

3 • 2011

ХІМІЯ

УДК 544.726+661.183.123.2

© 2011

Член-корреспондент НАН Украины В. Н. Беляков, Л. Н. Пономарева, Ю. С. Дзязько, Т. Е. Митченко

Катионообменная способность наноматериалов, включающих катионообменную смолу и гидрофосфат циркония

Встановлено, що модифікація сильнокислотної катіонообмінної смоли наночастинками $\Gamma \Phi \Pi$ призводить до синергізму іонообмінних властивостей. Нанокомпозиційні іоніти, як показано на прикладі обміну Cu²⁺ \rightarrow H⁺, проявляють підвищену сорбційну спорідненість до іонів d-металів, що зумовлено впливом матриці полімерного іоніту та неорганічної складової. Найкращі характеристики отримано для матеріалів, які містять сферичні частинки $\Gamma \Phi \Pi$ діаметром (1,4–1,7) $\cdot 10^{-8}$ м, структура агрегатів яких є найбільш пухкою.

Ионообменные методы традиционно используют для очистки воды от нежелательных неорганических примесей в различных отраслях химического производства. Целесообразность использования того или иного ионита в каждом отдельном случае определяется его химической и механической стабильностью, селективностью и обменной емкостью [1, 2]. Органо-неорганические гибридные нанокомпозиты — современный перспективный класс ионообменных материалов с улучшенными характеристиками [3]. Полимерная составляющая композита обеспечивает высокую скорость обмена, а неорганическая составляющая композита — селективность по отношению к тем или иным ионам [4]. Тем не менее вопрос о взаимосвязи между соотношением органической и неорганической составляющих в нанокомпозитах и их ионообменными свойствами остается открытым. Влияние неорганического компонента на ионообменные свойства композиционных материалов на основе ионообменных смол оценивается авторами настоящего сообщения. В качестве объектов исследования были выбраны сильнокислотная гелевая катионообменная смола (далее KC) Dowex HCR-S (Dow Chemical) и неорганический катионообменник — гидрофосфат Zr(IV) аморфной модификации (ГФЦ). Выбор ионообменной смолы продиктован тем, что материалы указанного типа широко используются в ионообменных процессах [2, 5]. В то же время ГФЦ проявляет повышенную избирательность по отношению к ионам d-металлов [6, 7].

Экспериментальная часть. Нанокомпозиты были получены при поэтапном введении неорганического компонента в полимерную матрицу. Синтез включал импрегнирование

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2011, № 3

134

смолы раствором 1 моль/л ZrOCl₂ в течение 24 ч при 298–299 К, дальнейшую обработку раствором 1 моль/л H₃PO₄, промывку деионизированной водой до нейтральной реакции элюата и высушивание при 330 К до постоянной массы. Процедуру введения неорганического компонента в ионит проводили многократно: маркировка полученных образцов соответствует циклу синтеза (*n*). Каждую серию экспериментов повторяли трижды.

Кажущуюся плотность (ρ_{κ}) композиционных материалов определяли по оригинальной методике. Измеряли диаметр каждой из 30 сухих гранул, рассчитывали среднюю величину (\overline{d}), находили суммарную массу частиц (m) и оценивали значение ρ_{κ} как $6m/(\pi \overline{d}^3)$. Аналогичным образом определяли ρ_{κ} ионитов, набухших в воде, рассчитывали коэффициент набухания (β) как соотношение объемов набухшего и сухого ионита. Истинную плотность (ρ_{μ}) определяли пикнометрическим методом [8]; удельную поверхность ГФЦ — методом тепловой десорбции азота.

Изучали ионный обмен Cu²⁺ → H⁺, поскольку аморфный ГФЦ проявляет высокое сорбционное сродство именно к катионам Cu²⁺ [7]. Исследование проводили в статических условиях при соотношении масс твердой и жидкой фаз 1 : 50, после чего ионит отделяли от раствора, промывали деионизированной водой и обрабатывали 1 моль/л раствором H₂SO₄. Элюат анализировали атомно-абсорбционным методом.

Результаты и обсуждение. При импрегнировании смолы раствором ZrOCl₂ противоионы ZrO²⁺ сорбировались КС не только по ионообменному, но и по доннановскому механизму: избыток противоионов компенсировался *ко*-ионами Cl⁻ [1]. Под действием H₃PO₄ ГФЦ осаждался в фазе ионита. Композиционные иониты — прозрачные гранулы: цвет исходной смолы при модифицировании не изменялся. От одного цикла синтеза к другому масса сухого ионита возрастала (табл. 1), а зависимость $\beta - n$ демонстрирует максимум при n = 3 (рис. 1).

Пористость ГФЦ в фазе КС определяли следующим образом. Истинную плотность набухшего нанокомпозита рассчитывали как

$$\rho_{\rm H,\rm HK} = \frac{m_{\rm o} + m_{\rm H}}{V_{\rm o} + V_{\rm H}} = \frac{m_{\rm HK}}{\beta V_{\rm HK}'},\tag{1}$$

где нижние индексы отвечают соответственно нанокомпозиту, органической и неорганической составляющим, а верхний индекс (штрих) указывает на то, что объем воздушно-сухого материала включает поры; величины $V_{\rm o}$ и $V_{\rm H}$ не учитывают объем пор. Величину $\rho_{\rm u, H}$ находили по формуле:

$$\rho_{\mathrm{H,H}} = \frac{\rho_{\mathrm{H,HK}} \beta V_{\mathrm{HK}}'}{V_{\mathrm{H}}'}.$$
(2)

Значение $V'_{\rm H}$ соответствует приросту объема воздушно-сухих нанокомпозитов по сравнению с исходной смолой. С учетом этого значения, а также увеличения массы (Δm) определяли кажущуюся плотность неорганического ионита ($\rho_{\rm K,H}$) в фазе КС, пористость (ε) как $\varepsilon = 1 - (\rho_{\rm K,H}/\rho_{\rm H,H})$ и оценивали параметры его структуры с использованием глобулярной модели [9], которая обычно применяется для моделирования структуры ксерогелей. Правомерность использования этой модели подтверждена данными электронной микроскопии: на поперечном разрезе гранул КС видны как частицы неорганической составляющей микронного размера, форма которых близка к сферической (рис. 2, *a*), так и единичные частицы размером порядка 10⁻⁸ м (рис. 2, δ). Исследования гранулированного ГФЦ показали, что

ISSN 1025-6415 Доповіді Національної академії наук України, 2011, № 3

135

Рис. 1. Зависимости коэффициента набухания нанокомпозита (1) и диаметра структурообразующих частиц ГФЦ в полимерной матрице (2) от цикла введения неорганического компонента. Области (римские цифры) соответствуют упаковке глобул: І — кубической объемноцентрированной; II — простой кубической; III — тетраэдрической

материал представляет собой сложные агрегаты, состоящие из мельчайших наноразмерных частиц, диаметр которых может быть оценен теоретически.

Согласно глобулярной модели, твердая фаза — это совокупность одинаковых контактирующих сферических частиц. Промежутки между ними образуют систему пор с чере-

Образец	Δm	εгфц, %	$d \cdot 10^{-8}$, м		$4 - 10^{3}$	$4 \sigma = 10^3$	$4 \approx 10^3$
			диаметр горл пор	диаметр полостей пор	АСи · 10 МОЛЬ · КГ ⁻¹ *	АСи · 10 МОЛЬ·КГ ⁻¹ **	Аса · 10 моль · кг ⁻¹ **
KC	_	_	—	—	2,34	2,31	$13,\!59$
1	$0,\!23$	55,74	1,32	$3,\!19$	$2,\!23\pm0,\!05$	$2{,}20\pm0{,}07$	$10{,}36\pm0{,}13$
					(2,28)	(2,13)	(11, 89)
2	$0,\!51$	$43,\!86$	1,71	1,87	$2,\!45 \pm 0,\!22$	$2{,}42\pm0{,}33$	$6,\!22\pm0,\!51$
					(2,23)	(2,09)	(10, 53)
3	$0,\!54$	$45,\!91$	1,62	1,77	$2{,}10\pm0{,}13$	$2,\!15\pm0,\!06$	$0{,}52\pm0{,}39$
					(2,23)	(2,09)	(10, 42)
4	$0,\!56$	47,71	1,31	$1,\!44$	$3{,}17\pm0{,}25$	$3{,}07\pm0{,}98$	$3,\!68\pm0,\!46$
					(2,22)	(2,09)	(10, 34)
5	$0,\!57$	$60,\!69$	1,14	2,01	$2{,}29\pm0{,}07$	$2{,}28\pm0{,}20$	$4,\!49\pm0,\!42$
					(2,22)	(2,08)	(10, 31)
6	$0,\!58$	$65,\!61$	1,35	2,38	$2,\!13\pm0,\!09$	$2{,}11\pm0{,}03$	$7{,}37\pm0{,}39$
					(2,22)	(2,08)	(10, 27)
7	$0,\!59$	$58,\!61$	7,82	1,01	$2{,}17\pm0{,}05$	$2{,}26\pm0{,}17$	$6,\!29 \pm 0,\!41$
					(2,22)	(2,09)	(10, 23)
8	$0,\!63$	$59,\!81$	1,28	2,27	$1,75 \pm 0,46$	$1{,}81\pm0{,}27$	$2,49 \pm 0,36$
					(2,21)	(2,08)	(10,09)
ГФЦ	_	_			2,00	3,22	4,56

Таблица 1. Параметры пористой структуры ГФЦ, инкорпорированного в полимерную матрицу, и ионообменные свойства нанокомпозитов

*Сорбция из индивидуальных растворов, содержащих 0,1 моль · м⁻³ CuCl₂; **сорбция из комбинированных растворов, содержащих 0,1 моль · м⁻³ CuCl₂ и 1,0 моль · м⁻³ CaCl₂.

В скобках указаны значения сорбционной емкости, рассчитанные теоретически.

136

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2011, № 3

Рис. 2. Электронные микрофотографии поперечного разреза гранулы третьего нанокомпозита, полученные методом сканирующей микроскопии (*a*) и методом просвечивающей микроскопии (*б*)

дующимися расширениями (полостями) и сужениями (горлами пор). В каждую полость $(d_{\text{п.пор}})$ входят несколько горл пор $(d_{\text{г.пор}})$ из соседних расширений (см. табл. 1). Параметрами глобулярной модели выбраны: диаметр глобул $(d_{\text{гл}} = 6/(\rho_{\text{н}}S))$, упаковка частиц (находится по интерполяционной зависимости величины $1 \cdot \varepsilon$ [9]), а также диаметры горл и полостей пор (определяются по интерполяционным зависимостям числа касаний). При расчетах диаметра глобул неорганической составляющей в матрице исходили из того, что удельная поверхность гранулированного ГФЦ составляет 98 м² · г⁻¹. Для образцов, полученных путем 1–4-кратного введения неорганического ионита, диаметр частиц, образующих агрегаты в фазе КС, уменьшается от $3,2 \cdot 10^{-8}$ до $1,4 \cdot 10^{-8}$ м, при этом происходит переход от простой кубической упаковки к тетраэдрической (см. рис. 1). Последующее введение ГФЦ приводит к возрастанию величины $d_{\text{гл}}$ и к уплотнению частиц.

Зависимости коэффициента набухания и диаметра частиц от цикла введения неорганической составляющей носят антибатный характер: максимальные значения β наблюдаются для образцов с наиболее рыхлой структурой $\Gamma \Phi \Pi$ (n = 2-4). Полученные результаты можно объяснить с учетом того, что пористая структура набухших ионообменных смол включает микро-, мезо- и макропоры [10]. Вероятно, при первоначальном введении ГФЦ в матрицу (n = 1-2) частицы неорганического ионита осаждаются как в макропорах (в виде агрегатов), так и в мезопорах (в виде неагрегированных частиц), что подтверждается данными электронной микроскопии. Введение неорганического компонента в фазу КС приводит к "растягиванию" полимера и соответственно к увеличению набухаемости. При этом, очевидно, происходит экранирование сильнокислотных групп КС неорганическими частицами, что обуславливает ухудшение сорбции ZrO^{2+} . Результатом снижения содержания этих катионов в полимерном ионите является уменьшение размера осаждаемых частиц ГФЦ и формирование рыхлых агрегатов в макропорах. При последующем введении неорганической составляющей отмечается укрупнение структурообразующих частиц и одновременное уплотнение агрегатов. В этом случае осаждение, вероятно, происходит в основном в макропорах, при этом ранее введенные частицы ГФЦ выполняют функцию коллекторов (рис. 3). Подтверждением этому является незначительный прирост массы нанокомпозитов 4-8, а также уменьшение набухаемости (n > 2), обусловленное заполнением пор матри-

ISSN 1025-6415 Доповіді Національної академії наук України, 2011, № 3

Рис. 3. Параметры уравнения Лэнгмюра как функции количества циклов последовательного введения ГФЦ в полимерную матрицу: A_{∞} (1, 2, 5, 6); k (3, 4, 7, 8) для Cu²⁺ (1, 3, 5, 7) и Ca²⁺ (2, 4, 6, 8)

цы неорганической составляющей, и соответственно снижением содержания воды в КС, результатом чего является понижение осмотического давления. С уменьшением содержания воды в ионите снижается содержание необменно сорбированных ионов ZrO^{2+} в ходе 8 цикла синтеза, следствием чего является образование агрегатов ГФЦ, более рыхлых по сравнению с образцом 7. Некоторое увеличение набухаемости для образцов 7 и 8 по сравнению с 6 обусловлено расширением полимерной матрицы вследствие укрупнения агрегатов в макропорах. ГФЦ, инкорпорированный в КС, характеризуется мезопористой структурой (см. табл. 1).

Структура нанокомпозита влияет на его ионообменные свойства: для образцов 1-5, ионообменная емкость (A) по Cu²⁺ превышает теоретические значения, рассчитанные как $(A_{\rm KC} + A_{\Gamma \Phi \amalg} \Delta m)/(1 + \Delta m)$, что обусловлено влиянием инкорпорированных частиц ионита на набухаемость KC. Увеличение осмотического давления в гранулах нанокомпозита способствует вовлечению в ионный обмен функциональных групп, локализованных в микропорах матрицы, которые в случае немодифицированной KC остаются нераскрытыми.

Установлено, что изотермы ионного обмена $Cu^{2+} \to H^+$ и $Ca^{2+} \to H^+$ описываются уравнением Лэнгмюра [11], константы которого (A_{∞} — предельно возможное значение обменной емкости при полном заполнении активных центров поверхности и k — константа, отражающая энергию взаимодействия сорбата с поверхностью) приведены на рис. 3 как функции номера цикла введения ГФЦ. Для слабокислотного неорганического ионита найдены меньшие значения A_{∞} по сравнению с КС, но величины $A_{Cu,\infty}$ и $A_{Ca,\infty}$ для КС весьма близки, а для ГФЦ — различаются значительно, при этом $A_{Cu,\infty} > A_{Ca,\infty}$. Полученные результаты согласуются с литературными данными [12–14]: избирательность неорганических фосфорнокислых ионитов к ионам d-металлов трактуется с позиции гидролиза ионов непосредственно в фазе ионита [12] либо комплексообразования [13, 14]. Зависимости $A_{Cu,\infty} - n$ и $A_{Ca,\infty} - n$ носят симбатный (n = 1-7) и антибатный (n = 7-8) характер, при этом разности $A_{Cu,\infty} - A_{Ca,\infty}$ практически для всех нанокомпозитов превышают таковые для индивидуальных ионитов, что, очевидно, обусловлено влиянием ГФЦ на пористую структуру набухшей КС. Наибольшую избирательность к Cu²⁺ по сравнению с Ca²⁺ демонстрируют образцы 2 и 3, размер структурообразующих частиц ГФЦ для которых — наименьший.

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2011, № 3

Для этих образцов найдено также наибольшее соотношение величин $A_{Cu,\infty}/A_{Ca,\infty}$ в случае сорбции из комбинированного раствора. Синергизм проявляется и при сорбции Cu^{2+} из раствора, содержащего избыток Ca^{2+} практически во всех случаях, при этом для ионов Cu^{2+} этот эффект выражен более сильно, чем для Ca^{2+} .

Модифицирование сильнокислотной катионообменной смолы наночастицами ГФЦ приводит к синергизму ионообменных свойств. На примере обмена $\mathrm{Cu}^{2+} \to \mathrm{H}^+$ показано, что нанокомпозиционные иониты проявляют повышенное сорбционное сродство к ионам *d*-металлов, что обусловлено влиянием как матрицы полимерного ионита, так и неорганической составляющей. Наилучшие характеристики получены для материалов, содержащих сферические частицы ГФЦ диаметром $(1,4-1,7) \cdot 10^{-8}$ м, структура агрегатов которых наиболее рыхлая. При этом, оценивая размер частиц неорганического компонента по глобулярной модели с учетом денсиметрических или порометрических измерений, можно контролировать процесс синтеза нанокомпозитов. Тенденция к укрупнению наночастиц указывает на нецелесообразность дальнейшего введения неорганического компонента.

- 1. Helfferich F. Ion Exchange. New York: Dover, 1995. 836 p.
- 2. Долгоносов А. М., Сенявин М. М., Волощик И. Н. Ионный обмен и ионная хроматография. Москва: Наука, 1993. 222 с.
- Loureiro J. M., Kartel M. T. Combined and Hybrid Adsorbents: Fundamentals and Applications. Berlin: Springer, 2006. – 370 p.
- Sengupta S., SenGupta A. K. Chelating ion-exchangers embedded in PTFE for decontamination of heavymetal-laden sludges and soils // Colloid and Surfaces A: Physicochem. and Eng. Aspects. – 2001. – 191. – P. 79–95.
- Dzyazko Y. S. Purification of a diluted solution containing nickel using electrodeionization // Desalination. 2006. – 198. – P. 47–55.
- 6. *Ярославцев А.Б.* Ионный обмен на неорганических сорбентах // Успехи химии. 1997. **66**, № 7. С. 641–659.
- Dzyazko Yu., Rozhdestvenska L., Palchik A., Lapicque F. Ion-exchange properties and mobility of Cu²⁺ ions in zirconium hydrophosphate ion exchangers // Separ. and Purif. Technol. – 2005. – 45, No 2. – P. 141–146.
- 8. Мархол М. Ионообменники в аналитической химии. Т. 1. Москва: Мир, 1985. 264 с.
- 9. Карнаухов А. П. Глобулярная модель пористых тел корпускулярного строения // Кинетика и катализ. 1971. **12**, № 6. С. 1025–1033.
- 10. Заболоцкий В.И., Никоненко В.В. Перенос ионов в мембранах. Москва: Наука, 1996. 390 с.
- 11. Воюцкий С. С. Курс коллоидной химии. 2-е изд., перераб. и доп. Москва: Химия, 1975. 512 с.
- Ласкорин Б. Н., Голдобина В. А., Копанев А. М. Сорбция ионов цветных металлов и железа неорганическими ионитами на основе фосфата циркония // Изв. вузов. Цветн. металлургия. 1973. 16, № 11. С. 22–24.
- 13. Бортун А. И., Квашенко А. П. Комплексообразование при сорбции ионов Сu, Co, Zn аморфными фосфатами титана и циркония // Журн. прикл. химии. 1990. 64, № 7. С. 1963–1966.
- 14. *Тарасович Ю. И., Климова Г. М.* Комплексообразующие сорбенты на основе дисперсных материалов для выделения ионов тяжелых металлов из водных растворов // Теорет. и эксперим. химия 1999. **35**, № 3. С. 167–170.

Институт общей и неорганической химии им. В. И. Вернадского НАН Украины, Киев НТУ Украины "Киевский политехнический институт", Киев Поступило в редакцию 26.07.2010

ISSN 1025-6415 Доповіді Національної академії наук України, 2011, № 3

139

Corresponding Member of the NAS of Ukraine V. N. Belyakov, L. N. Ponomarova, Yu. S. Dzyazko, T. E. Mitchenko

Cation exchange abilities of nanocomposites based on ion exchange resin and zirconium hydrophosphate

A modification of cation-exchange resin with nanoparticles of zirconium hydrophosphate leads to the synergism of ion-exchange properties. The exchange of $Cu^{2+} \rightarrow H^+$ shows that the nanocomposite ion exchangers demonstrate a high affinity to d-metal ions due to the polymer matrix, as well as to the inorganic component. The best characteristics are obtained for materials containing spherical particles of zirconium hydrophosphate with a diameter of $(1.4-1.7) \cdot 10^{-8}$ m, these aggregates being the most porous.