

ЕНЕРГЕТИКА

УДК 62-50,621:372

ОПОВІДІ

УКРАЇНИ

НАЦІОНАЛЬНОЇ АКАДЕМІЇ НАУК

© 2010

Член-корреспондент НАН Украины А.Е. Божко, В.И. Белых

О динамике линейного электромагнитного виброударного возбудителя

Наводиться метод вивчення переміщень якоря в лінійному електромагнітному віброударному збуджувачі при вхідних впливах у вигляді прямокутних імпульсів. Ці впливи подано як сингуларисні розкладення стрибкоподібної функції.

В данной работе рассматривается электромагнитный виброударный возбудитель с соленоидным механизмом движения якоря (подвижной платформы) ЭМВ. Такой возбудитель вибрации и ударов может быть использован в испытательном стенде. Его конструктивная схема приведена на рис. 1, где ПП — подвижная платформа; Я — якорь; Ш — шток; РМ реактивная масса; М — магнитопровод; К — корпус; Ф_Н — фундамент; Пр_я, Пр_r, Пр_r, Пр

Рис. 1

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2010, № 1

пружины; С — соленоид; НФТ — неферромагнитная труба; 01, 02 — обмотки; Д1, Д2 — диоды; U — задающее напряжение.

Под действием переменного напряжения U(t), являющегося электродвижущей силой (ЭДС), в каждую полуволну попеременно в обмотках 01 и 02 течет электрический ток i(t), который, в соответствии с законом полного тока [1], наводит в системе магнитопровода соленоида магнитный поток (Φ), обусловливающий создание тяговых усилий $F_1(t)$ и $F_2(t)$ от каждого тока $i_1(t)$ и $i_2(t)$ в обмотках 01 и 02 соответственно.

Обмотки 01 и 02 подключены к U(t) таким образом, что ток $i_1(t)$ наводит магнитный поток $\Phi_1(t)$, который создает тяговое усилие $F_1(t)$, движущее якорь совместно с подвижной платформой вверх. В другую полуволну U(t) тяговое усилие $F_2(t)$ заставляет двигаться ПП совместно с якорем вниз.

Между якорем и внутренней поверхностью неферромагнитной трубы имеется воздушный зазор и поэтому демпфирование в этой системе может быть только за счет трения о воздух витков пружин, но оно мало. В начальном состоянии при отсутствии U(t) под действием весовой P_{Σ} нагрузки ПП + Я совместно с объектом, прикрепленном к ПП, все пружины сжимаются и подвижная система смещается на величину $x_{0_{\text{Я}}}$.

Для определения $x_{0\pi}$ представим на рис. 2 механическую схему ЭМВ, где m_{π} , m_r — массы ПП и РМ соответственно; c_{π} , b_{π} — коэффициенты жесткости и диссипации соответственно; x_{π} , x_r — перемещения ПП и РМ соответственно; F — тяговое усилие.

Дифференциальное уравнение движения колебательной системы ЭМВ следующее:

$$m_{\pi} \frac{d^{2}x_{\pi}}{dt^{2}} + b_{\pi} \frac{dx_{\pi}}{dt} + c_{\pi} x_{\pi} = F + P_{\pi} + b_{\pi} \frac{dx_{r}}{dt} + c_{\pi} x_{r},$$

$$m_{r} \frac{d^{2}x_{r}}{dt^{2}} + (b_{\pi} + b_{r}) \frac{dx_{r}}{dt} + (c_{\pi} + c_{r}) x_{r} = P_{\Sigma} + b_{\pi} \frac{dx_{\pi}}{dt} + c_{\pi} x_{\pi}.$$

$$(1)$$

При отсутствии F смещения x_{n0} и x_{r0} выражаются зависимостями

$$x_{\pi 0} = \frac{P + c_{\pi} x_{r0}}{c_{\pi}}, \qquad x_{r0} = \frac{P + c_{\pi} x_{\pi 0}}{c_{\pi} + c_{r}}.$$
(2)

ISSN 1025-6415 Доповіді Національної академії наук України, 2010, №1

Из (2) получаем

$$x_{\pi 0} = P_{\pi} \left(\frac{2}{c_r} + \frac{1}{c_{\pi}} \right) + \frac{P_r}{c_r},$$

$$x_{r0} = \frac{P_{\pi}}{c_{\pi} + c_r} \left[1 + c_{\pi} \left(\frac{2}{c_r} + \frac{1}{c_{\pi}} \right) + P_r \left(\frac{1}{c_{\pi} + c_r} + \frac{1}{c_r} \right) \right].$$
(3)

Переменные движения (вверх — вниз) ПП осуществляются под действием $F_1(t)$ и $F_2(t)$. Поэтому следует определить эти тяговые усилия. Известно [2], что тяговое усилие определяется выражением

$$F = \frac{dW_e}{dx},$$

где $W_e = Li^2/2$ или

$$F_{1,2} = \frac{1}{2}i_{1,2}^2 \frac{dL_{1,2}(x)}{dx_{1,2}},\tag{4}$$

где W_e — электромагнитная энергия; $L_{1,2}$ — индуктивность одной из обмоток 01, 02 соответственно.

Индуктивность

$$L_{1,2} = W_{1,2}^2 G_{1,2},\tag{5}$$

где $W_{1,2}$ — число витков в обмотках 01, 02, соответственно; $G_{1,2}$ — магнитная проводимость в ЭМВ при движении ПП вверх и вниз также соответственно.

При движении ПП вверх

$$G_1 = \frac{\mu_0 S}{\delta_0 + l_1 + x_{\pi 0} - x_1},\tag{6}$$

а при движении ПП вниз

$$G_2 = \frac{\mu_0 S}{\delta_0 + l_2 - x_{\pi 0} + x_1},\tag{7}$$

где μ_0 — магнитная проницаемость воздуха; S — площадь поперечного сечения обсадной ферромагнитной трубы (ФМТ); δ_0 — воздушные зазоры между ФМТ и якорем; l_1 — начальное расстояние между якорем и верхним торцом ФМТ; l_2 — начальное расстояние между якорем и нижним торцом ФМТ; x_1 , x_2 — перемещения вверх и вниз соответственно. Заметим, что $\delta_0 \ll l_1$ и $\delta_0 \ll l_2$. Поэтому в (6) и (7) δ_0 можно не учитывать.

Подставляя (6), (7) в (4) с учетом (5), получим выражения для тяговых усилий F_1 и F_2 в виде

$$F_1 = \frac{1}{2}\mu_0 S \left(\frac{i_1 w_1}{l_1 + x_{20} - x_1}\right)^2,\tag{8}$$

$$F_2 = \frac{1}{2}\mu_0 S \left(\frac{i_2 w_2}{l_2 - x_{20} + x_1 - x_2}\right)^2.$$
(9)

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2010, № 1

Рис. 3

Из рис. 2, где изображена механическая схема ЭМВ, видно, что подвижная система ЭМВ представляет собой колебательную систему (КС) с двумя степенями свободы. Анализируя уравнения (1), представим структурную схему ПП в виде рис. 3, где w_1 , w_2 , w_3 — передаточные функции вида

$$w_1(p) = \frac{1}{m_{\mathfrak{R}}p^2 + b_{\mathfrak{R}}p + c_{\mathfrak{R}}}; \quad w_2(p) = b_{\mathfrak{R}}p + c_{\mathfrak{R}}; \quad w_3(p) = \frac{1}{m_rp^2 + (b_{\mathfrak{R}} + b_r)p + c_{\mathfrak{R}} + c_r};$$

p — оператор Лапласа (p = d/dt).

На основании схемы КС (см. рис. 3)

$$x_{\pi} = \frac{F_1 w_1}{1 - w_1 w_2^2 w_3} + \frac{P_{\pi} w_1 (1 + w_2 w_3)}{1 - w_1 w_2^2 w_3} + P_r \frac{w_1 w_2 w_3}{1 - w_1 w_2^2 w_3};$$
(10)

$$x_r = \frac{F_1 w_1 w_2 w_3}{1 - w_1 w_2^2 w_3} + \frac{P_{\pi} w_3 (1 + w_1 w_2)}{1 - w_1 w_2^2 w_3} + \frac{P_r w_3}{1 - w_1 w_2^2 w_3}.$$
(11)

Из (10) и (11) получаем

$$\left. \begin{array}{l} x_{\pi} - x_{\pi 0} = \frac{F_1 w_1}{1 - w_1 w_2^2 w_3}, \\ x_r - x_{r0} = \frac{F_1 w_1 w_2 w_3}{1 - w_1 w_2^2 w_3}, \end{array} \right\}$$
(12)

где x_{я0}, x_{яr} определяются выражениями (3), а из (10) и (11) они соответственно равны

$$x_{\pi 0} = \frac{P_{\pi}w_1(1+w_2w_3)}{1-w_1w_2^2w_3} + P_r\frac{w_1w_2w_3}{1-w_1w_2^2w_3};$$
$$x_{r0} = \frac{P_{\pi}w_3(1+w_1w_2)}{1-w_1w_2^2w_3} + \frac{P_rw_3}{1-w_1w_2^2w_3}.$$

Заметим, что в последних выражениях для x_{n0} и x_{r0} в передаточных функциях $w_1(p)$, $w_2(p)$, $w_3(p)$ оператор p не участвует, т.е.

$$w_1 = \frac{1}{c_{\pi}}, \qquad w_2 = c_{\pi}, \qquad w_3 = \frac{1}{c_{\pi} + c_r}.$$

Из (12) можно найти изображение Лапласа или Карсона

$$x_{\mathfrak{g}}(p) - x_{\mathfrak{g}0} = F_1(p)w_{\Sigma 1}(p), \tag{13}$$

$$x_r(p) - x_{r0} = F_1(p)w_{\Sigma 2}(p), \tag{14}$$

ISSN 1025-6415 Доповіді Національної академії наук України, 2010, №1 91

$$w_{\Sigma 1}(p) = \frac{w_1(p)}{1 - w_1(p)w_2^2(p)w_3(p)},\tag{15}$$

$$w_{\Sigma 2}(p) = \frac{w_1(p)w_2(p)w_3(p)}{1 - w_1(p)w_2^2(p)w_3(p)},\tag{16}$$

а затем, например, по таблицам [3] — оригиналы $x_{s}(t), x_{r}(t)$.

Далее рассмотрим движение ПП при входных напряжениях в виде прямоугольных импульсов. Используя сингуларисное разложение скачкообразной функции [4], представим прямоугольный импульс напряжения на зажимах обмотки 01, 02 в виде, соответственно,

$$U_{1}(t) = U_{1}(1 - e^{-\alpha t}) + U_{1}e^{-\alpha t}\sum_{k=1}^{n} U_{ak}\cos\omega_{k}t - U_{1}[1 - e^{-\alpha(t+\tau)}] - U_{1}e^{-\alpha(t+\tau)}\sum_{k=1}^{n} U_{ak}\cos[\omega_{k}(t-\tau)],$$

$$U_{2}(t) = U_{2}(1 - e^{-\alpha(t+\tau)}) + U_{2}e^{-\alpha(t+\tau)}\sum_{k=1}^{n} U_{ak}\cos[\omega_{k}(t-\tau)] - U_{2}[1 - e^{-\alpha(t+2\tau)}] - U_{2}[1 - e^{-$$

$$-U_2 e^{-\alpha(t+2\tau)} \sum_{k=1}^n U_{ak} \cos[\omega_k(t-2\tau)],$$
(18)

где α — коэффициент затухания; τ — длительность импульса; U_1, U_2 — величина импульсов; $\sum_{k=1}^{n} U_{ak} = 1; U_{a1} = 1/\pi; U_{ak} = U_{a1}/k; k = \omega_k/\omega_1; \omega_k, k = \overline{1, n}, -$ частоты затухающих гармоник, $n \approx 12$.

Представленные в виде (17), (18) прямоугольные импульсы подаются на зажимы обмоток 01, 02 соответственно и в цепи этих обмоток возникают токи $i_1(t)$ и соответственно $i_2(t)$. Эти токи находятся из уравнений

$$(17) = R_1 i_1 + \frac{d}{dt} [L_1 i_1], \tag{19}$$

$$(18) = R_2 i_2 + \frac{d}{dt} [L_2 i_2], \tag{20}$$

где R_1 , R_2 — активные сопротивления соответствующих обмоток 01 и 02; L_1 , L_2 — их индуктивности.

С учетом принятых допущений

92

$$L_1 = \mu_0 S W_1^2 \frac{1}{l_1 + x_{20} - x_1(t)},\tag{21}$$

$$L_2 = \mu_0 S W_2^2 \frac{1}{l_2 - x_{20} + x_{1\tau} - x_2(t - \tau)},$$
(22)

где $x_{1\tau}$ — величина x_1 при $t = \tau; W_1, W_2$ — число витков 01 и 02 соответственно.

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2010, № 1

где

Из (21), (22) видно, что $l_1 + x_{20} \gg x_{1\tau}$, $l_2 - x_{20} + x_{1\tau} \gg x_2(t - \tau)$ и это дает право не учитывать L_1 и L_2 как функции, зависящие от t. Тогда уравнения (19), (20) примут вид

$$(17) = R_1 i_1 + L_1 \frac{di_1}{dt}, \qquad (18) = R_2 i_2 + L_2 \frac{di_2}{dt}.$$
(23)

Как было отмечено в (13), (14), нахождение $x_{\mathfrak{s}}(p)$ и $x_r(p)$ можно осуществить в операционном виде [1, 5] с использованием передаточных функций (15), (16). В (13), (14) тяговые усилия $F_1(p)$ и $F_2(p)$ представлены в операционной форме. Из (8), (9) получим

$$F_1(p) = p \int_0^\infty F_1(t) e^{-pt} dt = p a_1 \int_0^\infty i_1^2(t) e^{-pt} dt,$$
(24)

$$F_2(p) = p \int_0^\infty F_2(t) e^{-pt} dt = p a_2 \int_0^\infty i_2^2(t) e^{-pt} dt,$$
(25)

где

$$a_1 \approx \frac{1}{2}\mu_0 S\left(\frac{W_1}{l_1 + x_{20}}\right)^2, \qquad a_2 \approx \frac{1}{2}\mu_0 S\left(\frac{W_2}{l_2 - x_{20} + x_{1\tau}}\right).$$

На основании (24), (25) будем находить $i_1(t)$ и $i_2(t)$ из (23). Заметим, что решение (23) относительно токов i_1 и i_2 аналогично. При этом учтем, что передний фронт напряжения (18) совпадает со спадом напряжения (17), а затем наоборот. А это значит, что, с точки зрения облегчения процедуры решения, целесообразно определять токи $i_1(t)$ и $i_2(t)$ при входных воздействиях, подключаемых к обмоткам 01 и 02 в виде

$$U_1(t) = U_1(1 - e^{-\alpha t}) + U_1 e^{-\alpha t} \sum_{k=1}^n U_{ak} \cos \omega_k t,$$
$$U_2(t) = U_2[1 - e^{-\alpha(t+\tau)}] + U_2 e^{-\alpha(t+\tau)} \sum_{k=1}^n U_{ak} \cos[\omega_k(t-\tau)].$$

Предлагаем еще одно упрощение при нахождении $i_2(t)$, а именно: можно абстрагироваться от сдвига времени τ и находить $i_2(t)$ при начале импульса $U_2(t)$ при t = 0 для этого момента. И так в каждый полупериод входного воздействия. Тогда при идентичности параметров электроцепей обмоток 01 и 02 токи $i_1(t) = i_2(t)$. Поэтому осуществим решение одного уравнения, считая $U_1 = U_2 = U$, вида

$$U(1 - e^{-\alpha t}) + Ue^{-\alpha t} \sum_{k=1}^{n} U_{ak} \cos \omega_k t = Ri + L \frac{di}{dt}.$$
(26)

Используя операционное исчисление Карсона [3], уравнение (26) представим в виде

$$U\left[\frac{\alpha}{p+\alpha} + \sum_{k=1}^{n} \frac{U_{ak}p(p+\alpha)}{(p+\alpha)^2 + \omega_k^2}\right] = I(p)(R+Lp),$$

ISSN 1025-6415 Доповіді Національної академії наук України, 2010, №1

откуда

$$I(p) = \frac{U}{L(p+\beta)} \left[\frac{\alpha}{p+\alpha} + \sum_{k=1}^{n} \frac{U_{ak}p(p+\alpha)}{(p+\alpha)^2 + \omega_k^2} \right],$$

или

$$I(p) = \frac{U}{L} \left\{ \frac{\alpha}{(p+\alpha)(p+\beta)} + \sum_{k=1}^{n} \frac{U_{ak}p^2}{(p+\beta)[(p+\alpha)^2 + \omega_k^2]} + \sum_{k=1}^{n} \frac{U_{ak}\alpha p}{(p+\beta)[(p+\alpha)^2 + \omega_k^2]} \right\},$$
(27)

где $\beta = R/L$ — коэффициент затухания в RL цепи.

Оригинал i(t), соответствующий изображению I(p) в виде (27), следующий (определен по таблицам [3]):

$$i(t) = \frac{U}{L} \left\langle \frac{1}{\beta} + \frac{\alpha}{\alpha - \beta} \left(\frac{1}{\alpha} e^{-\alpha t} - \frac{1}{\beta} e^{-\beta t} \right) + \sum_{k=1}^{n} \frac{U_{ak}}{(\alpha - \beta)^2 + \omega_k^2} \times \left\{ e^{-\beta t} (1 - \beta) + \frac{e^{-\alpha t}}{\omega_k} [\omega_k (\beta - 1) \cos \omega_k t + (\omega_k^2 - \alpha^2 + \beta - \alpha - \alpha\beta) \sin \omega_k t] \right\} \right\rangle.$$
(28)

Представим (8) и (9) в виде

$$F_l = a_l i^2(t), \qquad l = 1, 2,$$
 (29)

где

$$a_1 = \frac{1}{2}\mu_0 S\left(\frac{W_1}{l_1 + x_{20} - x_1}\right)^2, \qquad a_2 = \frac{1}{2}\mu_0 S\left(\frac{W_2}{l_2 - x_{20} + x_1 - x_2}\right)^2,$$

и подставим в (29) выражение (28). В результате получим

$$F_l(t) = a_l(28)^2, \qquad l = 1,2.$$
 (30)

Анализируя (30) с учетом (28) применительно к системе (1), предварительно видим, что затухающие колебания $Ue^{-\alpha t} \sum_{k=1}^{n} U_{ak} \cos \omega_k t$ сопроводили соответствующие затухающие колебания тока i(t), что, в свою очередь, обусловили также затухающие колебания с частотами ω_k , $2\omega_k$, $k = \overline{1, n}$, тягового усилия $F_l(t)$. Заметим, что коэффициент затухания α значительно больше коэффициента затухания β . Для краткости и облегчения решения задачи, не умаляя существа основной динамики якоря ЭМВ, исключая начальные затухающие колебания, примем $\alpha = \infty$. Тогда

$$i(t) = \frac{U}{R}(1 - e^{-\beta t})$$

И

$$F_l(t) = a_l \frac{U^2}{R^2} (1 - e^{-\beta t})^2 = a_l \left(\frac{U}{R}\right)^2 (1 - 2e^{-\beta t} + e^{-2\beta t}).$$

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2010, № 1

В операционном виде $F_l(p)$ описывается выражением

$$F_l(p) = a_l \left(\frac{U}{R}\right)^2 \left(1 - \frac{2p}{p+\beta} + \frac{p}{p+2\beta}\right).$$
(31)

Подставим его в (12). Получим

$$x_{\mathfrak{g}}(p) - x_{\mathfrak{g}0} = a_l \left(\frac{U}{R}\right)^2 \left(1 - \frac{2p}{p+\beta} + \frac{p}{p+2\beta}\right) \times \frac{m_r p^2 + (b_{\mathfrak{g}} + b_r)p + c_{\mathfrak{g}} + c_r}{(m_{\mathfrak{g}} p^2 + b_{\mathfrak{g}} p + c_{\mathfrak{g}})[m_r p^2 + (b_{\mathfrak{g}} + b_r)p + c_{\mathfrak{g}} + c_r] - (b_{\mathfrak{g}} p + c_{\mathfrak{g}})^2},$$
(32)
$$x_r(p) - x_{r0} = a_l \left(\frac{U}{R}\right)^2 \left(1 - \frac{2p}{p+\beta} + \frac{p}{p+2\beta}\right) \times \frac{b_{\mathfrak{g}} p + c_{\mathfrak{g}}}{(m_{\mathfrak{g}} p^2 + b_{\mathfrak{g}} p + c_{\mathfrak{g}})[m_r p^2 + (b_{\mathfrak{g}} + b_r)p + c_{\mathfrak{g}} + c_r] - (b_{\mathfrak{g}} p + c_{\mathfrak{g}})^2}.$$
(33)

Далее, используя метод простых дробей [3], определим оригиналы $x_{\mathfrak{g}}(t)$ и $x_r(t)$. Облегчим решение задачи путем игнорирования составляющей в знаменателях (32), (33) $(b_{\mathfrak{g}}p+c_{\mathfrak{g}})^2$. Это оправдано тем, что $(b_{\mathfrak{g}}p+c_{\mathfrak{g}})^2=b_{\mathfrak{g}}^2p^2+2b_{\mathfrak{g}}c_p+c_{\mathfrak{g}}^2\approx c_{\mathfrak{g}}^2$, так как коэффициент $b_{\mathfrak{g}}\ll 1$. Уменьшение величины членов с коэффициентом $c_{\mathfrak{g}}$ с учетом члена $(-c_{\mathfrak{g}}^2)$ можно учесть в том же знаменателе, исключив в сомножителе $[m_pp^2+(b_{\mathfrak{g}}+b_r)p+c_{\mathfrak{g}}+c_r]$ величину $c_{\mathfrak{g}}$.

Перейдем к определению оригиналов $x_{\pi}(t)$ и $x_r(t)$. Для этого из (32), (33) с учетом принятого допущения составим суммы простых дробей для каждого слагаемого в виде (здесь пока $a_l(U/R)^2$ опустим)

$$\frac{A_{\pi 1}p + B_{\pi 1}}{m_{\pi}p^{2} + b_{\pi}p + c_{\pi}} + \frac{c_{\pi 1}p + D_{\pi 1}}{m_{r}p^{2} + (b_{\pi} + b_{r})p + c_{r}} = \Psi_{\pi},$$

$$\frac{A_{\pi 2}p + B_{\pi 2}}{m_{\pi}p^{2} + b_{\pi}p + c_{\pi}} + \frac{c_{\pi 2}p + D_{\pi 2}}{m_{r}p^{2} + (b_{\pi} + b_{r})p + c_{r}} + \frac{E_{\pi 2}}{p + \beta} = -2p\Psi_{\pi},$$

$$\frac{A_{\pi 3}p + B_{\pi 3}}{m_{\pi}p^{2} + b_{\pi}p + c_{\pi}} + \frac{c_{\pi 3}p + D_{\pi 3}}{m_{r}p^{2} + (b_{\pi} + b_{r})p + c_{r}} + \frac{E_{\pi 3}}{p + 2\beta} = p\Psi_{\pi},$$

$$\frac{A_{r1}p + B_{r1}}{m_{\pi}p^{2} + b_{\pi}p + c_{\pi}} + \frac{c_{r1}p + D_{r1}}{m_{r}p^{2} + (b_{\pi} + b_{r})p + c_{r}} = \Psi_{r},$$

$$\frac{A_{r2}p + B_{r2}}{m_{\pi}p^{2} + b_{\pi}p + c_{\pi}} + \frac{c_{r2}p + D_{r2}}{m_{r}p^{2} + (b_{\pi} + b_{r})p + c_{r}} + \frac{E_{r2}}{p + \beta} = -2p\Psi_{r},$$

$$\frac{A_{r3}p + B_{r3}}{m_{\pi}p^{2} + b_{\pi}p + c_{\pi}} + \frac{c_{r3}p + D_{r3}}{m_{r}p^{2} + (b_{\pi} + b_{r})p + c_{r}} + \frac{E_{r3}}{p + 2\beta} = p\Psi_{r},$$

$$(35)$$

где Ψ_{π} , Ψ_r — вторые сомножители в (32), (33), соответственно, равные передаточным функциям в (12), также соответственно.

ISSN 1025-6415 Доповіді Національної академії наук України, 2010, №1

Оригиналы изображений (34), (35) имеют вид

$$x_{\varepsilon}(t) - x_{\varepsilon 0} = a_l \left(\frac{U}{R}\right)^2 \left\{ E_{\varepsilon 2} \frac{1}{\beta} (1 - e^{-\beta t}) + E_{\varepsilon 3} \frac{1}{2\beta} (1 - e^{-2\beta t}) + \left[\frac{1}{m_{\pi}\omega_{0\pi}} (A_{\varepsilon 1} + A_{\varepsilon 2} + A_{\varepsilon 3}) - \frac{b_{\pi}}{2m_{\pi}\omega_{02}c_{\pi}} (B_{\varepsilon 1} + B_{\varepsilon 2} + B_{\varepsilon 3})\right] e^{-\frac{b_{\pi}}{2m_{\pi}}t} \sin \omega_{0\pi}t + \left[\frac{1}{m_{\tau}\omega_{0r}} (C_{\varepsilon 1} + C_{\varepsilon 2} + C_{\varepsilon 3}) - \frac{b_{\pi} + b_r}{2m_{\tau}\omega_{02}c_{r}} (D_{\varepsilon 1} + D_{\varepsilon 2} + D_{\varepsilon 3})\right] e^{-\frac{b_{\pi} + b_r}{2m_{r}}t} \sin \omega_{0r}t + \left[\frac{1}{c_{\pi}} (B_{\varepsilon 1} + B_{\varepsilon 2} + B_{\varepsilon 3})e^{-\frac{b_{\pi}t}{2m_{\pi}}}\cos \omega_{0\pi}t + \frac{1}{c_{r}} (D_{\varepsilon 1} + D_{\varepsilon 2} + D_{\varepsilon 3})\right] e^{-\frac{b_{\pi} + b_r}{2m_{r}}t} \cos \omega_{0r}t \right\}, \quad (36)$$

где

$$\varepsilon = \mathfrak{s}, r; \qquad \omega_{0\mathfrak{s}} = \sqrt{\frac{c_{\mathfrak{s}}}{m_{\mathfrak{s}}} - \left(\frac{b_{\mathfrak{s}}}{2m_{\mathfrak{s}}}\right)^2}; \qquad \omega_{0r} = \sqrt{\frac{c_r}{m_r} - \left(\frac{b_{\mathfrak{s}} + b_r}{2m_r}\right)^2}.$$

Коэффициенты $A_{\varepsilon s}$, $B_{\varepsilon s}$, $C_{\varepsilon s}$, $D_{\varepsilon s}$, $E_{\varepsilon s}$, $s = \overline{1,3}$, $\varepsilon = \mathfrak{s}$, r, определяются из системы уравнений (34), (35). Как видно из (36), перемещения $x_{\mathfrak{s}}(t)$ и $x_r(t)$ состоят из совокупности экспоненциально нарастающих составляющих с коэффициентами затухания β , 2β и экспоненциально затухающих осциллирующих составляющих с коэффициентами затухания $b_{\mathfrak{s}}/(2m_{\mathfrak{s}})$ и $(b_{\mathfrak{s}} + b_r)/(2m_r)$ и составными частотами $\omega_{0\mathfrak{s}}$ и ω_{0r} .

Заметим еще раз, что затухающие колебания в сингуларисном представлении U(t) в виде $Ue^{-\alpha t} \sum_{k=1}^{n} U_{ak} \cos \omega_k t$, проникнув в тяговое усилие F(t), вызывают затухающие колебания с коэффициентом затухания α якоря в начальный период его движения. Эти колебания якоря, раскачивая его, способствуют началу движения, которое подхватывается действием F(t), выражаемое в виде (30) при $\alpha = \infty$.

Таким образом, в результате данного исследования разработан метод нахождения перемещений подвижной системы электромагнитного линейного виброударного возбудителя. Причем принято, что входные управляющие воздействия, являясь прямоугольными импульсами, представляются в виде сингуларисного разложения скачкообразной функции. Как известно [4], такое представление входных скачкообразных воздействий позволяет учитывать зоны нечувствительности электроцепей обмоток 01, 02, которые влияют на время начала движения якоря в ЭМВ. Задержка движения во времени равна примерно 4,6 · 1/α.

- 1. Бессонов Л.А. Теоретические основы электротехники. Москва: Высш. шк., 1978. 528 с.
- 2. *Ряшенцев Н. П., Ковалев Ю. З.* Динамика электромагнитных импульсных систем. Новосибирск: Наука, 1974. 188 с.
- 3. Гинзбург С. Г. Методы решения задач по переходным процессам в электрических цепях. Москва: Сов. радио, 1959. 404 с.
- 4. Божко А. Е. Аргументированная детализация новой концепции о переходных процессах в электроцепях // Доп. НАН України. – 2007. – № 6. – С. 81–87.

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины, Харьков Поступило в редакцию 13.06.2008

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2010, № 1

Corresponding Member of the NAS of Ukraine A. E. Bozhko, V. I. Belykh

On the dynamics of a linear electromagnetic vibrostroke exciter

The method to determine a displacement of the rotor in a linear electromagnetical vibrostroke exciter with the influence of input rectangular impulses is given. This influence is presented in the form of the singularismal expansion of a jump-like function.