

ЕНЕРГЕТИКА

УДК 621.318.3

© 2009

Член-корреспондент НАН Украины А.Е. Божко

К анализу энергии движения якоря электромагнитного вибровозбудителя

Наводяться аналітичні залежності між роботою, що проводиться в електромагнітному віброзбуджувачі, та вхідною електричною енергією.

Некоторые особенности энергетического баланса силовых электромагнитных механизмов (ЭМ) представлены в работе [1]. Однако электромагнитные вибровозбудители (ЭМВ), несмотря на физическое сходство с ЭМ, например контакторами, имеют свои специфические отличия. Если в ЭМ воздушный зазор δ при включенном ЭМ может быть равным нулю, то в ЭМВ воздушный зазор $\delta > 0$. В ЭМ в динамическом режиме δ изменяется от δ_0 до нуля (включение ЭМ) и от нуля до δ_0 (выключение ЭМ). В ЭМВ воздушный динамический зазор

$$\delta = \delta_0 - x_{\rm CM} \pm x(t),\tag{1}$$

где δ_0 — начальный воздушный зазор (ЭМВ не включен); $x_{\rm CM} = x_{0p} + x_{0F}$; x_{0p} , x_{0F} — постоянные смещения якоря ЭМВ от действия веса якоря с весовой нагрузкой $P_{\rm R}$ и от действия постоянной составляющей тягового усилия F_0 соответственно; x(t) — колебания якоря; t — время.

Кроме того, ЭМВ конструктивно отличается от ЭМ тем, что в его конструкции может быть реактивная масса (РМ) со своими пружинами (Пр_р). Якорь (Я) также подвешен на пружинах Пр_я. Далее в ЭМВ воздушный зазор δ при вибрировании якоря все время изменяется. Так, если вибрация якоря

$$x_{\mathfrak{A}}(t) = x_{\mathfrak{A}\mathfrak{A}}\sin(\omega_{\mathfrak{A}}t - \varphi_{\mathfrak{A}}),\tag{2}$$

где x_{as} — амплитуда колебаний якоря; ω_s — круговая частота колебаний якоря; ϕ_s — угол сдвига между переменной составляющей $F_{\sim}(t)$ тягового усилия в ЭМВ и колебаниями $x_s(t)$, то с учетом (2) выражение (1) примет вид

$$\delta = \delta_0 - x_{0P} - x_{0F} \pm x_{ag} \sin(\omega_g t - \varphi_g). \tag{3}$$

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2009, № 4

Из (3) видно, что для того чтобы не было уменьшения δ до нуля, необходимо выполнить условие

$$\delta_0 - x_{0P} - x_{0F} - x_{as} > 0, \tag{4}$$

в противном случае якорь будет ударять магнитопровод ЭМВ. Для более детального анализа энергии движения якоря ЭМВ представим на рис. 1, 2 электромагнитомеханические схемы ЭМВ без РМ (рис. 1) и с РМ (рис. 2), где Я — якорь; ВН — весовая нагрузка; М — магнитопровод; О — электрическая обмотка; Пр_я, Пр_р — пружины; δ_0 — начальный воздушный зазор; U — задающее напряжение; $U(t) = U_a \sin \omega t (U_a - амплитуда)$.

Под действием U(t) в обмотке О идет электрический ток $i(t) = I_a \sin(\omega t - \varphi)$, где $I_a = U_a/\sqrt{R^2 + (\omega L)^2}$; $\varphi = \arctan(\omega L/R) -$ угол сдвига между U(t) и i(t); R — активное сопротивление цепи обмотки О совместно с источником U(t); L — индуктивность в ЭМВ; ω — круговая частота U(t). Заметим, что если $\omega L \gg R$, то U(t) является выходом источника напряжения, если $R \gg \omega L$, то источник U(t) является источником тока. В зависимости от этих источников U(t) или i(t) энергетические соотношения в ЭМВ будут разными. В данной работе рассмотрим и этот вопрос. Процедуру анализа энергии в ЭМВ будем осуществлять последовательно: вначале для ЭМВ без РМ, а затем для ЭМВ с РМ.

Рассмотрим ЭМВ без РМ (рис. 1).

Пусть R и ωL согласуются, тогда энергия, входящая в ЭМВ, записывается выражением

$$W_{\Sigma} = \int_{0}^{t} U(t)i(t) = \int_{0}^{t} U_{a}\sin\omega t I_{a}\sin(\omega t - \varphi)dt =$$
$$= \int_{0}^{t} \frac{U_{a}^{2}}{\sqrt{R^{2} + (\omega L)^{2}}}\sin\omega t\sin(\omega t - \varphi)dt.$$
(5)

В (5) используем тригонометрические преобразования [2]

$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)].$$

Тогда (5) примет вид

$$W_{\Sigma} = \frac{U_a^2 t \cos\varphi}{2\sqrt{R^2 + (\omega L)^2}} - \frac{U_a^2}{4\omega\sqrt{R^2 + (\omega L)^2}} \sin(2\omega t - \varphi).$$
(6)

ISSN 1025-6415 Доповіді Національної академії наук України, 2009, №4

Как видно из (6), входная энергия W_{Σ} распределена на две составляющие

$$W_{\Sigma 1} = \frac{U_a^2 t \cos \varphi}{2\sqrt{R^2 + (\omega L)^2}}, \qquad W_{\Sigma 2} = -\frac{U_a^2 \sin(2\omega t - \varphi)}{4\omega\sqrt{R^2 + (\omega L)^2}}.$$

 $W_{\Sigma 1}$ линейно увеличивается с увеличением t, а $W_{\Sigma 2}$ осциллирует с частотой 2ω , являясь вычитаемой из $W_{\Sigma 1}$. В свою очередь

$$W_{\Sigma 2} = -\frac{U_a^2}{4\omega\sqrt{R^2 + (\omega L)^2}} (\sin 2\omega t \cos \varphi + \cos 2\omega t \sin \varphi).$$

При $R \gg \omega L \varphi = 0$ и

$$W_{\Sigma 1} = \frac{U_a^2 t}{2R}, \qquad W_{\Sigma 2} = -\frac{U_a^2 \sin 2\omega t}{4\omega R}$$

При $R \, \ll \, \omega L \, \, \varphi \, = \, \pi/2 \,$ и

$$W_{\Sigma 1} = 0, \qquad W_{\Sigma 2} = -\frac{U_a^2 \cos 2\omega t}{4\omega^2 R}.$$

Как видим, в этом случае $W_{\Sigma 2}$ — реактивная энергия. Энергия W_{Σ} распределяется в ЭМВ на энергию потерь W_{Π} и энергию кинетическую W_{K} . Энергия W_{Π} — это энергия, рассеиваемая в виде тепла на $R(W_{T})$, в виде энергии, создающей вихревые токи W_{B} , в виде энергии, идущей на трение движущихся частей ЭМВ о воздух. Тепловая энергия рассеивания

$$W_{\rm T} = \int_{0}^{t} Ri^{2}(t)dt = RI_{a}^{2} \int_{0}^{t} \sin^{2}(\omega t - \varphi)dt = \frac{1}{2}RI_{a}^{2}t - \frac{1}{4\omega}RI_{a}^{2}\sin 2(\omega t - \varphi)$$
(7)

также имеет нарастающую составляющую и отрицательную осциллирующую с частотой 2 ω . При $R \gg \omega L$

$$W_{\rm T} = \frac{1}{2} \frac{U_a^2}{R} t - \frac{1}{4\omega} \frac{U_a^2}{R} \sin 2\omega t$$

при $R \ll \omega L$, т.е. при $R \approx 0 W_{\rm T} \approx 0$ (см (7)).

Вследствие того, что магнитопровод и якорь состоят из шихтованных пластин, а ВН изолирована от Я немагнитным материалом, можно считать, что вихревые токи в ЭМВ малы, а также малы потери на гистерезис из-за наличия в ЭМВ постоянного воздушного зазора. Поэтому входная энергия W_{Σ} расходуется в ЭМВ на выделение тепла в R, на смещение x_{0F} якоря и на его вибрацию. При вибрации якоря возникают потери энергии из-за трения движущихся частей (пружин, платформы) о воздух, но они малы (ими можно пренебречь). Таким образом,

$$W_{\Sigma} = W_{\mathrm{T}} + W_e = W_{\mathrm{T}} + \frac{1}{2}Li^2(t),$$

где W_e — электрическая энергия, которая расходуется на смещение якоря и на его колебания совместно с ВН.

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2009, № 4

Баланс электрической энергии записывается выражением

$$\frac{1}{2}Li^2(t) = F_0 x_{0F} + F_{\sim} x(t).$$
(8)

Далее определим F_0 , F_{\sim} , x_{0F} и x(t)

$$F_0 + F_{\sim} = F_{\Sigma},$$

где F_{Σ} — полное тяговое усилие в ЭМВ.

Известно [1], что тяговое усилие F_{Σ} определяется выражением

$$F_{\Sigma} = \frac{dW_e}{d\delta} = \frac{1}{2} \frac{d}{d\delta} (Li^2) = \frac{1}{2} \left(\frac{dL}{d\delta} i^2 + L \frac{di^2}{d\delta} \right).$$
(9)

Зная, что [3] $L = w^2 G = w^2 \mu_0 S/(2\delta)$, где w — число витков обмотки; G — магнитная проводимость в ЭМВ; μ_0 — магнитная проницаемость воздуха; S — площадь поперечного сечения полюса магнитопровода у воздушного зазора, (9) запишем

$$F_{\Sigma} = \frac{1}{4}i^2 w^2 \frac{\mu_0 S}{\delta^2} + \frac{1}{2}w^2 \frac{\mu_0 S}{2\delta} \frac{di^2}{d\delta}.$$
 (10)

Подставим в (10)

$$i(t) = I_a \sin(\omega t - \varphi) = \frac{U_a}{\sqrt{R^2 + (\omega L)^2}} \sin(\omega t - \varphi) = \frac{U_a \sin(\omega t - \varphi)}{\sqrt{R^2 + \left(\frac{\omega \mu_0 S w^2}{2\delta}\right)^2}}.$$

Заметим, что угол φ имеет значение в переходном процессе электроцепи ЭМВ. В установившемся значении тока i(t) этот угол φ можно опустить. Тогда

$$i(t) = \frac{U_a \sin \omega t}{\sqrt{R^2 + \left(\frac{\omega \mu_0 S w^2}{2\delta}\right)^2}}.$$

Подставим эту величину тока в (10). Получим

$$F_{\Sigma} = \left(\frac{w}{2\delta}\right)^{2} \mu_{0} S \frac{U_{a}^{2} \sin^{2} \omega t}{R^{2} + \left(\frac{\mu_{0} S w^{2} \omega}{2\delta}\right)^{2}} + \frac{\mu_{0} S}{4\delta} w^{2} \left\{\frac{8\delta U_{a}^{2} \sin^{2} \omega t}{(2\delta R)^{2} + (\omega\mu_{0} S w^{2})^{2}} - \frac{32U_{a}^{2} \delta^{3} R^{2} \sin 2\omega t}{[(2\delta R)^{2} + (\omega\mu_{0} S w^{2})^{2}]^{2}}\right\} = [J - V + Q + (Q - J - V) \cos 2\omega t],$$
(11)

где

$$Q = \frac{1}{2}\mu_0 S \left(\frac{U_a w}{2\delta}\right)^2 \left[R^2 + \left(\frac{\mu_0 S w^2 \omega}{2\delta}\right)^2 \right]^{-1};$$

$$J = \mu_0 S (w U_a)^2 [(2\delta R^2) + (\omega \mu_0 S w^2)^2]^{-1}; \qquad V = 2\mu_0 S (U_a \delta R^2) [(2\delta R)^2 + (\omega \mu_0 S w^2)^2]^{-2}.$$

ISSN 1025-6415 Доповіді Національної академії наук України, 2009, №4

Из (11) видно, что постоянная составляющая $F_0 = J - V + Q$, а переменная $F_{\sim} = (Q - J - V) \cos 2\omega t = F_a \cos 2\omega t$.

Теперь для (8) необходимо получить x_{0F} и x(t), а для (9) еще и x_{0P} . Для этого запишем дифференциальное уравнение движения якоря в ЭМВ. Подвижная система ЭМВ представляет собой колебательную систему с одной степенью свободы. Поэтому ее уравнение движения следующее:

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + cx = F_{\Sigma} + P_{\pi}.$$
(12)

Здесь m — масса якоря; b, c — коэффициенты диссипации и упругости соответственно.

Смещения $x_{0P} = P_{\mu}/c$, $x_{0F} = F_0/c$; переменное $x(t) = x_a \cos(2\omega t - \Psi)$, где [4]

$$x_a = \frac{F_a}{m\sqrt{(4\omega^2 - \omega_0^2)^2 + \left(\frac{2b\omega}{m}\right)^2}}, \qquad \Psi = \operatorname{arctg} \frac{b\omega}{m(4\omega^2 - \omega_0^2)},$$

где P_{π} — вес якоря + BH; ω_0 — собственная частота колебаний якоря.

Исходя из полученного решения (12), выражение (8) с учетом (11) примет вид

$$\frac{1}{2}Li^{2}(t) = \frac{1}{4}L\left[\frac{U_{a}^{2}}{R^{2} + (\omega L)^{2}} - \frac{U_{a}^{2}}{R^{2} + (\omega L)^{2}}\cos 2\omega t\right] = = (J - V + Q)^{2}\frac{1}{c} + \frac{(Q - J - V)^{2}\cos(2\omega t - \Psi)\cos 2\omega t}{m\sqrt{(4\omega^{2} - \omega_{0}^{2})^{2} + \left(\frac{2b\omega}{m}\right)^{2}}}.$$
(13)

Как видим из (13), постоянная составляющая электрической энергии

$$\frac{1}{4}L\bigg[\frac{U_a^2}{R^2+(\omega L)^2}\bigg]$$

создает работу смещения якоря в виде

$$(J-V+Q)^2\frac{1}{c},$$

а переменная составляющая энергии

$$\frac{1}{4}L\frac{U_a^2}{R^2+(\omega L)^2}\cos 2\omega t$$

равна работе осцилляции якоря в виде

$$\frac{(Q-J-V)^2\cos(2\omega t-\Psi)\cos^2 2\omega t}{m\sqrt{(4\omega^2-\omega_0^2)^2+\left(\frac{2b\omega}{m}\right)^2}}.$$

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2009, № 4

При $R \ll \omega L,$ т.е. считаем $R \approx 0$

$$F_{\Sigma} = \frac{1}{\mu_0 S} \left(\frac{U_a}{\omega w} \right)^2 (1 - \cos 2\omega t) = F_0 - F_{\sim};$$

$$F_0 = \frac{1}{\mu_0 S} \left(\frac{U_a}{\omega w} \right)^2;$$

$$F_{\sim} = \frac{1}{\mu_0 S} \left(\frac{U_a}{\omega w} \right)^2 \cos 2\omega t = F_a \cos 2\omega t,$$
(14)

где $F_a = \frac{1}{\mu_0 S} \left(\frac{U_a}{\omega w} \right)^2$.

Подставляя в (13) выражение (14) при $R \approx 0$, получим

$$\frac{1}{2}Li^{2}(t) = \left(\frac{1}{\mu_{0}S}\right)^{2} \left(\frac{U_{a}}{\omega w}\right)^{4} \frac{1}{c} - \frac{\left(\frac{1}{\mu_{0}S}\right)^{2} \left(\frac{U_{a}}{\omega w}\right)^{4} \cos(2\omega t - \Psi) \cos 2\omega t}{m^{2} \left[(4\omega^{2} - \omega_{0}^{2})^{2} + \left(\frac{2b\omega}{m}\right)^{2}\right]}.$$
(15)

Из (15) видно, что постоянная составляющая

$$\left(\frac{1}{\mu_0 S}\right)^2 \frac{1}{c} \left(\frac{U_a}{\omega w}\right)^4$$

осуществляет постоянное смещение якоря x_{0F} , а переменная составляющая

$$\left(\frac{1}{\mu_0 S}\right)^2 \left(\frac{U_a}{\omega w}\right)^4 \cos(2\omega t - \Psi) \frac{\cos^2 2\omega t}{m^2 \left[(4\omega^2 - \omega_0^2)^2 + \left(\frac{2b\omega}{m}\right)^2\right]}$$

осуществляет колебания якоря $x_a \cos(2\omega t - \Psi)$.

При $R \gg \omega L$

$$F_{\Sigma} = \mu_0 S \left(\frac{iw}{2\delta}\right)^2 = \mu_0 S \left(\frac{I_a w}{2\delta}\right)^2 \sin^2 \omega t = \mu_0 S \left(\frac{U_a w}{2R\delta}\right)^2 \sin^2 \omega t = F_{\Sigma a} (1 - \cos 2\omega t), \quad (16)$$

где $F_{\Sigma a} = \mu_0 S \left(\frac{U_a w}{2R\delta} \right)^2$. Из (16) вылочает или

Из (16) вытекает, что

$$F_0 = \mu_0 S \left(\frac{U_a w}{2R\delta}\right)^2; \qquad F_\sim = -\mu_0 S \left(\frac{U_a w}{2R\delta}\right)^2 \cos 2\omega t.$$

В этом случае видно, что энергия

$$(\mu_0 S)^2 \left(\frac{U_a w}{2R\delta}\right)^4 \frac{1}{c},$$

ISSN 1025-6415 Доповіді Національної академії наук України, 2009, №4

Рис. 3

являясь постоянной величиной, осуществляет смещения якоря x_{0F} , а переменная составляющая энергии создает вибрацию якоря в ЭМВ

$$\frac{1}{4}L\left(\frac{U_a}{R}\right)^2\cos 2\omega t,$$

т.е. создает колебания якоря, совершающего работу

$$(\mu_0 S)^2 \left(\frac{U_a w}{2R\delta}\right)^4 \frac{\cos 2\omega t \cos(2\omega t - \varphi)}{m^2 \left[(4\omega^2 - \omega_0^2)^2 + \left(\frac{2b\omega}{m}\right)^2 \right]}$$

При рассмотрении ЭМВ с РМ баланс электрической энергии записывается выражением

$$\frac{1}{2}Li^{2}(t) = F_{0}(x_{\mathfrak{g}0} + x_{p0}) + F_{\sim}[x_{\mathfrak{g}}(t) + x_{p}(t)], \qquad (17)$$

где $x_{\rm s0}, x_{\rm p0}$ — постоянные смещения якоря и реактивной массы соответственно от действия постоянной составляющей F_0 тягового усилия; $x_{\rm s}(t), x_{\rm p}(t)$ — переменные перемещения якоря и PM соответственно от действия переменной составляющей F_{\sim} тягового усилия. Так как для F_0 и F_{\sim} выведены аналитически в (11), то для конкретизации (17) определим для ЭМВ с PM величины $x_{\rm s0}, x_{\rm p0}, x_{\rm s}(t), x_{\rm p}(t)$. Для этого на рис. 3 представим механическую схему ЭМВ с PM, где $m_{\rm s}, m_p$ — массы якоря + ВН и PM соответственно; $c_{\rm s}, c_p$ — коэффициенты жесткости пружин Пр_я и Пр_р соответственно; $b_{\rm s}, b_p$ — коэффициенты диссипации.

Как видно из рис. 3, колебательная система (КС) ЭМВ с РМ является КС с двумя степенями свободы. Дифференциальные уравнения движения этой КС следующие:

$$m_{\pi} \frac{d^{2} x_{\pi}}{dt^{2}} + b_{\pi} \frac{dx_{\pi}}{dt} + c_{\pi} x_{\pi} = F_{0} + F_{\sim} + P_{\pi} + b_{\pi} \frac{dx_{p}}{dt} + c_{\pi} x_{p},$$

$$m_{p} \frac{d^{2} x_{p}}{dt^{2}} + (b_{\pi} + b_{p}) \frac{dx_{p}}{dt} + (c_{\pi} + c_{p}) x_{p} = P_{\Sigma} + b_{\pi} \frac{dx_{\pi}}{dt} + c_{\pi} x_{\pi},$$
(18)

где $P_{\rm p}$ — вес РМ; $P_{\Sigma} = P_{\rm s} + P_p$.

Как видно из (18), Я и РМ постоянно смещены на $x_{\mathfrak{g0}p}$, $x_{\mathfrak{p0}p}$ от действия их весов $P_{\mathfrak{g}}$ и P_{Σ} и также смещаются в воздушном зазоре δ_0 на $x_{\mathfrak{g0}F}$, $x_{\mathfrak{p0}F}$ от действия постоянной

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2009, № 4

составляющей F_0 тягового усилия в ЭМВ с РМ и сил влияния Я и РМ друг на друга, т.е. суммарные смещения Я и РМ имеют вид

$$\begin{aligned} x_{\pi 0\Sigma} &= x_{\pi 0p} + x_{p0p}, \\ x_{\pi 0A} &= x_{\pi 01} + x_{p0xp}, \\ x_{p0\Sigma} &= x_{p0p} + x_{p0x\pi}, \end{aligned}$$

где

$$x_{\pi 0p} = \frac{P_{\pi}}{c_{\pi}}; \qquad x_{\pi 01} = \frac{F_0}{c_{\pi}}; \qquad x_{\pi 0xp} = \frac{c_{\pi} x_{p0F}}{c_{\pi}}; \qquad x_{p0p} = \frac{P_{\Sigma}}{c_{\pi} + c_p}; \qquad x_{p0x\pi} = \frac{c_{\pi} x_{\pi 0F}}{c_{\pi} + c_p};$$

Выражения x_{n0p} и x_{p0p} в функции коэффициентов c_n , c_p и весов P_n , P_{Σ} следующие:

$$x_{\pi 0p} = P_{\pi} \left(\frac{1}{c_{p}} + \frac{1}{c_{\pi}} \right) + \frac{P_{\Sigma}}{c_{p}};$$
$$x_{p0p} = \frac{1}{c_{\pi} + c_{p}} \left\{ P_{\Sigma} + c_{\pi} \left[P_{\pi} \left(\frac{1}{c_{p}} + \frac{1}{c_{\pi}} \right) + \frac{P_{\Sigma}}{c_{p}} \right] \right\}.$$

Величины смещений x_{s0F} , x_{p0F} имеют аналитический вид

$$x_{\pi 0F} = F_0 \left(\frac{1}{c_{\pi}} + \frac{1}{c_{p}}\right), \qquad x_{p0F} = \frac{F_0}{c_p}.$$
 (19)

Переменные величины $x_{\rm g}(t), x_{\rm p}(t)$ определяются в виде

$$\left. \begin{array}{l} x_{\mathrm{a}}(t) = x_{\mathrm{a}\mathrm{a}}\cos(2\omega t - \Psi), \\ x_{p}(t) = x_{\mathrm{a}p}\cos(2\omega t - \Psi - \Psi_{p}), \end{array} \right\}$$

$$(20)$$

где $\Psi_{\rm p}$ — угол сдвига между $x_{\rm s}(t)$ и $x_{\rm p}(t); \Psi_p = \arctan(b_{\rm s} + b_p)\omega/(m_p(4\omega^2 - \omega_p^2))$, выражение для Ψ дано ранее.

Амплитуды x_{as} , x_{ap} записываются соотношениями

$$\begin{aligned} x_{\rm as} &= \frac{|F_{\sim} + b_{\rm s} \dot{x}_p(t) + c_{\rm s} x_p(t)|}{m_{\rm s} \left[(4\omega^2 - \omega_{0\rm s}^2)^2 + \left(\frac{2b_{\rm s}\omega}{m_{\rm s}}\right)^2 \right]},\\ x_{\rm ap} &= \frac{|b_{\rm s} \dot{x}_{\rm s}(t) + c_{\rm s} x_{\rm s}(t)|}{m_{\rm p} \left[(4\omega^2 - \omega_{0\rm p}^2)^2 + \left[\frac{2\omega(b_{\rm s} + b_{\rm p})}{m_{\rm p}}\right]^2 \right]} \end{aligned}$$

Здесь $\dot{x} = dx/dt$; $\omega_{0\text{p}}$, $\omega_{0\text{p}}$ — собственные частоты колебаний якоря и РМ соответственно.

Подставляя в (20) аналитические выражения (11), (19), (20), получим баланс электрической энергии в ЭМВ с РМ. Причем правая часть (17) является конкретизацией произведенной работы в ЭМВ с РМ от действия электрической энергии $W_e = (1/2)Li^2(t)$.

Таким образом, в результате проведенного исследования показано, какие части энергии в ЭМВ расходуются на потери, какие части электрической энергии совершают работу якоря по смещению его в зазоре и какие части расходуются на создание вибрации якоря. Для всех указанных составляющих выведены аналитические выражения.

ISSN 1025-6415 Доповіді Національної академії наук України, 2009, №4

- 1. Любчик М. А. Оптимальное проектирование силовых электромагнитных механизмов. Москва: Энергия, 1974. 392 с.
- 2. Бронштейн И. Н., Семендяев К. А. Справочник по математике. Москва: ГИТТЛ, 1956. 608 с.
- 3. Ступель Ф. А. Электромеханические реле. Харьков: Изд-во Харьк. гос. ун-та, 1956. 355 с.
- 4. Божко А.Е., Голуб Н. М. Динамико-энергетические связи колебательных систем. Киев: Наук. думка, 1980. 188 с.

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины, Харьков Поступило в редакцию 03.03.2008

Corresponding Member of the NAS of Ukraine A.E. Bozhko

To the analysis of the rotor motion energy of an electromagnetic vibroexciter

The analytical relations between the work and the input electrical energy in an electromagnetic vibroexciter are given.