

ОПОВІДІ національної академії наук україни

МАТЕРІАЛОЗНАВСТВО

УДК 535.33/34

© 2010

В. Л. Карбовский, А. П. Сорока, академик НАН Украины А. П. Шпак, В. Х. Касияненко, Н. А. Курган

Квантовомеханические расчеты электронного строения и атомной архитектуры апатитов кальция и кадмия

Повнопотенціальним методом ППВ + ло досліджено електронну будову сполук $Me_{10}(PO_4)_6X_2$, де Me = Ca i Cd, a X = F, Cl, Br, OH. Встановлено, що структура i енергетичне положення особливостей повних i парціальних густин станів апатитів кадмію значно чуттевіша до ізоморфних заміщень фтора на хлор, бром i гідроксил в порівнянні з апатитами кальцію. Показана перевага структури $P6_3/m$ для $Ca_{10}(PO_4)_6F_2$ та $Ca_{10}(PO_4)_6Cl_2$ порівняно з $P6_3$. Для хлоро- і фтороапатитів спостерігалася слабка залежність сумарної енергії елементарної комірки від положення аніона на осі с в межах просторової групи $P6_3$, що підтверджуе лабільність структури апатитів кальцію відносно цієї позиції.

Соединения группы апатитов ($Me_{10}(ZO_4)_6X_2$, где Me^{n+} , n = 1-3; Z^{m+} , m = 1-3; X^{k-} – электроотрицательный элемент) давно привлекают внимание исследователей ввиду широкого спектра их практического применения, в частности, в качестве искусственных биоактивных материалов, совместимых с костной тканью, сенсоров влаги и алкоголя, матриц для захоронения радиоактивных отходов и накопителей экологически вредных веществ [1– 5]. На сегодняшний день существует множество работ по исследованию структуры, свойств и электронного строения апатитов экспериментальными методами, однако, полное описание закономерностей изоморфизма апатитов достижимо только путем сопоставления экспериментальных данных с теоретическими расчетами.

Основной целью этих исследований был теоретический расчет электронного строения соединений $Me_{10}(PO_4)_6 X_2$, где Me = Ca и Cd, a X = F, Cl, Br, OH, методом полнопотенциального ППВ + ло с набором базисных функций ППВ + ло + ЛО (APW + lo + LO) и учетом релаксации атомных позиций. Для обменнокорреляционной части потенциала использовался метод обобщенного градиентного приближения (GGA) [6]. Интегрирование по зоне Бриллюэна выполнялось на сетке 2-2-3 с центром в точке Γ (4 неэквивалентные **k**-точки) [7]. Для гидроксилапатитов использовалась сетка 2-1-3, что соответствует такой же плотности

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2010, № 7

k-точек в обратном пространстве. Для расчета релаксации атомных позиций применялись начальные координаты атомных позиций из работы [8]. При расчете молекулярных уровней изолированной молекулы PO_4 использовалась кубическая решетка с параметром элементарной ячейки a = 16 Å.

Полные плотности электронных состояний исследуемых соединений апатитного ряда $Me_{10}(PO_4)_6X_2$, где Me = Ca и Cd, а X = F, Cl, Br, OH представлены на рис. 1. Сопоставление расчетных данных показало общие закономерности формирования заполненной части валентной полосы исследуемых соединений, которая имеет выраженный зонный характер с различной протяженностью отдельных подполос. Выявлены две разделяемые по энергии структурные области — верхняя часть валентной полосы и нижняя часть валентной полосы – субвалентные состояния. Для кадмиевых апатитов отмечается некоторое уширение особенностей в "прифермиевской" области, обусловленное вкладом 4d состояний кадмия. Для бромоапатитов кальция и кадмия по сравнению с хлор, фтор и гидроксил аналогами наблюдаются некоторые изменения в области субвалентных состояний. Скорее всего, это связано с большими расстояниями между О 2s уровнями разных неэквивалентных атомов кислорода из PO₄ тетраэдров.

Как показано ранее [9–11], главные особенности кривой ППС определяются кислородными состояниями тетраэдрической подрешетки. В связи с этим рассмотрим детально электронное строение PO₄ тетраэдров в апатитах. В первом приближении тетраэдры (PO₄)³⁻ можно рассматривать как отдельные молекулы, симметрия которых искажена влиянием решетки в целом. В свободном состоянии они представляют собой тетраэдры PO₄³⁻ с длиной Р
—О связи равной 1,55 Å и точечной группой T_d . Под влиянием кристаллического поля решетки происходит искажение молекулы и симметрия аниона $(PO_4)^{3-}$ снижается от T_d до C_s. Для исследованных апатитов проведен расчет релаксации атомных позиций в пределах пространственной группы $P6_3/m$, следовательно, симметрия $(PO_4)^{3-}$ тетраэдров соответствует точечной группе C_s. Исключение составляют гидроксилапатиты, которые имеют пространственную группу $P2_1/b$, что приводит к снижению симметрии аниона (PO₄)³⁻ от T_d до C_1 . Результаты расчета длин связей P–O в $(PO_4)^{3-}$ тетраэдрах исследуемых соединений (табл. 1) показывают равные длины связей Р-О(2) и Р-О(3) для соединений $Me_{10}(PO_4)_6X_2$, где Me = Ca и Cd, a X = F, Cl, что подтверждает соответствие симметрии $(PO_4)^{3-}$ тетраэдра точечной группе C_s . Для $Ca_{10}(PO_4)_6(OH)_2$ наблюдается разница между P-O(2) и P-O(3) связями, т.е. точечная группа $(PO_4)^{3-}$ тетраэдра в гидроксилапатите кальция соответствует C_1 .

Судить о природе P–O связи в PO_4^{3-} тетраэдре можно по изменению, в результате гибридизации, энергетического расстояния P *s*–O 2*s* и происходящим при этом изменении электронных плотностей состояний (табл. 2). Для изолированного PO_4^{3-} тетраэдра отношение плотностей O *s*/O *p* больше, чем для PO_4^{3-} тетраэдров исследуемых апатитов. Этот факт, а также образование в результате гибридизации P 3*p*, 3*s* и O 2*s*, 2*p* энергетических

Соединение	P-O(1), Å	P-O(2), Å	P-O(3), Å	P-O(4), Å
$Ca_{10}(PO_4)_6F_2$	1,53524	1,54338	1,54338	1,54731
$Ca_{10}(PO_4)_6Cl_2$	1,54952	1,55207	1,55207	1,56431
$Ca_{10}(PO_4)_6(OH)_2$	1,55401	1,55848	1,55860	1,55686
$\mathrm{Cd}_{10}(\mathrm{PO}_4)_6\mathrm{F}_2$	1,55386	1,54286	1,54286	1,56995
$\mathrm{Cd}_{10}(\mathrm{PO}_4)_6\mathrm{Cl}_2$	1,54601	1,54622	1,54622	1,58148

Таблица 1. Длины Р-О связей в (РО₄)³⁻ тетраэдрах с учетом релаксации атомных позиций

ISSN 1025-6415 Доповіді Національної академії наук України, 2010, № 7

Рис. 1. Полные плотности состояний исследуемых соединений

уровней, сравнимых по величине с атомными уровнями, свидетельствует о ковалентном характере образующихся P–O связей.

Для кадмиевых апатитов $Cd_{10}(PO_4)_6(F, OH, Cl, Br)_2$ наблюдается тенденция к значительному изменению энергетических расстояний Р 3s(H) - O 2s и Р 3p - O 2s при варьировании типа аниона на оси c (см. табл. 2). Кальциевые апатиты, напротив, проявля-

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2010, № 7

84

ют лабильность относительно изоморфного замещения в этих позициях. Таким образом, на основании полученных данных можно утверждать, что электронные плотности Р 3s, Р 3p и О 2s состояний апатитов кальция менее чувствительны к изоморфному замещению в анионной группе, чем апатитов кадмия.

Для полного описания электронного строения исследуемых соединений был проведен анализ данных о ширине энергетической щели (табл. 3) и расчет структуры апатитов из энергетических предпосылок.

Анализ полученных данных о ширине энергетической щели показал, что в случае апатитов кальция расчетные данные близки к экспериментальным значениям, а для апатитов кадмия расчетные значения меньше экспериментальных, что, скорее всего, связано с плохой адаптацией расчетов в рамках теории функционала плотности к расчету возбужденных состояний [12].

Расчет атомной структуры апатитов из энергетических предпосылок был применен для апатитов $Ca_{10}(PO_4)_6F_2$ и $Ca_{10}(PO_4)_6Cl_2$. Общеизвестно [1, 2], что пространственную группу апатитов определяют положения анионов по оси *c*. Если анионы занимают положения $c_1 =$ $= 0,0, c_2 = 0,5$ или $c_1 = 0,25, c_2 = 0,75$, то группа $P6_3/m$. Если $c_1 - c_2 = 0,5$, а c_1 не равно ни одному из вышеперечисленных значений, то группа $P6_3$. В противном случае — группа $P2_{1/b}$. Таким образом, фтор, хлор и бромапатиты формально могут принадлежать ко всем трем вышеперечисленным группам, а гидроксилапатиты — только к $P6_3$ или $P2_1/b$. Из энергетических предпосылок было определено положение анионов. Анионы смещались в рамках группы $P6_3$, т. е сохранялось расстояние $c_1 - c_2 = 0,5$. В результате проведенных исследований была установлена крайне слабая зависимость общей энергии от такого смещения (изменения в четвертом знаке). Для $Ca_{10}(PO_4)_6F_2$ амплитуда отклонений энергии

Таблица 2. Энергетические расстояния от Р 3s до О 2s уровня. (Р 3s(н) — неподеленная пара 3s фосфора; Р 3s(г) — гибридизированные 3s состояния фосфора)

Соединение	P 3s(h) - O 2s, эВ	Р $3s(г) - O 2s$, эВ	Р $3p$ — О $2s$, эВ
$Ca_{10}(PO_4)_6F_2$	-2,966	10,412	12,844
$Ca_{10}(PO_4)_6Cl_2$	-3,033	$10,\!140$	12,442
$Ca_{10}(PO_4)_6Br_2$	-2,802	10,016	12,763
$Ca_{10}(PO_4)_6(OH)_2$	-2,885	10,761	12,451
$Cd_{10}(PO_4)_6F_2$	-2,748	10,041	13,552
$Cd_{10}(PO_4)_6Cl_2$	-2,023	10,028	12,833
$Cd_{10}(PO_4)_6Br_2$	-3,343	10,401	11,989
$Cd_{10}(PO_4)_6(OH)_2$	$-2,\!612$	10,386	13,799
Изолированный (РО ₄) ^{3–} тетраэдр	$-2,\!608$	$12,\!234$	$14,\!453$

Таблица 3. Ширина энергетической щели исследуемых соединений

Соединение	Энергетическая щель, эВ			
$Ca_{10}(PO_4)_6F_2$	$5,\!14$			
$Ca_{10}(PO_4)_6Cl_2$	5,08			
$Ca_{10}(PO_4)_6Br_2$	3,86			
$\operatorname{Ca}_{10}(\operatorname{PO}_4)_6(\operatorname{OH})_2$	$4,\!66$			
$Cd_{10}(PO_4)_6F_2$	2,12			
$Cd_{10}(PO_4)_6Cl_2$	2,53			
$Cd_{10}(PO_4)_6Br_2$	2,70			
$\mathrm{Cd}_{10}(\mathrm{PO}_4)_6(\mathrm{OH})_2$	2,34			

ISSN 1025-6415	Лоповіді	Національної	академії	наик	України.	2010.	№ 7
10011 1000 0410	A01100101	110000000000000000000000000000000000000	000000000000000000000000000000000000000	1000910	c nepatrica,	~~~,	• • •

Таблица 4. Параметры решеток исследуемых соединений

Соединение	Расчет			Эксперимент				
	a, Å	c, Å	c/a	$V, Å^3$	a, Å	c, Å	c/a	$V, Å^3$
$Ca_{10}(PO_4)_6Cl_2$	9,72	6,75	$0,\!69$	$552,\!29$	$9,\!63$	6,78	0,70	$544,\!52$
$\operatorname{Ca}_{10}(\mathrm{PO}_4)_6\mathrm{F}_2$	$9,\!48$	$6,\!94$	0,73	$540,\!14$	9,36	$6,\!88$	0,73	$522,\!00$

равнялась 0,00272 эВ, а для $Ca_{10}(PO_4)_6Cl_2 - 0,00544$ эВ, причем в обоих случаях минимум энергии приходился на положение $c_1 = 0,25$, $c_2 = 0,75$. Это объясняется практически заполненной валентной оболочкой аниона и, поэтому, слабой реакцией на небольшие перемены в окружении атома аниона. Большая амплитуда отклонений энергии для $Ca_{10}(PO_4)_6Cl_2$ по сравнению с $Ca_{10}(PO_4)_6F_2$, очевидно, объясняется большей электроотрицательностью фтора. На основании полученных результатов для соединений $Ca_{10}(PO_4)_6Cl_2$, $Ca_{10}(PO_4)_6F_2$ были рассчитаны параметры решетки (табл. 4), которые показали хорошее согласование с экспериментом.

Таким образом, установлено, что из энергетической целесообразности $Ca_{10}(PO_4)_6Cl_2$ и $Ca_{10}(PO_4)_6F_2$ образуют группу $P6_3/m$, а не $P6_3$, хотя слабая амплитуда отклонений полной энергии на элементарную ячейку свидетельствует о том, что анионы F⁻ и Cl⁻ сохраняют лабильность относительно положения по оси *c*.

Структура и энергетическое положение особенностей полной и парциальных плотностей электронных состояний апатитов кадмия значительно чувствительнее к изоморфным замещениям аниона фтора на хлор, бром и гидроксил по сравнению с апатитами кальция.

Расчеты с функционалом GGA показали удовлетворительное согласование с экспериментальными данными по ширине энергетической щели для апатитов кальция, а также для параметров элементарной ячейки $Ca_{10}(PO_4)_6F_2$ и $Ca_{10}(PO_4)_6Cl_2$.

- 1. Шпак А. П., Карбовский В. Л., Трачевский В. В. Апатиты. Киев: ИД "Академпериодика", 2002. 414 с.
- Каназава Т. Неорганические фосфатные материалы: Пер. с англ. под. ред. А. П. Шпака и В. Л. Карбовского. – Киев: Наук. думка, 1998. – 298 с.
- Elliot J. C. Structure and chemistry of the apatites and other calcium orthophosphates // Studies in inorganic chemistry. – Amsterdam: Elsevier, 1994. – 234 p.
- 4. Fernane F., Mecherri M., Sharrock P. et al. Sorption of cadmium and copper ions on natural and synthetic hydroxylapatite particles // Mater. Characterization. 2008. 59. P. 554-555.
- Yasukawa A., Yokoyama T. et al. Reaction of calcium hydroxyapatite with Cd²⁺ and Pb²⁺ ions. Colloids and Surfaces A // Physicochem. Eng. Aspects. - 2007. - 299. - P. 203-207.
- Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Phys. Rev. Lett. – 1996. – ??. – P. 3865–3870.
- Monkhorst H. J., Pack J. D. Special points for Brillouin-zone integrations // Phys. Rev. 1976. B13. -P. 5188-5194.
- Leroy N., Bres E. Structure and substitutions in fluoroapatite // European Cells and Materials. 2001. –
 2. P. 36–48.
- Шпак А. П., Карбовский В. Л., Вахней А. Г., Хижсун О. Ю. Об электронном строении гидроксоапатита кальция // Доп. НАН України. – 2001. – № 2. – С. 99–108.
- Shpak A. P., Karbovskii V. L., Vakhney A. G., Kluyenko L. P. Spectral and quantum-mechanical study of the electronic structure of ultradispersed calcium hydroxyapatite // Chemistry, Physics and Technology of Surfaces. – 2002. – No 7–8. – P. 57–68.
- Shpak A. P., Karbovskii V. L., Kurgan N. A. Peculiarities of the electronic structure of calcium and strontium apatites // J. Elec. Spec. and Related Phenomena. – 2007. – No 156–158. – P. 457–462.

12. Lathiotakis N. N., Sharma S., Helbig N. et al. The fundamental gap in reduced density matrix functional theory. – cond-mat/0504436.

Институт металлофизики им. Г.В. Курдюмова НАН Украины, Киев

V. L. Karbovskiy, A. P. Soroka, Academician of the NAS of Ukraine A. P. Shpak, V. H. Kasianenko, N. A. Kurgan

Quantum-mechanical calculations of the electronic structure and the atomic architecture of calcium and cadmium apatites

The electronic structures of compounds $Me_{10}(PO_4)_6X_2$, where Me = Ca or Cd and X = F, Cl, Br, OH are investigated, by using the full potential APW + lo method. The structure and the energy location of peculiarities of total and partial densities of states for cadmium apatites are established to be more sensitive to the isomorphic substitution of a fluorine anion for chlorine or bromine or OH group than for calcium ones. The P6₃/m space group is shown to be preferable for $Ca_{10}(PO_4)_6F_2$ and $Ca_{10}(PO_4)_6Cl_2$ than P6₃. The dependence of total energy per unit cell on the displacement of an anion along the c-axis for the space group P6₃ for $Ca_{10}(PO_4)_6F_2$ and $Ca_{10}(PO_4)_6Cl_2$ was proven to be extremely small that justifies the lability of the structure of calcium apatites with respect to this position.