© 2009

Член-кореспондент НАН України О. Є. Андрейків, Ю. В. Банахевич, М. Б. Кіт

Циклічна міцність тонкостінних елементів конструкцій з тріщинами

За допомогою сформульованої раніше авторами розрахункової моделі зростання втомних тріщин в конструкційних матеріалах розроблена методика для побудови діаграм граничних напруг для пластини з тріщинами при циклічних навантаженнях. Вона поставлена в основу методу розрахунку циклічної міцності тонкостінних елементів конструкцій з тріщинами. Одержані розрахункові результати зіставлені з відомими в літературі експериментальними даними.

Розрахунки на міцність елементів конструкцій під довготривалими циклічними навантаженнями відрізняються від таких на короткочасну міцність. Це пов'язано з тим, що міцність таких елементів має бути забезпечена не однократно, а протягом довготривалого заданого часу їх експлуатації. Втрата циклічної міцності таких елементів проходить внаслідок втомного руйнування матеріалу, тобто зародження і поширення втомних тріщин. В літературі відомі деякі такі дослідження на циклічну міцність елементів конструкцій, де здебільшого припускають без дефектність матеріалів і втомне руйнування в класичному розумінні цього явища [1–3].

Однак, оцінюючи циклічну міцність елементів конструкцій, потрібно враховувати і розвиток дефектів типу тріщин (див., наприклад, [4, 5]). Відома лише незначна кількість робіт на цю тему. В основному, це експериментальні дослідження, за результатами яких будують граничні діаграми циклічної міцності елементів конструкцій з тріщинами, тобто їх залишкової циклічної міцності (див., наприклад, [2, 6, 7]). У роботах [8–10] на основі першого закону термодинаміки сформульований енергетичний підхід для оцінки періоду докритичного росту втомних тріщин. У даній роботі цей підхід застосовано до формулювання методу розрахунку циклічної міцності тонкостінних елементів конструкцій з тріщинами.

Нескінченна пластина з довільно орієнтованою тріщиною. Для формулювання згаданого вище методу розглянемо спочатку допоміжну задачу про циклічну міцність нескінченної пластини з довільно орієнтованою прямолінійною тріщиною, матеріал якої ідеально пружно-пластичний з границею текучості σ_y . Нехай нескінченна ідеально пружно-пластична пластина з прямолінійною макротріщиною початкової довжини $2l_0$ розтягується на нескінченності у взаємно перпендикулярних напрямках під кутом α до лінії тріщини рівномірно розподіленими зусиллями інтенсивності p, q (рис. 1, a). Вважається, що ці зусилля змінюються циклічно за синусоїдальним законом синхронно з однаковою частотою (від нульового циклу). Задача полягає у визначенні таких амплітудних значень зусиль $p = p_*$ і $q = q_*$, при яких залишкова довговічність пластини не перевищить заданого значення кількості циклів навантаження $N = N_*$. Ця задача є обернена до задачі визначення $N_* = N_*(p_*, q_*)$, тому насамперед розглянемо пряму задачу.

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2009, № 7

Рис. 1. Схема навантаження пластини з тріщиною (a) та залежність кута початкового її поширення θ_0 від кута початкової орієнтації α (δ) ($\eta_0 = q/p$; $1 - \eta_0 = 0.2$; 2 - 0.4; 3 - 0.6; 4 - 0.8; 5 - 1)

На основі сформульованого раніше [8–10] енергетичного підходу пряму задачу зведемо до розв'язання системи диференційних рівнянь

$$\frac{dl}{dN} = (\gamma_f - \gamma_t)^{-1} \mathbf{W}_{\mathrm{nn}}^{(2)},\tag{1}$$

$$\frac{\partial}{\partial \theta} \{ (\gamma_f - \gamma_t)^{-1} \mathbf{W}_{\text{пл}}^{(2)} \} = 0$$
(2)

із заданими початковими і кінцевими умовами

$$N = 0, \qquad l(0) = l_0; \qquad N = N_*, \qquad l(N_*) = l_*,$$
(3)

де критичну довжину тріщини l_* визначаємо із енергетичного критерію

$$\gamma_t(l_*) = \gamma_f. \tag{4}$$

Тут $W_{nn}^{(2)}$ — частина енергії пластичного деформування за один цикл, що генерується самим тілом під час стиску зон передруйнування за сталої довжини тріщини при знятті навантаження [8–10]; θ — кут напряму поширення тріщини; γ_f — питома енергія руйнування під час поширення втомної тріщини; γ_t — питома енергія пластичного деформування в зоні передруйнування біля вершини тріщини, яка залежить тільки від її довжини [11, 12]; $\gamma_t = \sigma_t \delta_{It}(0) + \tau_t \delta_{IIt}(0); N_*$ — період докритичного росту макротріщини; σ_t і τ_t — усереднені нормальні і дотичні напруження в зоні передруйнування; $\delta_{It}(0)$ і $\delta_{IIt}(0)$ — нормальний і дотичний розкриви вершини тріщини.

Використовуючи основні положення механіки руйнування [4, 5, 13, 14], запишемо такі допоміжні співвідношення між абсолютним розкривом у вершині тріщини δ і коефіцієнтами інтенсивності напружень $K_{\rm I}$ і $K_{\rm II}$:

$$\delta = \sqrt{\delta_{\mathrm{I}t}^2 + \delta_{\mathrm{II}t}^2}, \qquad \delta = \frac{1}{E\sigma_y} \sqrt{(K_{\mathrm{I}\theta}^2 + K_{\mathrm{II}\theta}^2)(K_{\mathrm{I}\theta}^2 + 3K_{\mathrm{II}\theta}^2)},\tag{5}$$

ISSN 1025-6415 Доповіді Національної академії наук України, 2009, №7

57

$$K_{\mathrm{I}\theta} = K_{\mathrm{I}} \cos^3 \frac{\theta}{2} - 3K_{\mathrm{II}} \sin \frac{\theta}{2} \cos^2 \frac{\theta}{2}, \qquad K_{\mathrm{II}\theta} = K_{\mathrm{I}} \sin \frac{\theta}{2} \cos^2 \frac{\theta}{2} + K_{\mathrm{II}} \cos \frac{\theta}{2} \left(1 - 3\sin^2 \frac{\theta}{2}\right).$$

Для даного випадку [5]

$$K_{\rm I} = p\sqrt{\pi l}(\sin^2 \alpha + \eta_0 \cos^2 \alpha), \qquad K_{\rm II} = p\sqrt{\pi l}(1-\eta_0)\sin\alpha\cos\alpha, \qquad \eta_0 = \frac{q}{p}$$

Для визначення кінетики росту тріщини знайдемо спочатку кут її початкового поширення $\theta = \theta_0$. Рівняння (2) в цьому випадку запишемо так:

$$\frac{\partial}{\partial\delta} \left\{ \frac{\partial W_{\text{пл}}^{(2)}(t,\theta)}{\partial t} (\gamma_f - \gamma_t(l,\theta))^{-1} \right\} \frac{\partial\delta}{\partial\theta} \bigg|_{\theta = \theta_0} = 0.$$
(6)

Можна показати, що

$$\frac{\partial}{\partial \delta} \left\{ \frac{\partial W_{\pi\pi}^{(2)}(t,\theta)}{\partial t} (\gamma_f - \gamma_t(l,\theta))^{-1} \right\} \neq 0.$$
(7)

Тоді (6) зведеться до рівняння

 $\langle \alpha \rangle$

$$\left. \frac{\partial \delta}{\partial \theta} \right|_{\theta = \theta_0} = 0. \tag{8}$$

Рівняння (8) розв'язуємо з урахуванням (5) чисельним шляхом для $\eta_0 = 0,2$; 0,4; 0,6; 0,8; 1. На рис. 1, δ побудована графічна залежність $\theta_0 = \theta_0(\alpha)$ для вказаних η_0 . Користуючись отриманою числовою залежністю $\theta_0 = \theta_0(\alpha)$ і формулою (5), побудуємо графічно зміну безрозмірної величини δ_* від α (рис. 2, a), де $\delta_* = \delta \sigma_y E \pi^{-1} l^{-1} p^{-2}$. Максимум δ_* досягається при $\alpha \approx \pi/2$, якщо $\eta_0 < 1$ і, аналогічно при $\alpha = 0$, якщо $\eta_0 > 1$ (див. рис. 2, a). Із рівняння (1) і результатів роботи [12] випливає, що це відповідає максимальній швидкості поширення тріщини $dl/dN = V_{\text{max}}$. Отже, за орієнтації $\alpha = \pi/2$ для $\eta_0 < 1$ і $\alpha = 0$ для $\eta_0 > 1$ буде найнебезпечніша тріщина і найменша довговічність пластини. Знайдемо для цих випадків період докритичного росту тріщини $N = N_*$. Для такого симетричного випадку на основі результатів [8–10] систему рівнянь (1), (2) зведемо до одного рівняння

$$\frac{dl}{dN} = \frac{\alpha}{\sigma_{0f}^2} \frac{K_{\rm Imax}^4}{K_{fC}^2 - K_{\rm Imax}^2} \tag{9}$$

за початкових і кінцевих умов

$$N = 0, \quad l(0) = l_0; \quad N = N_*, \quad l(N_*) = l_*; \quad l_* = \frac{K_{fC}^2}{\pi p^2} \quad (K_{I\max} \gg K_{th}). \tag{10}$$

Тут α , σ_{0f} , K_{fC} , K_{th} — характеристики циклічної тріщиностійкості матеріалів [9–11]; $K_{I\max}$ — максимальне значення K_{I} за цикл, а усереднене напруження σ_{0f} в зоні передруйнування шукаємо на основі умови пластичності Губера–Мізеса [4] для двовісного навантаження. В результаті отримаємо:

$$\sigma_{0f} = \sigma_y \left(-0.5\xi_1 + 0.5\sqrt{4 - 3\xi_1^2} \right) \qquad \left(\alpha = \frac{\pi}{2}, \ \eta_0 < 1, \ \xi_1 = q\sigma_y^{-1} \right);$$

$$\sigma_{0f} = \sigma_y \left(-0.5\xi_2 + 0.5\sqrt{4 - 3\xi_2^2} \right) \qquad (\alpha = 0, \ \eta_0 > 1, \ \xi_2 = p\sigma_y^{-1}).$$

(11)

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2009, № 7

де

Рис. 2. Залежність розкриву у вершині тріщини δ_* від α і η_0 (a) при $\theta = \theta_0$ ($1 - \eta_0 = 0.2; 2 - \eta_0 = 0.4; 3 - \eta_0 = 0.6; 4 - \eta_0 = 0.8; 5 - \eta_0 = 1$) та діаграма граничних циклічних навантажень (δ) для пластини з втомною тріщиною: 1 – співвідношення (19); 2 - (20); експерименти [15] для одноциклового навантаження чавунних зразків для різних станів ($3 - \sigma_2 = 345, 30; 4 - \sigma_2 = 185, 40; 5 - \sigma_2 = 228, 60$)

Проінтегрувавши рівняння (9) за початкових і кінцевих умов (10), отримаємо:

$$N_* = \frac{\sigma_{0f}^2}{\alpha \pi F^2} \left(l_* l_0^{-1} - 1 - \ln \frac{l_*}{l_0} \right), \qquad F = \begin{cases} p, & \alpha = \frac{\pi}{2}, & \eta_0 < 1; \\ q, & \alpha = 0, & \eta_0 > 1. \end{cases}$$
(12)

Вважаючи, що $l_* \gg l_0$, формулу (12) можна наближено подати так:

$$N_* \approx \frac{\sigma_{0f}^2 K_{fC}^2}{\alpha \pi^2 l_0 F^4}.$$
(13)

Розглянемо тепер допоміжну задачу для пластини, що розтягується перпендикулярно до тріщини завдовжки $2l_0$ тільки такими зусиллями F_0 , за яких довговічність така ж, як і за двовісного розтягу. Аналогічно рівнянню (13), для цього випадку можна записати:

$$N_* \approx \frac{\sigma_y^2 K_{fC}^2}{\alpha \pi^2 l_0 F_0^4}.$$
(14)

Звідси

$$F_0 = \sqrt[4]{\frac{\sigma_y^2 K_{fC}^2}{\alpha \pi^2 l_0 N_*}}.$$
(15)

Прирівнюючи співвідношення (13) і (14), отримаємо:

$$F^2 F_0^{-2} = -0.5\xi_i + \sqrt{1 - \frac{3}{4}\xi_i^2} \qquad (i = 1, 2).$$
⁽¹⁶⁾

ISSN 1025-6415 Доповіді Національної академії наук України, 2009, №7

59

Враховуючи вирази для F і F_0 у співвідношеннях (12) і (14), з рівняння (16) запишемо формули для визначення критичних значень p_*, q_* :

$$p_* = p_0 \Phi[\xi_1], \qquad \eta_0 < 1; \qquad q_* = q_0 \Phi[\xi_2], \qquad \eta_0 > 1,$$
(17)

де

$$\eta_0 = q_* p_*^{-1}; \qquad \Phi[\xi_i] = \left[-0.5\xi_i + \sqrt{1 - 0.25\xi_i^2}\right]^{1/2}; \qquad i = 1, 2;$$

$$\xi_1 = q_* \sigma_y^{-1}; \qquad \xi_2 = p_* \sigma_y^{-1}.$$

Замінимо в (17) $x = pp_0^{-1}, y = qq_0^{-1}, \xi_{01} = q_0\sigma_y^{-1}, \xi_{02} = p_0\sigma_y^{-1}$. Тоді

$$x^{2} = -0.5y\xi_{01} + \sqrt{1 - \frac{3}{4}y^{2}\xi_{01}^{2}} \qquad \left(\alpha = \frac{\pi}{2}, \ \eta_{0} < 1\right),$$
$$y^{2} = -0.5x\xi_{02} + \sqrt{1 - \frac{3}{4}x^{2}\xi_{02}^{2}} \qquad (\alpha = 0, \ \eta_{0} > 1).$$

Граничними випадками цих рівнянь будуть рівняння при $\xi_{01} = \xi_{02} = 0$ і $\xi_{01} = \xi_{02} = 1$. Тоді отримаємо:

для $\xi_{01} = \xi_{02} = 0$

$$x = 1$$
 $\left(\alpha = \frac{\pi}{2}, \ \eta_0 < 1\right), \quad y = 1 \quad (\alpha = 0, \ \eta_0 > 1),$ (18)

а для $\xi_{01} = \xi_{02} = 1$

$$x^{2} = -0.5y + \sqrt{1 - \frac{3}{4}y^{2}} \qquad \left(\alpha = \frac{\pi}{2}, \ \eta_{0} < 1\right),$$

$$y^{2} = -0.5x + \sqrt{1 - \frac{3}{4}x^{2}} \qquad (\alpha = 0, \ \eta_{0} > 1).$$
(19)

На основі залежностей (18) (рис. 2, δ , крива 1) і (19) (рис. 2, δ , крива 2) побудовані діаграми граничних навантажень для пластини з тріщиною. Ці криві і обмежують область безрозмірних значень $p = p_*$ і $q = q_*$, при яких буде забезпечений залишковий ресурс пластини $N = N_*$. Тут також наведено експериментальні результати циклічної міцності трубчастих чавунних зразків за двовісного розтягу при одноцикловому навантаженні [15]. Як видно з цього рисунка, експериментальні дані добре узгоджуються з розробленою тут теорією. Побудовану (див. рис. 2, δ) діаграму граничних навантажень для пластин з тріщинами можна покласти в основу розрахунку циклічної міцності тонкостінних елементів конструкцій з тріщинами.

Формулювання критерію циклічної міцності тонкостінних елементів конструкцій з тріщинами. Розглянемо тонкостінний елемент конструкції, виготовлений з квазікрихкого матеріалу. Лінійні параметри b_i характеризують конфігурацію елемента, а p — силовий параметр амплітуди циклічного навантаження.

Методами дефектоскопії не виявлено в елементі дефектів типу тріщин, більших за $2l_0$, що набагато менше від його розмірів. Визначимо найбільше значення силового параметра

60

 $p = p_*$ навантаження, за якого упродовж кількості циклів $N = N_*$ катастрофічного руйнування елемента конструкції не відбудеться.

Аналогічно [14] припускаємо, що в околі D найнапруженішої точки O елемента розташована небезпечна тріщина з характерним розміром $2l_0$. Вважаємо, що розмір околу Dнабагато більший за $2l_0$ і в ньому діють рівномірно розподілені головні напруження $\sigma_1(p)$ і $\sigma_2(p)$. З введенням такої неточності запас міцності розглядуваного елемента збільшиться і стане можливим для знаходження гранично-рівноважного стану околу застосувати вище наведену задачу для пластини з тріщиною. На основі цього, а також співвідношень (17) для визначення критичних головних напружень σ_{1*} , σ_{2*} отримаємо формули

$$\sigma_{1*} - F_{0*} \left[-0.5\xi_i + \sqrt{1 - 0.25\xi_i^2} \right]^{1/2} = 0;$$

$$\sigma_{2*} = \eta_0 \sigma_{1*}, \qquad \xi_i = \begin{cases} \sigma_{2*} \sigma_y^{-1}, & \eta_0 < 1; \\ \sigma_{1*} \sigma_y^{-1}, & \eta_0 > 1, \end{cases}$$
(20)

що є рівнянням діаграми граничних напружень у системі декартових координат $O\sigma_{1*}\sigma_{2*}$. Діаграма, яку описує (20), обмежує область значень головних напружень σ_1 , σ_2 , безпечних відносно міцності елемента конструкції, що містить дефекти такого типу. Враховуючи це, а також користуючись співвідношенням (20), одержимо таку умову циклічної міцності квазікрихких тіл:

$$\sigma_{1*} - F_{0*} \left[-0.5\xi_i + \sqrt{1 - 0.25\xi_i^2} \right]^{1/2} < 0 \qquad (\sigma_1 > 0),$$
(21)

де ξ_i , η_0 визначені у співвідношеннях (20).

Таким чином, співвідношення (15), (17), (20) і (21) за наявності l_0 , N_* , а також знайдених з експерименту K_{fC} , σ_y і дають розв'язок поставленої задачі для оцінки циклічної міцності тонкостінних елементів конструкцій з тріщинами.

- 1. *Трощенко В. Т.* Деформирование и разрушение металлов при многоцикловом нагружении. Киев: Наук. думка, 1981. 344 с.
- 2. Писаренко Г. С., Лебедев А. А. Деформирование и прочность материалов при сложном напряженном состоянии. Киев: Наук. думка, 1976. 415 с.
- 3. *Handbook* of fatigue crack propagation in metallic structures / Edited by A. Carpinteri. Amsterdam: Elsevier, 1994. Vol. 1. 952 p.
- 4. Панасюк В. В., Андрейкив О. Е., Партон В. З. Основы механики разрушения. Киев: Наук. думка, 1988. 488 с.
- 5. Панасюк В. В. Механика квазихрупкого разрушения материалов. Киев: Наук. думка, 1991. 416 с.
- 6. *Форрест П.* Усталость металлов: Пер. с англ. / Под ред. С. В. Серенсена. Москва: Машиностроение, 1968. 352 с.
- 7. *Хейвуд Р.Б.* Проектирование с учетом усталости / Под ред. И.Ф. Образцова. Москва: Машиностроение, 1969. – 504 с.
- Andreikiv O. Ye., Ivanytskyi Ya. L., Terletska Z. O., Kit M. B. Assessment of the life of a oil pipe with a surface crack under biaxial block loading // Materials Science. – 2004. – No 3.
- Андрейків О. Є., Кіт М. Б., Сас Н. Б. Енергетичні критерії в механіці заповільненого руйнування матеріалів // Збірник тез доповідей 7-го Міжнар. симп. укр. інженерів-механіків у Львові. – Львів, 18–20 травня 2005 р. – С. 4–5.
- Андрейків О. Є., Кіт М. Б. Визначення періоду докритичного росту тріщин в елементах конструкцій при їх двочастотному навантаженні // Машинознавство. – 2006. – № 2. – С. 3–7.
- Шата М., Терлецька З. О. Енергетичний підхід у механіці втомного поширення макротріщини // Механіка руйнування і міцність конструкцій / Під. ред. В. В. Панасюка. – Львів: Каменяр, 1999. – Т. 2. – С. 141–148.

- 12. Андрейків О. Є., Ліщинська М. В. Рівняння росту втомних тріщин в неоднорідних пластинах // Фіз.-хім. механіка матеріалів. 1999. № 3. С. 53–58.
- 13. *Андрейкив А. Е., Дарчук А. И.* Усталостное разрушение и долговечность конструкций. Киев: Наук. думка, 1992. 184 с.
- 14. Андрейкив А. Е. Пространственные задачи теории трещин. Киев: Наук. думка, 1982. 348 с.
- Cornet J., Crassi R. C. Theories of fracture under combined stresses // Trans. ASME. Ser. D. 1961. –
 83, No 1. P. 39–44.

Львівський національний університет ім. Івана Франка Надійшло до редакції 03.11.2008

Corresponding Member of the NAS of Ukraine O. Ye. Andreikiv, Yu. V. Banakhevych, M. B. Kit

Cyclic durability of the thin-walled elements of constructions

Using the calculation model earlier formulated by the authors for the fatigue cracks growth in construction of materials, a method for construction of a diagram of limit stresses for a plate with cracks at cyclic loadings has been developed. On this basis, a method for cyclic strength calculation of thin-walled structural elements with cracks is presented. The obtained theoretical results are compared with the known experimental data.