



## ІНФОРМАТИКА ТА КІБЕРНЕТИКА

УДК 62-5(075.3)

C 2009

Член-корреспондент НАН Украины А.Е. Божко

## Сингуларисные переходные функции звеньев систем автоматического управления

Наводяться перехідні функції основних ланцюгів систем автоматичного керування, виражені в сингуларисній формі.

В работах по автоматическому управлению, например, в [1–3] представлены понятия о переходных функциях звеньев систем автоматики, связи, управления. Переходная функция звена h(t) отображает реакцию (выходной сигнал) звена на входное воздействие в виде единичной скачкообразной функции  $1(t) = \begin{cases} 1 & \text{при } t \ge 0 \\ 0 & \text{при } t < 0 \end{cases}$ . Ранее нами показано [4, 5], что в электрических цепях с реактивными элементами в начале переходного процесса крутизна нарастания выходного сигнала меньше крутизны на остальных участках переходного процесса. Это связано с тем, что электроцепь с реактивными элементами в начале переходного процесса оказывает большее сопротивление входному воздействию по сравнению с дальнейшим протеканием процесса. Такой эффект объясняется автоматическим разложением скачкообразных функций на ряд составляющих, среди которых имеются затухающие гармоники, что было зарегистрировано экспериментально в лаборатории отдела надежности и динамической прочности Института проблем машиностроения им. А. Н. Подгорного НАН Украины. На основании анализа такого явления и с учетом того, что функция 1(t) может быть представлена рядом Фурье [6], нами было разработано новое разложение 1(t), названное сингуларисным, в виде [5]

$$1(t) = 1 - \ell^{-\alpha t} + \ell^{-\alpha t} \sum_{s=1}^{n} U_s \cos \omega_s t,$$

$$U_{a1} = \frac{1}{\pi}, \qquad U_{as} = \frac{U_{a1}}{s}, \qquad s = \frac{\omega_s}{\omega_1},$$
(1)

где  $\alpha$  — коэффициент затухания ( $\alpha \rightarrow \infty$ );  $\omega_s$  — круговая частота k-й гармоники; t — время.

Коэффициент затухания  $\alpha$  значительно больше коэффициента затухания электроцепи с реактивными элементами. Для безынерционной электроцепи выражение (1) автоматически равно 1(t).

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2009, № 6

40

Имея выражение (1), можно и целесообразно определить переходные функции основных звеньев систем автоматического управления. Назовем эти переходные функции сингуларисными. Перейдем к определению сингуларисных переходных функций стандартных звеньев систем автоуправления. В этих звеньях входной сигнал — x(t), а выходной — y(t). При определении переходных функций примем x(t) = 1 (t) = (1).

1. Пропорциональное (безынерционное звено). Уравнение звена y = Kx, где K – коэффициент пропорциональности. Переходная функция этого звена при x(t) = 1(t),  $h_1(t) = K1(t)$ . Так как в безынерционном звене отсутствуют реактивные элементы, то к функции 1(t) можно не применять сингуларисное разложение и поэтому классическая переходная функция отображает сингуларисную переходную функцию.

**2. Интегрирущее звено.** Уравнение этого звена  $y = K \int_{0}^{t} x(t) dt + y_0$ . Сингуларисная переходная функция здесь такая:

$$h_{C2}(t) = K \int_{0}^{t} (1)dt =$$

$$= K \left[ t - \frac{1}{\alpha} (1 - \ell^{-\alpha t}) + \ell^{-\alpha t} \sum_{s=1}^{n} \frac{U_{ak}\omega_k}{\alpha^2 + \omega_k^2} \left( \frac{\alpha}{\omega_s} + \sin \omega_s t - \frac{\alpha}{\omega_s} \cos \omega_s t \right) \right].$$
(2)

**3.** Дифференцирующее звено. Уравнение этого звена  $y = K \frac{dx}{dt}$ . Сингуларисная переходная функция дифференцирующего звена следующая:

$$h_{C3}(t) = K \frac{d(1)}{dt} = K \left( \frac{d(1)}{dt} + \alpha \ell^{-\alpha t} - \alpha \ell^{-\alpha t} \sum_{s=1}^{n} U_{as} \cos \omega_s t - \ell^{-\alpha t} \sum_{s=1}^{n} \omega_s U_{as} \sin \omega_s t \right).$$
(3)

**4. Инерционное звено.** Уравнение этого звена  $T\frac{dy}{dt} + y = Kx$ . Определим  $h_c(t)$  с помощью операционного метода Карсона [7]. Здесь

$$y(p) = \frac{K1(p)}{Tp+1},\tag{4}$$

где T — постоянная времени; p — оператор Лапласа; (1(p)) — изображение Карсона сингуларисного разложения (1),

$$(1(p)) = K \left[ \frac{\alpha}{\alpha + p} + \sum_{s=1}^{n} \frac{U_{as} p(p+\alpha)}{(p+\alpha)^2 + \omega_s^2} \right].$$

$$(5)$$

Подставляя (5) в (4), получим

$$y(p) = K \frac{1}{Tp+1} \left[ \frac{\alpha}{\alpha+p} + \sum_{s=1}^{n} \frac{U_{as}p(p+\alpha)}{(p+\alpha)^2 + \omega_s^2} \right].$$
(6)

Оригинал, соответствующий изображению (6), является сингуларисной переходной функцией инерционного звена. Этот оригинал находим с помощью метода представле-

ISSN 1025-6415 Доповіді Національної академії наук України, 2009, №6 41

ния (6) суммой простых дробей и таблиц связи изображений Карсона и их оригиналов [7]. В результате имеем

$$h_{C4}(t) = K \left\langle A_4(1 - \ell^{-t/T}) + \frac{B_4}{\alpha} (1 - \ell^{-\alpha t}) + \sum_{s=1}^n U_{as} \left\{ a_{s4} \left( 1 - \ell^{-t/T} \right) + \frac{B_{s4}}{\omega_s} \ell^{-\alpha t} \sin \omega_s t + \frac{C_{s4}}{\alpha^2 + \omega_s^2} \left[ 1 - \ell^{-\alpha t} \left( \cos \omega_s t + \frac{\alpha}{\omega_s} \sin \omega_s t \right) \right] \right\} \right\rangle,$$

$$(7)$$

где

$$a_{s4} = \frac{-C_{s4}}{\alpha_s^2 + \omega_s^2}, \qquad C_{s4} = (\alpha_s^2 + \omega_s)^2 (B_{s4}T - 1);$$
  
$$B_{s4} = \frac{T(\alpha_s^2 + \omega_s^2) - \alpha}{T^2(\alpha_s^2 + \omega_s^2) - 2\alpha + 1}; \qquad A_4 = \frac{-\alpha T}{1 - \alpha T}; \qquad B_4 = \frac{\alpha}{1 - \alpha T}.$$

5. Форсирующее звено. Уравнение этого звена  $y = K\left(x + T\frac{dx}{dt}\right)$ . Сингуларисная переходная функция следующая:

$$h_{c5}(t) = K(1) + T(3).$$
(8)

**6. Инерционно-дифференцирующее звено.** Его уравнение  $y + T \frac{dy}{dt} = K \frac{dx}{dt}$ . Изображение Карсона данного уравнения приводит к виду

$$y(p) = K \frac{px(p)}{1+Tp}.$$
(9)

Оригинал, соответствующий (9) при x(t) = 1(t), является сингуларисной переходной функцией  $h_c(t)$  данного звена. Изображение Карсона этой функции следующее:

$$h_{c6}(p) = p(6). (10)$$

На основании (10) находим  $h_c(t)$  в виде

$$h_{c6}(t) = K \left\langle A_6 \left( 1 - \ell^{-t/T} \right) + \frac{B_6}{\alpha} (1 - \ell^{-\alpha t}) + \sum_{s=1}^n U_{as} \left\{ a_{s6} T \ell^{-t/T} + c_{s6} T^2 \left( 1 - \ell^{-t/T} \right) + \frac{b_{s6}}{\omega_s} \ell^{-\alpha t} \sin \omega_s t + \frac{d_{s6}}{\alpha_s^2 + \omega_s^2} \left[ 1 - \ell^{-\alpha t} \left( \cos \omega_s t + \frac{\alpha}{\omega_s} \sin \omega_s t \right) \right] \right\} \right\rangle, \tag{11}$$

где

$$A_{6} = \frac{B_{6}}{\alpha}, \qquad B_{6} = \frac{\alpha^{2}}{\alpha T - 1}, \qquad a_{s6} = 1; \qquad d_{s6} = -c_{c6}(\alpha^{2} + \omega_{s}^{2});$$
$$c_{s6} = \alpha(1 - \alpha) - B_{s6}T; \qquad B_{s6} = \frac{\alpha^{2}(2\alpha - 3) + \omega_{s}^{2} - T(\alpha^{2} + \omega_{s}^{2})\alpha(1 - \alpha)}{1 - 2\alpha - T^{2}(\alpha^{2} + \omega_{s}^{2})}.$$

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2009, № 6

42

**7. Инерционно-форсирующее звено.** Его уравнение следующее:  $y + T_2 \frac{dy}{dt} = K \left( y + T_2 \frac{dy}{dt} \right)$  $+T_1 \frac{dx}{dt}$ ). В операционной форме изображение y(p) имеет вид  $y(p) = Kx(p) \frac{1+T_1p}{1+T_2p}$ . При x(t) = 1(t) $1 + T_1 p$ 

$$y(p) = K(5)\frac{1+T_1p}{1+T_2p}$$

И

$$h_{c7}(t) = K \left\langle A_7 T_2^2 \left( 1 - \ell^{-t/T_2} \right) + \frac{B_7}{\alpha} (1 - \ell^{-\alpha t}) + \sum_{s=1}^n U_{as} \left\{ a_{s7} T_2 \ell^{-t/T_2} + c_{s7} T_2^2 \left( 1 - \ell^{-t/T_2} \right) + \frac{b_{s7}}{\omega_s} \ell^{-\alpha t} \sin \omega_s t + \frac{c_{s7}}{\alpha_s^2 + \omega_s^2} \left[ 1 - \ell^{-\alpha t} \left( \cos \omega_s t + \frac{\alpha}{\omega_s} \sin \omega_s t \right) \right] \right\} \right\rangle,$$
(12)

где

$$A_{7} = \frac{\alpha - B_{7}}{\alpha}; \qquad B_{7} = \frac{\alpha(\alpha T_{1} - 1)}{\alpha T_{2} - 1}; \qquad a_{s7} = T_{1}; \qquad c_{s7} = 1 - \alpha T_{1} - T_{2}B_{s7};$$
$$d_{s7} = -c_{c7}(\alpha^{2} + \omega_{s}^{2}); \qquad B_{s7} = \frac{2\alpha^{2}T_{1} + (\alpha^{2} + \omega_{s}^{2})(T_{2} - T_{1} - \alpha T_{1}T_{2})}{1 - 2\alpha T^{2} + T_{2}^{2}(\alpha^{2} + \omega_{s}^{2})}.$$

8. Колебательное звено. Его уравнение имеет вид  $y(t) + 2\xi T \frac{dy(t)}{dt} + T^2 \frac{d^2y(t)}{dt} = Kx(t).$ Изображение

$$y(p) = \frac{Kx(p)}{T^2 p^2 + 2\xi T_p + 1}.$$
(13)

В (13) включим x(p) = K(5). Тогда, используя метод суммы простых дробей, получим

$$y(p) = h(p) = \frac{K(5)}{T^2 p^2 + 2\xi T_p + 1}.$$
(14)

Оригинал, соответствующий (13), является сингуларисной переходной функцией  $h_c(t)$ колебательного звена:

$$h_{c8}(t) = K \left\langle \frac{A_8}{\alpha} (1 - \ell^{-\alpha t}) + \frac{B_8}{\omega} \ell^{-\xi t/T} \sin \omega t + D_8 T^2 \left[ 1 - \ell^{-\xi t/T} \left( \cos \omega t + \frac{\xi}{T\omega} \sin \omega t \right) \right] + \right. \\ \left. + \sum_{s=1}^n U_{as} \left\{ \frac{a_{s8}}{\omega} \ell^{-\xi t/T} \sin \omega t + c_{s8} T^2 \left[ 1 - \ell^{-\xi t/T} \left( \cos \omega t + \frac{\xi}{T\omega} \sin \omega t \right) \right] + \right. \\ \left. + \frac{b_{s8}}{\omega_s} \ell^{-\alpha t} \sin \omega_s t + \frac{d_{s8}}{\alpha^2 + \omega_s^2} \left[ 1 - \ell^{-\alpha t} \left( \cos \omega_s t + \frac{\alpha}{\omega_s} \sin \omega_s t \right) \right] \right\} \right\rangle,$$
(15)

ISSN 1025-6415 Доповіді Національної академії наук України, 2009, №6

43

$$a_{s8} = -b_{s8}T^2; \qquad d_{s8} = -c_{c8}(\alpha^2 + \omega_s^2); \qquad b_{s8} = \frac{1 - c_{s8}[1 - T^2(\alpha^2 + \omega_s^2)]}{2T(\xi - \alpha T)};$$
  

$$c_{s8} = \left[2\alpha T(\xi - \alpha T) + T^2(\alpha^2 + \omega_s^2) - 1\right] \left\{4\alpha T(\xi - \alpha T) - [1 - T^2(\alpha^2 + \omega_s^2)]^2\right\}^{-1};$$
  

$$\omega = \frac{1}{T}\sqrt{1 - \xi^2}.$$

9. Полуинтегрирующее звено. Уравнение этого звена  $y(t) = K_9 \sqrt{\int_0^t x(t) dt}$ . При x = 1(t) = (1) сингуларисную переходную функцию запишем

$$h_{c9}(t) = K_{\sqrt{\int_{0}^{t} (1)dt} = K\sqrt{h_{c2}(t)}.$$
(16)

**10. Полуинерционное звено.** Его уравнение следующее:  $Kx(t) = y(t) + \sqrt{T \frac{dy^2(t)}{dt}}$ . При x(t) = (1) сингуларисная функция имеет вид [3, 5]

$$h_{c10}(t) = K \left( 1 - \ell^{t/T} \operatorname{erf} c \sqrt{\frac{t}{T}} \right) (1),$$

$$\operatorname{erf} c = \frac{2}{\sqrt{\pi}} \int_{z}^{\infty} \ell^{-U^{2}} dU = 1 - \operatorname{erf}(z),$$
(17)

где  $\operatorname{erf}(z)$  — табулированный интеграл вероятности.

11. Звено запаздывания. Уравнение его имеет вид  $y(t) = Kx(t - \tau)$ , где  $\tau$  — время запаздывания.

При x(t) = (1)

$$h_{c11}(t) = K \left[ 1 - \ell^{-\alpha(t-\tau)} + \ell^{-\alpha(t-\tau)} \sum_{s=1}^{n} U_{as\cos\omega_s(t-\tau)} \right].$$
(18)

12. Звено затухания. Его уравнение может быть следующим:  $y(t) = K \ell^{-\gamma t} x(t)$ , где  $\gamma$  — коэффициент затухания. При x(t) = (1)

$$h_{c12}(t) = K\ell^{-\gamma t}(1).$$
(19)

Таким образом, в виде выражений (2), (3), (7), (8), (11), (12), (15)–(19) получены сингуларисные функции основных звеньев систем автоматического управления. Эти функции, отображая переходные процессы на выходе рассмотренных звеньев при входном сигнале в виде сингуларисного разложения единичной функции (1), более точно определяют динамику соответствующих звеньев, имеющих в своем составе реактивные элементы.

1. *Фельдбаум А. А., Дудыкин А. Д., Мановцев А. П. и др.* Теоретические основы связи и управления / Под ред. А. А. Фельдбаума. – Москва: Физматгиз, 1963. – 932 с.

- 2. Гузенко А. И. Основы теории автоматического регулирования. Москва: Высш. шк., 1967. 408 с.
- 3. *Теория* автоматического управления / Под ред. проф. А.В. Нетушила. Москва: Высш. шк., 1976. 400 с.
- 4. *Божско А. Е.* Новая интерпретация переходных процессов в электрических цепях // Доп. НАН України. – 2004. – № 9. – С. 83–87.
- 5. Божко А. Е. Аргументированная детализация новой концепции о переходных процессах в электрических цепях // Там само. 2007. № 6. С. 81–87.
- 6. Андре Анго. Математика для электро- и радиоинженеров. Москва: Наука, 1969. 779 с.
- 7. *Гинзбург С. Г.* Методы решения задач по переходным процессам в электрических цепях. Москва: Сов. радио, 1959. 404 с.

Институт проблем машиностроения им. А. Н. Подгорного НАН Украины, Харьков Поступило в редакцию 26.11.2007

Corresponding Member of the NAS of Ukraine A.E. Bozhko

## Singularismal transient functions for links of automatic control systems

The transient functions for basic links of systems of automatic control are given. These functions have singularismal form.