УДК 532.528 © **2011**

Академік НАН України В. Д. Кубенко

Нестационарная нагрузка на поверхности упругой полуплоскости

Розглядається задача визначення напруженого стану пружної півплощини, на границі якої діє нестаціонарне нормальне напруження. Розв'язок задачі будується із застосуванням інтегральних перетворень Лапласа і Фур'є. Виконано сумісне обернення інтегральних перетворень. Як результат одержано точний розв'язок задачі і визначено напруження і переміщення вздовж осі симетрії задачі.

1. Рассматривается плоская задача о действии нестационарной нагрузки на границу упругой полуплоскости. Предполагается, что нагрузка симметрична относительно некоторой оси, которую примем за ось z, и отнесем полуплоскость к декартовым координатам x, z, так что ось x направлена вдоль границы полуплоскости, ось z — вглубь ее (рис. 1). Нестационарная нагрузка в виде нормального напряжения возникает в некоторый начальный момент времени t = 0 и в общем случае является функцией времени и координаты x.

Вводятся безразмерные обозначения

$$\overline{x} = \frac{x}{R}; \qquad \overline{z} = \frac{z}{R}; \qquad \overline{u}_j = \frac{u_j}{R}; \qquad \overline{t} = \frac{c_0 t}{R}; \qquad \overline{w} = \frac{w}{R}; \qquad \overline{M} = \frac{M}{\gamma R^2};$$
$$\overline{\sigma}_{jk} = \frac{\sigma_{jk}}{K}; \qquad c_0 = \sqrt{\frac{K}{\gamma}}; \qquad \alpha = \frac{c_p}{c_0}; \qquad \beta = \frac{c_s}{c_0}; \qquad b = \frac{\beta}{\alpha}; \qquad j, k = x, z;$$
$$K = \frac{3\lambda + 2\mu}{3}; \qquad c_p = \sqrt{\frac{\lambda + 2\mu}{\gamma}}; \qquad c_s = \sqrt{\frac{\mu}{\gamma}},$$

причем черта над обозначениями далее будет опущена. Здесь R — некоторый характерный линейный размер; c_p , c_s — соответственно, скорости распространения волн расширения и волн сдвига в материале среды [1]; γ — плотность материала; K — его модуль всестороннего сжатия; σ_{jk} — компоненты напряженного состояния.

Поведение упругой среды описывается волновыми потенциалами Φ и Ψ , которые в случае плоской задачи удовлетворяют волновым уравнениям [2]

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial z^2} - \frac{1}{\alpha^2} \frac{\partial^2 \Phi}{\partial t^2} = 0, \qquad \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial z^2} - \frac{1}{\beta^2} \frac{\partial^2 \Psi}{\partial t^2} = 0$$

$$(1)$$

Рис. 1. Система координат

ISSN 1025-6415 Доповіді Національної академії наук України, 2011, № 10

и связаны с упругими перемещениями и напряжениями соотношениями

$$u_{x} = \frac{\partial \Phi}{\partial x} + \frac{\partial \Psi}{\partial z}, \qquad u_{z} = \frac{\partial \Phi}{\partial z} - \frac{\partial \Psi}{\partial x};$$

$$\sigma_{zz} = (1 - 2b^{2})\frac{\partial^{2}\Phi}{\partial t^{2}} + 2\beta^{2}\left(\frac{\partial^{2}\Phi}{\partial z^{2}} - \frac{\partial^{2}\Psi}{\partial x\partial z}\right);$$

$$\sigma_{xz} = \beta^{2}\left(2\frac{\partial^{2}\Phi}{\partial x\partial z} + \frac{\partial^{2}\Psi}{\partial z^{2}} - \frac{\partial^{2}\Psi}{\partial x^{2}}\right).$$
(2)

Условия на границе полуплоскости z = 0 будут состоять в задании нормального напряжения и отсутствии касательного напряжения, а именно:

$$\sigma_{zz}|_{z=0} = Q(x,t), \qquad \sigma_{xz}|_{z=0} = 0.$$
 (3)

Начальные условия для потенциалов нулевые

$$\Phi_{t=0} = \frac{\partial \Phi}{\partial t} \bigg|_{t=0} = \Psi|_{t=0} = \frac{\partial \Psi}{\partial t} \bigg|_{t=0} = 0.$$
(4)

Кроме того, имеют место условия затухания порожденных нестационарной нагрузкой волновых возмущений на бесконечности.

Если волновые уравнения (1) подвергнуть преобразованию Лапласа по времени (с учетом нулевых начальных условий) и преобразованию Фурье по координате x [3] (с учетом того, что при $|x| \to \infty$ потенциалы и их первые производные стремятся к нулю), они приобретут вид

$$\frac{\partial^2 \Phi^{LF}}{\partial z^2} - \left(\frac{s^2}{\alpha^2} + \xi^2\right) \Phi^{LF} = 0; \qquad \frac{\partial^2 \Psi^{LF}}{\partial z^2} - \left(\frac{s^2}{\beta^2} + \xi^2\right) \Psi^{LF} = 0.$$
(5)

Общее решение уравнений (5) можно записать в виде

$$\Phi^{LF} = \sum_{n=0}^{\infty} \left(A(s,\xi) e^{-\frac{z}{\alpha}P} + \widetilde{A}(s,\xi) e^{\frac{z}{\alpha}P} \right);$$

$$\Psi^{LF} = \sum_{n=1}^{\infty} \left(B(s,\xi) e^{-\frac{z}{\beta}S} + \widetilde{B}(s,\xi) e^{\frac{z}{\beta}S} \right);$$

$$P = \sqrt{s^2 + \alpha^2 \xi^2}; \qquad S = \sqrt{s^2 + \beta^2 \xi^2}.$$
(6)

Здесь $A(s,\xi)$, $\widetilde{A}(s,\xi)$, $B(s,\xi)$, $\widetilde{B}(s,\xi) - функции, подлежащие определению из граничных условий. В силу условий затухания при <math>z \to \infty$ имеем $\widetilde{A} = \widetilde{B} = 0$, и тогда выражения для изображений напряжений и перемещений имеют вид

$$\sigma_{zz}^{LF} = (s^2 + 2\beta^2 \xi^2) A e^{-\frac{z}{\alpha}P} + i2\beta S \xi B e^{-\frac{z}{\beta}S};$$

$$u_z^{LF} = -\frac{P}{\alpha} A e^{-\frac{z}{\alpha}P} - i\xi B e^{-\frac{z}{\beta}S};$$

$$\sigma_{xz}^{LF} = \beta^2 \left[-2i\xi \frac{P}{\alpha} A e^{-\frac{z}{\alpha}P} + \left(\frac{S^2}{\beta^2} + \xi^2\right) B e^{-\frac{z}{\beta}S} \right].$$
(7)

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2011, № 10

Граничные условия (3) в изображениях позволяют определить $A(s,\xi), B(s,\xi)$. В результате получим

$$\sigma_{zz}^{LF} = Q^{LF} \left(\frac{(s^2 + 2\beta^2 \xi^2)^2}{\Delta} e^{-\frac{z}{\alpha}P} - \frac{4\xi^2 \frac{\beta^3}{\alpha} PS}{\Delta} e^{-\frac{z}{\beta}S} \right); \tag{8}$$

$$u_z^{LF} = Q^{LF} \frac{P}{\alpha} \left(-\frac{s^2 + 2\beta^2 \xi^2}{\Delta} e^{-\frac{z}{\alpha}P} + \frac{2\xi^2 \beta^2}{\Delta} e^{-\frac{z}{\beta}S} \right); \tag{9}$$

$$\begin{split} \sigma_{xz}^{LF} &= \beta^2 Q^{LF} (s^2 + 2\beta^2 \xi^2) \frac{2i\xi \frac{P}{\alpha}}{\Delta} \bigg[-e^{-\frac{z}{\alpha}P} + e^{-\frac{z}{\beta}S} \bigg];\\ P &= \sqrt{s^2 + \alpha^2 \xi^2}; \qquad S = \sqrt{s^2 + \beta^2 \xi^2};\\ \Delta &= (s^2 + 2\beta^2 \xi^2)^2 - 4 \frac{\beta^3}{\alpha} \xi^2 PS. \end{split}$$

Задача теперь состоит в обращении полученных выражений относительно интегральных преобразований.

2. Методика обращения зависит от свойств функции Q(x,t), поэтому ее необходимо конкретизировать. Будем считать, что нагрузка имеет вид

$$Q(t,x) = Q_0 H(kt - |x|),$$
(10)

где H(t) — единичная функция Хевисайда: $H(t) = \begin{cases} 1, t > 0; \\ 0, t < 0. \end{cases}$ Функция (10) задает внезапно возникающее и распространяющееся с постоянной скоростью по поверхности полуплоскости напряжение. Нетрудно определить преобразование Фурье и Лапласа этой функции

$$Q^{F}(t,\xi) = \sqrt{\frac{\pi}{2}} Q_{0} \frac{\sin kt\xi}{\xi};$$

$$Q^{LF}(s,\xi) = \sqrt{\frac{\pi}{2}} Q_{0} \frac{k}{s^{2} + k^{2}\xi^{2}},$$
(11)

так что изображение (7) нормального напряжения σ_{zx}^{LF} представляется в виде

$$\sigma_{zz}^{LF} = \sqrt{\frac{\pi}{2}} Q_0 k \frac{1}{s^2 + k^2 \xi^2} \left[\frac{(s^2 + 2\beta^2 \xi^2)^2}{\Delta} e^{-\frac{z}{\alpha}P} - \frac{4\xi^2 \frac{\beta^3}{\alpha} PS}{\Delta} e^{-\frac{z}{\beta}S} \right].$$
(12)

Ограничимся определением искомых величин на оси z. С учетом того, что выражение (11) есть однородная функция параметров s, ξ , можно применить эффективную методику совместного обращения интегральных преобразований [4, 5]. Для этого запишем обращение преобразования выражения (12) на оси z, для чего положим в операторе обращения Фурье x = 0 и учтем, что напряжение σ_{zz} есть четная функция x. Получим

$$\sigma_{zz}(t,z) = \frac{2}{\pi} Q_0 k \int_{\gamma-i\infty}^{\gamma+i\infty} e^{st} ds \int_0^\infty \frac{1}{s^2 + k^2 \xi^2} \left[\frac{(s^2 + 2\beta^2 \xi^2)^2}{\Delta} e^{-\frac{z}{\alpha}P} - \frac{4\frac{\beta^3}{\alpha} \xi^2 PS}{\Delta} e^{-\frac{z}{\beta}S} \right] d\xi,$$

ISSN 1025-6415 Доповіді Національної академії наук України, 2011, № 10

где Re $\gamma>0$ и абсцисса интегрирования в комплексной плоскости s лежит справа от полюсов подынтегральной функции. Выполним в подынтегральном выражении замену переменного $\xi=s\eta;\,d\xi=sd\eta.$ Тогда, предполагая s вещественным, будем иметь

$$\sigma_{zz}(t,z) = \frac{2}{\pi} Q_0 k \int_{\gamma-i\infty}^{\gamma+i\infty} e^{st} ds \int_0^\infty \frac{1}{s} \left[R_\alpha(\eta) e^{-s\frac{z}{\alpha}\sqrt{1+\alpha^2\eta^2}} - 4\frac{\beta^3}{\alpha} R_\beta(\eta) e^{-s\frac{z}{\beta}\sqrt{1+\beta^2\eta^2}} \right] d\eta,$$

$$R_\alpha(\eta) = \frac{1}{(1+k^2\eta^2)} \frac{(1+2\beta^2\eta^2)^2}{(1+2\beta^2\eta^2)^2 - 4\frac{\beta^3}{\alpha}\eta^2\sqrt{1+\alpha^2\eta^2}\sqrt{1+\beta^2\eta^2}};$$

$$R_\beta(\eta) = \frac{1}{(1+k^2\eta^2)} \frac{\eta^2\sqrt{1+\alpha^2\eta^2}\sqrt{1+\beta^2\eta^2}}{(1+2\beta^2\eta^2)^2 - 4\frac{\beta^3}{\alpha}\eta^2\sqrt{1+\alpha^2\eta^2}\sqrt{1+\beta^2\eta^2}}.$$
(13)

Имея в виду допустимость изменения порядка интегрирования, выполним обращение преобразования Лапласа согласно формулам [6]

$$\frac{1}{s}e^{-s\frac{z}{\alpha}\sqrt{1+\alpha^2\eta^2}} \stackrel{L^{-1}}{\to} H\left(t - \frac{z}{\alpha}\sqrt{1+\alpha^2\eta^2}\right); \qquad \frac{1}{s}e^{-s\frac{z}{\beta}\sqrt{1+\beta^2\eta^2}} \stackrel{L^{-1}}{\to} H\left(t - \frac{z}{\beta}\sqrt{1+\beta^2\eta^2}\right).$$

В результате из (13) получим выражение для нормального напряжения $\sigma_{zz}(t,z)$ вдоль оси симметрии x = 0 в аналитическом виде

$$\sigma_{zz}(t,z) = \frac{2}{\pi} Q_0 k \left[H\left(t - \frac{z}{\alpha}\right) \int_{0}^{\frac{\sqrt{\alpha^2 t^2 - z^2}}{\alpha z}} R_\alpha(\eta) \, d\eta - 4 \frac{\beta^3}{\alpha} H\left(t - \frac{z}{\beta}\right) \int_{0}^{\frac{\sqrt{\beta^2 t^2 - z^2}}{\beta z}} R_\beta(\eta) \, d\eta \right]. \tag{14}$$

Если аналогичную процедуру обращения выполнить для изображения перемещения u_z^{LF} , получим выражение для перемещения $u_z(t,z)$ вдоль оси z

$$u_{z}(t,z) = \frac{2}{\pi}Q_{0}\frac{k}{\alpha} \left[H\left(t - \frac{z}{\alpha}\right)^{\sqrt{\alpha^{2}t^{2} - z^{2}}}_{0} S_{\alpha}(\eta) \, d\eta - 4\frac{\beta^{3}}{\alpha}H\left(t - \frac{z}{\beta}\right)^{\sqrt{\beta^{2}t^{2} - z^{2}}}_{0} S_{\beta}(\eta) \, d\eta \right];$$

$$S_{\alpha}(\eta) = -\frac{\sqrt{1 + \alpha^{2}\eta^{2}}}{(1 + k^{2}\eta^{2})} \frac{(1 + 2\beta^{2}\eta^{2})}{(1 + 2\beta^{2}\eta^{2})^{2} - 4\frac{\beta^{3}}{\alpha}\eta^{2}\sqrt{1 + \alpha^{2}\eta^{2}}\sqrt{1 + \beta^{2}\eta^{2}}};$$

$$S_{\beta}(\eta) = 2\beta^{2}\frac{\sqrt{1 + \alpha^{2}\eta^{2}}}{(1 + k^{2}\eta^{2})} \frac{\eta^{2}}{(1 + 2\beta^{2}\eta^{2})^{2} - 4\frac{\beta^{3}}{\alpha}\eta^{2}\sqrt{1 + \alpha^{2}\eta^{2}}\sqrt{1 + \beta^{2}\eta^{2}}}.$$
(15)

Таким образом, распределение напряжения σ_{zz} и перемещения u_z вдоль оси z в произвольный момент времени определяется формулами (14) и (15).

3. Приведем некоторые числовые результаты, в частности, для напряжения σ_{zz} . При вычислениях были выбраны следующие значения параметров материала упругой полуплоскости: $\alpha = 1,28$, $\beta = 0,69$ (сталь). Кроме того, параметр нагрузки $Q_0 = 1$.

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2011, № 10

Рис. 2. Распределение напряжения σ_{zz} для k = 1 (*a*, *б*); для различных k (*b*, *c*)

На рис. 2, *а* представлено распределение напряжения вдоль оси *z* в фиксированные моменты времени:

$$t = 1,0;$$
 $t = 5,0;$ $t = 10,0;$ $t = 15,0.$

Укажем, что для рис. 2, *a*, *б* скорость расширения нагрузки такова, что $\overline{k} = k/\alpha = 1$. Можно видеть, что напряжение, оставаясь равным единице на поверхности полуплоскости, с течением времени и с ростом расстояния от граничной поверхности изменяет профиль таким образом, что его крутизна уменьшается. При этом увеличивается зона, в которой значение напряжения близко к значению на границе.

Рис. 2 б иллюстрирует развитие напряжения во времени в нескольких точках оси z:

z = 1,0; z = 2,0; z = 5,0; z = 10,0.

С ростом *z* нарастание напряжения в рассматриваемой точке становится все менее резким, а время достижения значения, близкого к значению на границе, увеличивается.

Рис. 2, *в*, *г* показывает напряжение σ_{zz} как функцию *z* (рис. 2, *в* — при t = 1,5) или t (рис. 2, *г* — при z = 0,5) для нескольких значений безразмерного параметра k: k = 0,1; 1,0; 5,0; 10,0.

Как следует из графиков, характер изменения напряжения существенно зависит от скорости распространения нагрузки. С уменьшением параметра k градиент роста напряжения уменьшается.

- 1. Снеддон И. Н., Берри Д. С. Классическая теория упругости. Москва: ГИФМЛ, 1961. 220 с.
- 2. Гузь А. Н., Кубенко В. Д., Черевко М. А. Дифракция упругих волн. Киев: Наук. думка, 1978. 308 с.

ISSN 1025-6415 Доповіді Національної академії наук України, 2011, № 10

- 3. *Бейтмен Г., Эрдейи А.* Таблицы интегральных преобразований в 2-х т. Т. 1. Преобразования Фурье, Лапласа, Меллина. Москва: ГИФМЛ, 1969. 344 с.
- 4. Cagniard L. Reflexion et Refraction des Ondes Seismiques. Paris, 1939. 255 p.
- 5. Слепян Л. И. Нестационарные упругие волны. Ленинград: Судостроение, 1972. 374 с.
- 6. *Диткин В. А., Прудников А. П.* Интегральные преобразования и операционное исчисление. Москва: ГИФМЛ, 1961. 524 с.

Институт механики им. С. П. Тимошенко НАН Украины, Киев Поступило в редакцию 08.02.2011

Academician of the NAS of Ukraine V.D. Kubenko

A nonstationary load on the surface of an elastic half-plane

A nonstationary stress is applied to the surface of an elastic half-plane. It is necessary to built a solution of the transient boundary problem and to determine the stress-strain state of the halfplane. The solution is realized with the help of the Laplace and Fourier integral transformation. There coupled inversion of integral transforms is realized. As a result, the exact solution for stresses and displacements along the axis of symmetry of the problem is determined.