

НАЦІОНАЛЬНОЇ АКАДЕМІЇ НАУК

ФІЗИКА

УДК 537.874.6

© 2010

А.В. Бровенко, член-корреспондент НАН Украины П.Н. Мележик, А.Е. Поединчук, А.С. Трощило

Метод аналитической регуляризации в решении задач дифракции электромагнитных волн на границе гиротропной среды с ленточной решеткой

Запропоновано точний метод розрахунку дифракційних характеристик стрічкових періодичних граток, що знаходяться на межі гіротропного феромагнітного середовища у випадку похилого падіння плоскої однорідної електромагнітної хвилі.

Рассматривается бесконечная периодическая решетка с периодом l, образованная идеально проводящими бесконечно тонкими лентами шириной d. Ленты решетки расположены в плоскости x = 0 параллельно оси 0z (рис. 1).

Пусть полупространство x > 0 — вакуум, а полупространство x < 0 заполнено однородной ферромагнитной средой. Предполагается, что для электромагнитных волн, зависящих от времени по закону $e^{-i\omega t}$, материальные уравнения для этой среды имеют вид

$$\vec{D} = \varepsilon \vec{E}, \qquad \vec{B} = \hat{\mu} \vec{H}.$$

Рис. 1. Поперечное сечение структуры

ISSN 1025-6415 Доповіді Національної академії наук України, 2010, №3

где \vec{D} и \vec{B} — соответственно электрическая и магнитная индукции, а \vec{E} и \vec{H} — соответственно напряженности электрического и магнитного полей. В общем случае диэлектрическая проницаемость ε может быть комплексным числом, а $\hat{\mu}$ — тензор магнитной проницаемости, который при постоянном магнитном поле \vec{H}_0 , параллельном оси Oz, определяется следующим образом:

$$\widehat{\mu} = \left\| \begin{matrix} \mu & i\mu_a & 0 \\ -i\mu_a & \mu & 0 \\ 0 & 0 & 1 \end{matrix} \right|,$$

где

$$\mu = 1 - \frac{\kappa_H \kappa_M}{\kappa^2 - \kappa_H^2}; \qquad \mu_a = \frac{\kappa \kappa_M}{\kappa^2 - \kappa_H^2}, \qquad \kappa = \frac{\omega l}{2\pi c}; \qquad \kappa_H = \frac{\omega_H l}{2\pi c}; \qquad \kappa_M = \frac{\omega_M l}{2\pi c}$$

Здесь ω — частота падающего поля, $\omega_H = |\gamma| |\vec{H}_0|$ — частота ферромагнитного резонанса и $\omega_M = 4\pi |\gamma| |\vec{M}_0|$ — частота, характеризующая намагниченность среды (γ — гиромагнитное отношение для электрона, \vec{M}_0 — намагниченность насыщения), c — скорость света в вакууме.

Пусть на решетку из вакуума под углом α к оси 0x падает плоская однородная E-поляризованная электромагнитная волна (вектор напряженности электрического поля параллелен оси Oz) $E_z^{(\text{пад})} = e^{-ik(x\cos(\alpha)-y\sin(\alpha))}$ ($k = \omega/c$, временная зависимость $e^{-i\omega t}$ здесь и далее опускается). Задача состоит в определении электромагнитного поля, возникающего в результате дифракции этой волны на решетке и границе раздела сред. Поскольку падающая волна не зависит от переменной z, а ленты решетки бесконечны и однородны вдоль оси Oz, то естественно предположить, что поле дифракции также не зависит от переменной z и является E-поляризованным, т. е. вектор напряженности электромагнитного поля имеет единственную, отличную от нуля компоненту E_z . Введем две функции $V_1(x, y)$ и $V_2(x, y)$ такие, что

$$E_z = \begin{cases} V_1(x,y); & x > 0, \\ V_2(x,y); & x < 0. \end{cases}$$

Тогда, как следует из системы уравнений Максвелла, эти функции должны удовлетворять уравнениям Гельмгольца

$$\begin{cases} \Delta V_1(x,y) + k^2 V_1(x,y) = 0 & \text{при } x > 0; \\ \Delta V_2(x,y) + k^2 \varepsilon \mu_\perp V_2(x,y) = 0 & \text{при } x < 0. \end{cases}$$
(1)

Кроме того, потребуем для этих функций выполнения следующих условий: условия квазипериодичности

$$V_j(x, y \pm l) = e^{ikl\sin(\alpha)}V_j(x, y), \qquad j = 1, 2,$$
(2)

граничного условия на лентах решетки

$$V_1(0,y) = -e^{iky\sin(\alpha)}; \qquad V_2(0,y) = 0,$$
(3)

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2010, № 3

условия сопряжения на границе раздела сред

$$e^{iky\sin(\alpha)} + V_1(0,y) = V_2(0,y) - \text{ на всем периоде;}$$

$$k\cos(\alpha)e^{iky\sin(\alpha)} + i\frac{\partial V_1(0,y)}{\partial x} = \frac{1}{\mu_{\perp}} \left(i\frac{\partial V_2(0,y)}{\partial x} + \tau \frac{\partial V_2(0,y)}{\partial y} \right) - \text{ на щелях,}$$
(4)

условия Мейкснера [1] и условия излучения

$$V_{1}(x,y) = \sum_{n=-\infty}^{+\infty} a_{n} e^{2\pi i G_{1n} \frac{x}{l}} e^{2\pi i h_{n} \frac{y}{l}}, \qquad x > 0,$$

$$V_{2}(x,y) = \sum_{n=-\infty}^{+\infty} b_{n} e^{-2\pi i G_{2n} \frac{x}{l}} e^{2\pi i h_{n} \frac{y}{l}}, \qquad x < 0,$$
(5)

где $G_{1n} = \sqrt{\kappa^2 - h_n^2}, G_{2n} = \sqrt{\kappa^2 \varepsilon \mu_\perp - h_n^2}, a h_n = n + \kappa \sin(\alpha), \kappa = kl/(2\pi).$ Выбор ветвей корней G_{1n} и G_{2n} производится следующим образом: если ε — веществен-

выоор ветвей корней G_{1n} и G_{2n} производится следующим образом: если ε — вещественное число, то

$$\operatorname{Re} G_{1n} \ge 0, \qquad \operatorname{Im} G_{1n} \ge 0,$$
$$\operatorname{Re} G_{2n} \ge 0, \qquad \operatorname{Im} G_{2n} \ge 0,$$

если ε — комплексное число (Im $\varepsilon \neq 0$), то

$$\begin{aligned} &\operatorname{Re} G_{1n} \geqslant 0, \qquad \operatorname{Im} G_{1n} \geqslant 0, \\ &\operatorname{Re} G_{2n} \leqslant 0, \qquad \operatorname{Im} G_{2n} \geqslant 0 \qquad \text{при} \qquad \kappa_0 < \kappa < \kappa_+ \end{aligned}$$

И

 $\operatorname{Re} G_{1n} \ge 0,$ $\operatorname{Im} G_{1n} \ge 0,$ $\operatorname{Re} G_{2n} \ge 0,$ $\operatorname{Im} G_{2n} \ge 0,$ когда $\kappa < \kappa_0$ либо $\kappa > \kappa_+.$

Здесь $\mu_{\perp} = (\kappa^2 - \kappa_+^2)/(\kappa^2 - \kappa_0^2)$ — эффективная магнитная проницаемость ферромагнитной среды, $\kappa_0 = \sqrt{\kappa_H \kappa_+}$ и $\kappa_- = \kappa_H + (\kappa_M/2)$ — соответственно нижняя и верхняя граничные частоты магнитостатической волны ферритового полупространства, $\kappa_+ = \kappa_H + \kappa_M$ — частота антирезонанса, $\tau = \mu_a/\mu$.

Легко показать, что через функци
и V_1 и V_2 компоненты искомого поля дифракции выражаются следующим образом:

$$E_{z}(x,y) = \begin{cases} V_{1}(x,y), & x > 0, \\ V_{2}(x,y), & x < 0, \end{cases}$$

$$H_{y}(x,y) = -\frac{1}{ki} \begin{cases} \frac{\partial V_{1}(x,y)}{\partial x}, & x > 0, \\ \frac{1}{\mu_{\perp}} \left(\frac{\partial V_{2}(x,y)}{\partial x} - i\tau \frac{\partial V_{2}(x,y)}{\partial y}\right), & x < 0, \end{cases}$$

$$(6)$$

$$H_x(x,y) = \frac{1}{k} \begin{cases} \frac{\partial V_1(x,y)}{\partial y}, & x > 0\\ \frac{1}{\mu_{\perp}} \left(\frac{\partial V_2(x,y)}{\partial y} + i\tau \frac{\partial V_2(x,y)}{\partial x} \right), & x < 0 \end{cases}$$

ISSN 1025-6415 Доповіді Національної академії наук України, 2010, № 3

Прямыми вычислениями доказывается, что функции V_1 и V_2 из (5) удовлетворяют уравнениям Гельмгольца (1). Следовательно, задача состоит в нахождении неизвестных коэффициентов a_n и b_n , $n = 0, \pm 1, \pm 2, \ldots$ Как следует из (4), эти коэффициенты связаны соотношениями $b_0 = 1 + a_0$; $b_n = a_n$, $n = \pm 1, \pm 2, \ldots$ С учетом этого, подставляя (5) в (3) и (4), после ряда преобразований, аналогичных [2–4], получаем систему функциональных уравнений следующего вида:

$$\begin{cases} \sum_{n=0}^{+\infty} (n+\vartheta)\widehat{b}_{n}e^{in\varphi} - \zeta \sum_{n=-\infty}^{-1} (n+\vartheta)\widehat{b}_{n}e^{in\varphi} = \\ = f(e^{i\varphi}) - 2\kappa i \cos(\alpha)e^{in_{0}\varphi}\frac{\mu_{\perp}}{1+\mu_{\perp}+\tau}, \qquad |\varphi| < \theta, \\ \sum_{\substack{n=-\infty\\n=-\infty}}^{+\infty} (n+\vartheta)\widehat{b}_{n}e^{in\varphi} = 0, \qquad \theta < |\varphi| < \pi, \\ \sum_{\substack{n=-\infty\\n\neq 0}}^{+\infty} (-1)^{n}\widehat{b}_{n} = -\widehat{b}_{0}, \qquad \varphi = \pi. \end{cases}$$

$$(7)$$

Здесь $\hat{b}_n = b_{n-n_0}$; $n_0 = [\kappa \sin(\alpha)]$, где $[\ldots]$ — целая часть числа и $\vartheta = \kappa \sin(\alpha) - n_0$; $\zeta = \frac{1 + \mu_{\perp} - \tau}{1 + \mu_{\perp} + \tau}$; $\theta = \pi \left(1 - \frac{d}{l}\right)$. Отметим, что $0 \leq \vartheta < 1$. Функция $f(e^{i\varphi})$ в (7) может быть представлена в виде ряда Фурье:

$$f(e^{i\varphi}) = \sum_{n=-\infty}^{+\infty} f_n e^{in\varphi},\tag{8}$$

где

$$f_0 = \left(\vartheta + i\frac{\sqrt{\kappa^2\varepsilon\mu - \vartheta^2} + \mu_{\perp}\sqrt{\kappa^2 - \vartheta^2} + i\tau\vartheta}{1 + \mu_{\perp} + \tau}\right)\widehat{b}_0, \qquad f_n = \delta_n\widehat{b}_n,$$

 \mathbf{a}

$$\delta_n = \frac{|n+\vartheta| + i\sqrt{\kappa^2 \varepsilon \mu_\perp - (n+\vartheta)^2} + \mu_\perp \left(|n+\vartheta| + i\sqrt{\kappa^2 - (n+\vartheta)^2}\right)}{1 + \mu_\perp + \tau}.$$

Следуя [2–4], определим функцию B(z) комплексной переменной z по формуле

$$B(z) = \begin{cases} B^{+}(z), & |z| < 1, \\ B^{-}(z), & |z| > 1, \end{cases}$$

rge $B^{+}(z) = \sum_{n=0}^{+\infty} (n+\vartheta)\widehat{b}_{n}z^{n}$ u $B^{-}(z) = -\sum_{n=-\infty}^{-1} (n+\vartheta)\widehat{b}_{n}z^{n}.$

Из второго уравнения (8) следует, что B(z) — аналитическая функция в комплексной плоскости с разрезом вдоль дуги \mathcal{L} окружности |z| = 1, соединяющей точки $e^{-i\theta}$ и $e^{i\theta}$ и проходящей через точку z = 1. Пусть $B^+(e^{i\varphi})$ и $B^-(e^{i\varphi})$ — предельные значения B(z) на дуге \mathcal{L} соответственно при подходе к ней изнутри и извне круга |z| < 1. Тогда из первого уравнения (8) получаем

$$B^{+}(e^{i\varphi}) + \zeta B^{-}(e^{i\varphi}) = F(e^{i\varphi}), \qquad z \in \mathcal{L},$$

$$F(e^{i\varphi}) = f(e^{i\varphi}) - 2\kappa i \cos(\alpha) e^{in_0\varphi} \mu_{\perp} / (1 + \mu_{\perp} + \tau).$$
(9)

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2010, № 3

80

где

Соотношение (9) является задачей Римана–Гильберта, к которой эквивалентным образом сведена система функциональных уравнений (7). Краевая задача (9) состоит в построении функции B(z), аналитической всюду на комплексной плоскости, кроме дуги \mathcal{L} , а ее предельные значения $B^+(e^{i\varphi})$ и $B^-(e^{i\varphi})$ удовлетворяют на \mathcal{L} условию (9).

Далее будем рассматривать случай $\zeta > 0$, что соответствует такому выбору параметра $\kappa: \kappa < \kappa_{-}$ и $\kappa > \kappa_{+}$. Аналогично исследуется случай $\zeta < 0$.

Решение краевой задачи (9) ищем в самом широком классе h_0 [5], т.е. в классе функций, допускающих интегрированную особенность на концах \mathcal{L} и убывающих при $z \to \infty$.

Согласно [5], имеем

$$B(z) = \mathcal{K}(z) \left(\frac{1}{2\pi i} \int_{\mathcal{L}} \frac{F(y)dy}{\mathcal{K}^+(y)(y-z)} + C \right),\tag{10}$$

где K(z) — каноническое решение краевой задачи (10) в h_0 , а K⁺(z) — предельное значение функции K(z) на \mathcal{L} изнутри круга |z| < 1; C — подлежащая определению постоянная. Для K(z) и K⁻¹(z) имеют место представления в виде рядов по степеням комплексного переменного z

$$K(z) = \begin{cases} -e^{2\beta\theta} \sum_{n=0}^{+\infty} P_n(\beta, \theta) z^n, & |z| < 1, \\ z^{-1} \sum_{n=0}^{+\infty} P_n(-\beta, \theta) z^{-n}, & |z| > 1, \end{cases}$$
(11)
$$K^{-1}(z) = \begin{cases} -e^{-2\beta\theta} \sum_{n=0}^{+\infty} \Upsilon_n(-\beta, \theta) z^n, & |z| < 1, \\ z \sum_{n=0}^{+\infty} \Upsilon_n(\beta, \theta) z^{-n}, & |z| > 1. \end{cases}$$
(12)

Здесь $\beta = 1/(2\pi) \ln \zeta$, $P_n(\beta, \theta)$ — полиномы Поллачека [6], а $\Upsilon_n(\beta, \theta)$ выражаются через них по следующим рекуррентным формулам:

$$\begin{split} \Upsilon_0(\beta,\theta) &\equiv 1, \qquad \Upsilon_1(\beta,\theta) = -\cos(\theta) + 2\beta\sin(\theta), \\ \Upsilon_n(\beta,\theta) &= P_n(\beta,\theta) - 2\cos(\theta)P_{n-1}(\beta,\theta) + P_{n-2}(\beta,\theta), \qquad n \ge 2 \end{split}$$

Используя решение (10) краевой задачи Римана–Гильберта и представления для канонического решения (11) и (12), получаем бесконечную систему линейных алгебраических уравнений относительно неизвестных коэффициентов $\hat{b}_n, n = 0, \pm 1, \pm 2, \ldots$ С этой целью применяем формулы Сохоцкого–Племеля [5] для предельных значений функции B(z) на дуге \mathcal{L} .

После ряда преобразований имеем

$$B^{+}(e^{i\varphi}) - B^{-}(e^{i\varphi}) = (\mathbf{K}^{+}(e^{i\varphi}) - \mathbf{K}^{-}(e^{i\varphi})) \times \\ \times \left(\sum_{n=-\infty}^{+\infty} f_n W_n(e^{i\varphi}) - 2\kappa i \cos(\alpha) W_{n_0}(e^{i\varphi}) \frac{\mu_{\perp}}{1 + \mu_{\perp} + \tau} + C\right),$$
(13)

ISSN 1025-6415 Доповіді Національної академії наук України, 2010, №3

где

$$W_{n}(z) = \frac{1+\mu_{\perp}+\tau}{2(\mu_{\perp}+1)} \begin{cases} -\sum_{m=0}^{n+1} \Upsilon_{n+1-m}(\beta,\theta) z^{m}, & n \ge 0, \\ e^{-2\beta\theta} z^{-1} - 1, & n = -1, \\ e^{-2\beta\theta} \sum_{m=0}^{-n-1} \Upsilon_{-n-1-m}(-\beta,\theta) z^{-m-1}, & n < 0. \end{cases}$$
(14)

Далее, используя (11), (12) и (14) и переходя в (13) к коэффициентам Фурье, окончательно получаем

$$\widehat{b}_m = \sum_{n=-\infty}^{+\infty} M_{mn} \widehat{b}_n + \Omega_m, \qquad m = 0; \pm 1; \pm 2; \dots$$
(15)

Матричные элементы в (15) представляются в виде $M_{mn} = A_{mn}(\beta, \theta, \vartheta) \delta_n$, где

$$A_{mn}(\beta,\theta,\vartheta) = \begin{cases} -\frac{W_n^{\sigma}(\beta,\theta,\vartheta) - P_{\sigma}(\beta,\theta,\vartheta)W_{0n}(\beta,\theta)}{1 + \vartheta P_{\sigma}(\beta,\theta,\vartheta)}, & m = 0, \\ \frac{W_{m-1n-1}(\beta,\theta) + \vartheta(W_{mn}(\beta,\theta)P_{\sigma}(\beta,\theta,\vartheta) - P_m(\beta,\theta)W_n^{\sigma}(\beta,\theta,\vartheta))}{(m+\vartheta)(1 + \vartheta P_{\sigma}(\beta,\theta,\vartheta t))}, \\ m \neq 0. \end{cases}$$

Здесь величины $W_{mn}(\beta, \theta)$ вычислены в [7], а P_{σ} и W_n^{σ} имеют вид

$$\begin{split} P_{\sigma}(\beta,\theta,\vartheta) &= \frac{e^{-2\beta\theta}}{1-\vartheta} + \sum_{n=1}^{+\infty} (-1)^n \bigg(\frac{P_n(\beta,\theta)}{n+\vartheta} + e^{-2\beta\theta} \frac{P_n(-\beta,\theta)}{n-\vartheta+1} \bigg), \\ W_n^{\sigma}(\beta,\theta,\vartheta) &= \frac{1+\mu_{\perp}+\tau}{2(\mu_{\perp}+1)} \begin{cases} e^{2\beta\theta} \Upsilon_1(\beta,\theta) P_{\sigma}(\beta,\theta,\vartheta) - P_{\sigma}(-\beta,\theta,-\vartheta) & \text{при} \quad n=0, \\ e^{2\beta\theta} \Upsilon_{n+1}(\beta,\theta) P_{\sigma}(\beta,\theta,\vartheta) + N_n(\beta,\theta,\vartheta) & \text{при} \quad n\geqslant 1, \\ (e^{2\beta\theta} - P_1(\beta,\theta)) P_{\sigma}(\beta,\theta,\vartheta) + N_{-1}(\beta,\theta,\vartheta) & \text{при} \quad n=-1, \\ \Upsilon_{-n}(-\beta,\theta) P_{\sigma}(\beta,\theta,\vartheta) + N_{-n}(\beta,\theta,\vartheta) & \text{при} \quad n<-1, \end{cases}$$

где

$$N_n(\beta,\theta,\vartheta) = \frac{1}{n+\vartheta} (P_n(\beta,\theta)(1-\vartheta P_\sigma(-\beta,\theta,\vartheta)) - e^{2\beta\theta} P_{n-1}(\beta,\theta)(1+\vartheta P_\sigma(\beta,\theta,\vartheta))).$$

Правая часть Ω_m в (15) может быть представлена в виде

$$\Omega_m = i \frac{\kappa - \kappa_+}{\kappa - \kappa_-} A_{mn_0}(\beta, \theta, \vartheta) \sqrt{\kappa^2 - (n_0 + \vartheta)^2}.$$

Из (8) следует, что при $n \to \infty$ $\delta_n = \mathcal{O}(1/(|n+\vartheta|)).$

Если теперь воспользоваться асимптотической оценкой для $P_n(\beta, \theta)$ при $n \to \pm \infty$ [7], а также представлениями для $W_n^{\sigma}(\beta, \theta, \vartheta), W_{mn}(\beta, \theta)$ (см. [7]) и $A_{mn}(\beta, \theta, \vartheta)$, можно доказать сходимость ряда

$$\sum_{m,n} |M_{mn}|^2 < \infty.$$

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2010, № 3

Рис. 2. Зависимость модуля коэффициента отражения от частоты при различных значениях угла падения

Следовательно, матрица $||M_{mn}||_{m,n=-\infty}^{+\infty}$ задает в пространстве l_2 компактный оператор [3]. Сходимость ряда $\sum_{m=-\infty}^{+\infty} |\Omega_m|^2$ следует из асимптотических оценок для $P_n(\beta, \theta)$ и представления для $A_{mn}(\beta, \theta, \vartheta)$.

Таким образом, бесконечная система линейных алгебраических уравнений (15) является системой второго рода и поэтому ее решение можно получить с любой, наперед заданной, точностью методом усечений.

На основе предложенного метода был разработан пакет прикладных программ на языке C++ для ПЭВМ. Для иллюстрации работы предлагаемого метода рассчитан модуль коэффициента отражения (модуль гармоники $a_0 = b_0 - 1$) для решетки с d/l = 0.5, находящейся на границе идеального ферромагнитного полупространства с параметрами: $\varepsilon = 5.5$; $\kappa_H = 0.3056$ и $\kappa_M = 0.2700$. Полагалось, что нормированная частота падающей плоской волны $\kappa < \kappa_-$.

Анализ сходимости метода усечений показал, что для расчета $|a_0|$ с относительной погрешностью 0,1% достаточно выбрать порядок усечения N системы (15) следующим образом: $N = [\kappa \sin(\alpha) \sqrt{|\varepsilon \mu_{\perp}|}] + 5.$

На рис. 2 приведены результаты расчетов зависимости модуля коэффициента отражения ($|a_0|$) от нормированной частоты $\kappa = \omega l/(2\pi c)$ возбуждающей волны при различных значениях угла падения. Установлено, что в диапазоне частот $\kappa < \kappa_0$ существуют оптимальные значения частоты и угла падения, при которых модуль коэффициента отражения принимает минимальное значение.

В диапазоне частот $\kappa_0 < \kappa < \kappa_-$ независимо от значений угла падения наблюдается режим полного отражения ($|a_0| = 1$). Это объясняется тем, что при $\kappa_0 < \kappa < \kappa_-$ эффективная магнитная проницаемость феррита μ_{\perp} принимает отрицательные значения ($\mu_{\perp} < 0$) и, естественно, даже при отсутствии потерь электромагнитное поле в ферромагнитной среде экспоненциально убывает от ее границы.

- Meixner J. Strenge Theorie der Beugung Elektromagnetischer Wellen der Vollkommen Leitenden Kreissheibe // Zs. Naturforsch. – 1948. – 3a. – S. 506–517.
- 2. Шестопалов В. П. Метод задачи Римана–Гильберта в теории дифракции и распространения электромагнитных волн. – Харьков: Изд-во Харьк. ун-та, 1971. – 400 с.

ISSN 1025-6415 Доповіді Національної академії наук України, 2010, № 3

- 3. Шестопалов В. П., Литвиненко Л. Н., Масалов С. А., Сологуб В. Г. Дифракция волн на решетках. Харьков: Изд-во Харьк. ун-та, 1973. 278 с.
- 4. Шестопалов В. П., Кириленко А. А., Масалов С. А., Сиренко Ю. К. Дифракционные решетки. Киев: Наук. думка, 1986. 232 с.
- 5. Мусхелишвили Н. И. Сингулярные интегральные уравнения. Москва: Физматгиз, 1962. 599 с.
- 6. Сеге Г. Ортогональные многочлены. Москва: Физматгиз, 1962. 500 с.
- 7. Бровенко А. В., Мележик П. Н., Поединчук А. Е. Метод регуляризации одного класса парных сумматорных уравнений // Укр. мат. журн. 2001. **53**, № 10. С. 1320–1327.

Институт радиофизики и электроники им. А. Я. Усикова НАН Украины, Харьков Поступило в редакцию 30.06.2009

A. V. Brovenko, Corresponding Member of the NAS of Ukraine P. N. Melezhik, A. Ye. Poyedinchuk, O. S. Troschylo

Analytical regularization technique for solving the problems of electromagnetic wave diffraction on the interface of a gyrotropic medium and a strip gating

A rigorous technique is suggested for calculating the diffraction characteristics of a strip periodic grating placed on a gyrotropic ferromagnetic medium interface in the case of the oblique incidence of a uniform plane electromagnetic wave.