессе ударного сжатия.

- Боримчук Н. И., Курдюмов А. В., Ярош В. В. Закономерности образования плотных модификаций углерода и нитрида бора в условиях ударного сжатия // V Всесоюз. сов. по детонации (сб. докл.). Т. 1. – Красноярск, 1991. – С. 43–47.
- 2. *Курдюмов А. В., Бритун В. Ф., Боримчук Н. И., Ярош В. В.* Использование энергии взрыва для синтеза сверхтвердых фаз // Порошк. металлургия. 2007. № 1./2. С. 3–10.
- 3. *Курдюмов А. В., Бритун В. Ф., Боримчук Н. И., Ярош В. В.* Мартенситные и диффузионные превращения в углероде и нитриде бора при ударном сжатии. Киев: Изд-во Куприянова, 2005. 192 с.
- 4. Боримчук Н.И., Зелявский В.Б., Курдюмов А.В. и др. Особенности кристаллической структуры сфалеритного нитрида бора, образующегося при ударном сжатии // Докл. АН СССР. 1989. **306**, № 6. С. 1381–1383.
- Britun V. F., Kurdyumov A., Borimchuk N. I. et al. Formation of diamond-like BN phases under shock compression of graphite-like BN with different degrees of structural ordering // Diamond and Related Mater. - 2007. - 16, No 2. - P. 267-276.
- 6. *Курдюмов А. В., Островская Н. Ф., Зелявский В. Б. и др.* Структурные особенности нанодисперсных алмазов динамического синтеза // Сверхтв. материалы. 1998. № 4. С. 23–29.
- 7. *Курдюмов А.В., Бритун В.Ф., Зелявский В.Б. и др.* Структура промежуточной углеродной фазы, образующейся при ударном сжатии ультрадисперсных углеграфитовых материалов // Порошк. металлургия. 2006. № 1/2. С. 104–111.

Институт проблем материаловедения им. И. Н. Францевича НАН Украины, Киев Поступило в редакцию 09.04.2009

V. F. Britun, Corresponding Member of the NAS of Ukraine A. V. Kurdyumov, Yu. M. Solonin, Corresponding Member of the NAS of Ukraine V. V. Yarosh

Application of high-temperature shock compression method for synthesis of diamond nanofibers

Diamond nanofibers up to 200 nm in diameter have been manufactured by high-temperature shock compression of carbon nanofibers of the graphite-like structure at a pressure of 30 GPa and a temperature of 3500 K. Besides diamond, the purified end product contained 20 to 50 vol.% of the amorphous carbon phase having density intermediate between those of graphite and diamond.