УДК 628.35

© 2011

В. Л. Поляков

К расчету неустановившегося биофильтрования

(Представлено членом-корреспондентом НАН Украины А. Я. Олейником)

Сформульовано задачу неусталеного біофільтрування води з невисоким вмістом органічних сполук при лімітованому зростанні біомаси. Одержано її строгий розв'язок і на його основі запропоновано для практики ряд розрахункових формул. На багаточисленних прикладах виконано кількісний аналіз зміни з часом і за висотою завантаження концентрацій субстрату і біомаси, часу початку його повноцінної захисної дії.

Работа затопленных биореакторов-фильтров осуществляется последовательно в двух режимах. Первый, переходный, сравнительно быстро сменяется основным, который реализуется в течение длительного времени и обеспечивает стабильное снижение содержания растворенных органических соединений (субстрата) в природных, сточных водах до требуемого уровня. Поэтому второй режим имеет устойчивые показатели и надежно описывается стационарными математическими моделями [1–4]. Окисление субстрата главным образом происходит в образовавшихся и закрепившихся на элементах пористой загрузки (зернах) биопленках (микроорганизмы и продукты их жизнедеятельности). Известные структурные модели биопленки позволяют с высокой достоверностью установить обобщенную функцию утилизации субстрата, необходимую для теоретических исследований поведения субстрата уже на макроуровне, т.е. в пределах объема фильтра. Именно на базе подобной двухуровневой модели анализировалось аналитическими методами установившееся биофильтрование [5, 6]. Вместе с тем большую ценность для практики представляет прогноз момента времени, начиная с которого качество фильтрата отвечает принятым нормативам. Аккуратно определять этот момент можно, только основываясь на нестационарной модели биофильтрования. Ключевую роль в такой модели играет вышеупомянутая функция, связывающая интенсивность деградации субстрата R с концентрациями его (S_w) и биомассы (B). Традиционно для трансформационных процессов микробиологической природы данная функция имеет форму

$$R = \frac{\lambda S_w}{S_w + K} \frac{B}{Y},\tag{1}$$

где λ — удельная максимальная скорость роста биомассы; K — константа полунасыщения; Y — экономический коэффициент трансформации субстрата в биомассу. Правомочность использования выражения (1) обоснована в многочисленных работах, например [7–10]. Тогда после принятия обычной для подобных задач системы допущений [6, 11] исходная модель включает следующие уравнения баланса субстрата, биомассы, граничное и начальное условия:

$$V\frac{\partial S_w}{\partial z} + \frac{\lambda S_w}{S_w + K_w}\frac{B}{Y} = 0,$$
(2)

$$\frac{\partial B}{\partial t} = \frac{\lambda S_w}{S_w + K_w} B - k_d B,\tag{3}$$

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2011, № 9

62

$$z = 0, \qquad S_w = S_0; \qquad t = 0, \qquad B = B^0.$$
 (4)

Здесь V — скорость фильтрования; k_d — коэффициент скорости отрыва биомассы; S_0 — исходная концентрация субстрата. Проблематичным является выбор начального значения B^0 концентрации B, которое зависит от происхождения первоначальной биомассы (сохранилась с предыдущего фильтроцикла, введена определенной дозой в начале рассматриваемого фильтроцикла). Однако с течением времени этот фактор становится малосущественным.

При решении задачи (2)–(4), прежде всего, концентрация B выражается, исходя из (2), через S_w следующим образом:

$$B = -\frac{VY}{\lambda}\frac{\partial u}{\partial z},\tag{5}$$

где

$$u = \int \frac{S_w + K_w}{S_w} dS_w = S_w + K_w \ln S_w.$$

Подстановка выражения (5) в (3) дает

$$\frac{\partial B}{\partial t} = -\frac{VY}{\lambda} \frac{(\lambda - k_d)S_w - k_d K_w}{S_w + K_w} \frac{\partial u}{\partial z}.$$
(6)

Отсюда с учетом (5) следует

$$\frac{\partial}{\partial z} \left(\frac{\partial u(S_w)}{\partial t} \right) = \frac{\partial U(S_w)}{\partial z},\tag{7}$$

где $U = (\lambda - k_d)S_w - k_dK_w \ln S_w$. В результате интегрирования уравнения (7) при граничном условии (4) получено

$$\frac{\partial u}{\partial t} = U(S_w) - U(S_0). \tag{8}$$

Связь между S_w , z и t устанавливается путем интегрирования уравнения (8)

$$t + C(z) = \int \frac{(S_w + K_w)dS_w}{S_w[(\lambda - k_d)(S_w - S_0) - k_dK_w \ln S_w/S_0]}.$$
(9)

Вследствие пренебрежения локальной производной $\partial S_w/\partial t$ в уравнении массопереноса начальная концентрация субстрата S^0 становится функцией от z, которую следует определять в ходе решения поставленной задачи. Искомая же зависимость S_w от z, t после выражения C через S^0 представится в неявной форме

$$t = \int_{S^0(z)}^{S_w} \frac{(\xi + K_w)d\xi}{\xi[(\lambda - k_d)(\xi - S_0) - k_d K_w \ln \xi/S_0]}.$$
(10)

Путем дифференцирования (10) по z с учетом (5) выводится уравнение

$$\frac{(S^0 + K_w)}{S^0[(\lambda - k_d)(S^0 - S_0) - k_d K_w \ln S^0 / S_0]} \frac{dS^0}{dz} + \frac{\lambda B}{VY[(\lambda - k_d)(S_w - S_0) - k_d K_w \ln S_w / S_0]} = 0.$$
(11)

ISSN 1025-6415 Доповіді Національної академії наук України, 2011, № 9

63

В (11) полагается t = 0 и тогда задачу относительно $S^0(z)$, принимая во внимание начальное условие (4), запишем так:

$$\frac{dS^0}{dz} + \frac{\lambda B^0}{VY} \frac{S^0}{S^0 + K_w} = 0; \qquad z = 0, \qquad S^0 = S_0.$$
(12)

Решение задачи (12) имеет вид

$$z = -\frac{VY}{\lambda B^{0}} \left(S^{0} - S_{0} + K_{w} \ln \frac{S^{0}}{S_{0}} \right).$$
(13)

Выражение для искомой функции-концентрации B(z,t) вытекает из (11) и с учетом уравнения (12) принимает такую форму:

$$B = B^{0} \frac{(\lambda - k_{d})(S_{w} - S_{0}) - k_{d}K_{s}\ln S_{w}/S_{0}}{(\lambda - k_{d})(S^{0} - S_{0}) - k_{d}K_{s}\ln S^{0}/S_{0}}.$$
(14)

Путем предельного перехода $z \to 0$, $S_w \to S^0$ в (10) и с учетом выражений для производных $\partial S_w/\partial z$, $\partial S^0/\partial z$, согласно (2), (12), выведена простая формула для концентрации биомассы на входе в загрузку со временем

$$B_0(t) = B(0,t) = B^0 \exp\left(\frac{(\lambda - k_d)S_0 - k_d K_w}{S_0 + K_w}t\right)$$

Отсюда очевидно, что прирост биомассы в загрузке невозможен, если

$$(\lambda - k_d)S_0 \leqslant k_d K_w.$$

Для вычисления потерь напора в загрузке прежде всего необходимо задаться эмпирической зависимостью коэффициента фильтрации k от концентрации B, которая в общем виде будет такой [12, 13]:

$$k = k_0 f(B). \tag{15}$$

Искомые потери при V = const находятся из решения фильтрационной задачи

$$V = -k_0 f(B) \frac{\partial h}{\partial z}; \qquad z = L, \qquad h = H_d, \tag{16}$$

где h — напор в загрузке; L — высота загрузки; H_d — выходной напор. В результате они составляют

$$\Delta h(t) = \frac{V}{k_0} \int_{0}^{L} \frac{dz}{f(B(z,t))}.$$
(17)

Из построенного выше решения вытекают известные расчетные формулы для ряда частных случаев. Так, при $S_w \ge K_w$ (реакция нулевого порядка) формулы для концентраций S_w представим таким образом:

$$S_w = S_0 - \frac{\lambda B^0}{VY} z e^{(\lambda - k_d)t},\tag{18}$$

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2011, № 9

64

$$B = B^0 e^{(\lambda - k_d)t}.$$
(19)

Если же концентрация S_w очень низкая ($S_w \ll K_w$, реакция первого порядка), то соответствующие формулы примут вид

$$S_w = \frac{S_0}{1 - e^{\frac{\lambda S_0 t}{K_w}} + e^{\frac{\lambda}{K_w} \left(S_0 t + \frac{B^0 z}{VY}\right)}},$$
(20)

$$B = \frac{B^0}{1 - e^{-\frac{\lambda B^0 z}{VYK_w}} + e^{-\frac{\lambda}{K_w} \left(S_0 t + \frac{B^0 z}{VY}\right)}}.$$
(21)

Наконец, если пренебречь явлением отрыва биомассы $(k_d = 0)$, то

$$t = \frac{1}{\lambda} \left(\ln \frac{S_w}{S^0} + \frac{K_w}{S_0} \ln \frac{S^0(S_0 - S_w)}{S_w(S_0 - S^0)} \right),$$
(22)

$$B = B^0 \frac{S_w - S_0}{S^0 - S_0}.$$
(23)

Расчетные формулы заметно упрощаются, если ввести безразмерные переменные и параметры таким образом: $\overline{S}_w = S_w/S_0$, $\overline{B} = B/B^0$, $\overline{z} = z/L$, $\overline{t} = \lambda t$, $\overline{K}_w = K_w/S_0$, $\overline{k}_d = k_d/\lambda$, $\sigma = \lambda L B^0 / (VYS_0)$, $\Delta \overline{h} = (h - H_d) / \Delta h^0$, Δh^0 — потери напора в чистой загрузке. Тогда получаем

$$\overline{K}_w \ln \overline{S}^0 + \overline{S}^0 = 1 - \sigma \overline{z},\tag{24}$$

$$\overline{t} = \int_{\overline{S}_w}^{S^0(z)} \frac{(\xi + \overline{K}_w)d\xi}{\xi[(1 - \overline{k}_d)(1 - \xi) + \overline{k}_d\overline{K}_w\ln\xi]},\tag{25}$$

$$\overline{B} = \frac{(1 - \overline{k}_d)(1 - \overline{S}_w) + \overline{k}_d \overline{K}_w \ln \overline{S}_w}{(1 - \overline{k}_d)(1 - \overline{S}^0) + \overline{k}_d \overline{K}_w \ln \overline{S}^0},$$
(26)

$$\overline{B}_0 = \exp\left(\frac{1 - \overline{k}_d - \overline{k}_d \overline{K}_w}{1 + \overline{K}_w}\overline{t}\right),\tag{27}$$

$$\Delta \overline{h}(\overline{t}) = \frac{1}{\sigma} \int_{\overline{S}_e}^{1} \frac{(\xi + \overline{K}_w) d\xi}{\xi \overline{B}(\xi, \overline{S}^0) f(\overline{B}(\xi, \overline{S}^0))}.$$
(28)

Из (26) вытекает важное следствие, а именно, уравнение относительно безразмерной установившейся выходной концентрации $\overline{S}_{e\infty} = \overline{S}_w(1,\infty)$

$$\overline{S}_{e\infty} - \frac{\overline{k}_d \overline{K}_w}{1 - \overline{k}_d} \ln \overline{S}_{e\infty} = 1.$$
⁽²⁹⁾

65

В начальный период работы фильтр не в состоянии обеспечить надлежащее качество фильтрата из-за недостаточного развития в нем биоценоза. Поэтому его защитное действие полноценно реализуется лишь с некоторого момента времени t_p . Кстати, в специальной

ISSN 1025-6415 Доповіді Національної академії наук України, 2011, №9

литературе по вопросам фильтрования суспензий t_p характеризует длительность такого действия загрузки, так что с этого момента ее необходимо регенерировать. В рассматриваемой же ситуации, наоборот, к моменту t_p выходная концентрация субстрата снижается до предельно допустимой в соответствии с существующими нормативами уровня органического загрязнения S_* . Рассчитывается относительное значение \bar{t}_p в два этапа: сначала из (25) вычисляется величина $\bar{S}_e^0 = \bar{S}^0(1)$, а затем и искомое время по формуле

$$\overline{t}_p = \int_{\overline{S}_e^0}^{\overline{S}_*} \frac{(\xi + \overline{K}_w)d\xi}{\xi[U(\xi) - U(1)]}.$$
(30)

Для иллюстрации построенного выше точного решения нестационарной задачи биофильтрования, а также оценки значимости используемых в исходной математической модели параметров выполнен разнообразный количественный анализ. Основывается он на четырех примерах с типичными исходными данными. Так, в базовом, первом примере приняты $\sigma = 0,001, \ \overline{k}_d = 0,5, \ \overline{K}_w = 0,5;$ в других примерах поочередно изменяются значения σ (0,01, второй пример); \overline{k}_d (0,25, третий); \overline{k}_d и \overline{K}_w (0,25 и 1, четвертый). Предметом расчетов стали относительные характеристики — концентрации субстрата, биомассы и время начала эффективной работы фильтра. Длительность расчетных периодов выбрана настолько большой, что биомасса успевает увеличиться на 3-4 порядка. Подобная ситуация обычно складывается при инокуляции малого количества деятельных микроорганизмов в биореактор-фильтр с первоначально чистой загрузкой. Очевидно, что развитие биомассы в нем ограничено размерами порового пространства. В действительности же при постоянной скорости фильтрования ее накопление прекращается намного раньше, чем будет заполнено поровое пространство, из-за снижения прочности биопленок на элементах среды и усиления воздействия на них фильтрационного потока. Поэтому у концентрации В существует предельная величина В_{тах}, которая зависит от физико-химических свойств пористой среды, органического загрязнителя и гидродинамических условий. Кстати, если значение B_{\max} заранее известно, то его удобно задействовать в качестве масштаба для концентрации В и тогда ее безразмерный аналог \overline{B} будет изменяться в пределах от очень малого начального значения \overline{B}^0 до 1. Относительное время \overline{t}_{\max} , за которое величина \overline{B} достигает максимума, легко вычисляется по формуле, вытекающей из (28),

$$\overline{t}_{\max} = \frac{1 + \overline{K}_w}{1 - \overline{k}_d - \overline{k}_d \overline{K}_w} \ln \overline{B}_{\max}.$$

Произойдет это во входном сечении загрузки, где всегда аккумулируется наибольшее количество биомассы. И для последующего прогноза принятую модель, строго говоря, следует корректировать. Для этого вводится подвижная граница, на которой имеет место постоянная концентрация $\overline{B}_{\rm max}$. Впрочем в первом приближении отмеченное обстоятельство можно проигнорировать, что приведет, конечно, к постепенно нарастающей погрешности в вычислениях, особенно, потерь напора.

Прежде всего, рассчитано изменение выходной концентрации субстрата, являющейся важнейшим показателем качества водоочистки. Соответствующие четырем примерам кривые $\overline{S}_e(\overline{t})$ изображены на рис. 1. Как свидетельствует расположение кривых 1–3 относительно 4, указанные выше изменения параметров \overline{k}_d , \overline{K}_w , σ могут существенно сказаться

Рис. 1. Изменение относительной выходной концентрации субстрата со временем: 1-пример 3;2-пример 2;3-пример 4;4-пример 1

Рис. 2. Изменение относительной концентрации биомассы на входе в загрузку со временем: 1 - пример 3; 2 - пример 4; 3 - пример 1

на содержании субстрата в фильтрате. Наиболее значимым оказывается параметр, характеризующий явление мобилизации биомассы, поскольку уменьшение базового значения \overline{k}_d вдвое ведет к резкому повышению эффективности действия фильтра. Аналогичное же увеличение \overline{K}_w имеет обратный, но не столь сильно выраженный эффект. Наконец, увеличение на порядок параметра σ , а по сути — исходного содержания биомассы, хотя в меньшей степени, положительно отражается на результатах биофильтрования.

Динамика биомассы в загрузке имеет сложный характер. С одной стороны, наблюдается монотонный ее рост на входе до момента \overline{t}_{max} , что подтверждается результатами вычислений \overline{B}_0 по формуле (28), представленными в форме графиков зависимости lg $\overline{B}_0(\overline{t})$ на рис. 2. Естественно, что быстрее накапливается биомасса при меньших значениях \overline{k}_d , \overline{K}_w . Увеличение интенсивности отрыва и уменьшение скорости утилизации субстрата за счет принятия большего значения \overline{K}_w ощутимо тормозит здесь аккумуляцию биомассы. Иная ситуация, как видно из рис. 3, складывается в нижней части загрузки (нисходящее фильтрование). На нем показаны профили концентрации $\overline{B}(\overline{z})$, определенные для данных примера 1 на три

ISSN 1025-6415 Доповіді Національної академії наук України, 2011, № 9

Рис. 3. Распределение относительной концентрации биомассы по высоте загрузки: $1-\overline{t}=60;~2-\overline{t}=40;~3-\overline{t}=20$

Рис. 4. Графики зависимости $\overline{t}_p(\overline{K}_w)$: $1 - \overline{k}_d = 0.5; \ 2 - \overline{k}_d = 0.25; \ 3 - \overline{k}_d = 0.1$

разных момента времени. Эти моменты отвечают трем стадиям переходного режима биофильтрования. И если на ранних стадиях (кривые 2, 3) распределение биомассы по высоте относительно равномерное, то на поздней стадии оно становится существенно неравномерным (кривая 1). С точки зрения расчетов работы и параметров фильтра, важно знать, на какой из выделенных стадий находится процесс биофильтрования в момент \bar{t}_{max} . В случае первых двух стадий исходная модель вообще не нуждается в коррекции, что касается третьей, то уточнение модели и расчетов становится целесообразным. В целом сначала содержание биомассы внизу загрузки растет так же, как и вверху. Однако затем биопленки на ее верхнем участке настолько развиваются, что начинают потреблять основную часть субстрата. Вследствие этого ограничивается рост биомассы на нижнем участке, ведущую роль в ее балансе уже играет отрыв и, как следствие, величина \overline{B} неуклонно снижается.

В заключение по формулам (25), (29)рассчитывалось относительное время начала защитного действия загрузки на требуемом уровне в зависимости от константы \overline{K}_w , которая изменялась в пределах от 0,1 до 1. При этом варьировались значения \overline{k}_d (0,1; 0,25; 0,5)

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2011, № 9

и требовалось, чтобы содержание загрязнения в воде в результате фильтрования снизилось в пять раз ($\overline{S}_* = 0,2$). Соответствующие кривые $\overline{t}_p(\overline{K}_w)$ изображены на рис. 4 и свидетельствуют о сильном влиянии явления отрыва биомассы на расчетный параметр. Особенно резко растет \overline{t}_p с увеличением \overline{K}_w при $\overline{k}_d = 0,5$, а при $\overline{K}_w \ge 1$, согласно (28), концентрация *B* не в состоянии превысить даже исходный уровень.

- Hozalski R. M., Bouwer E. J. Non-steady state simulation of BOM removal in drinking water biofilters: applications and full-scale validation // Water Res. - 2001. - 35, No 1. - P. 211-223.
- Rittmann B. E., Brunner C. W. The nonsteady-state-biofilm process for advanced organics removal // J. Water Pollut. Control. Fed. - 1984. - 56 (7). - P. 874-880.
- Spigno G., Zilli M., Micolella C. Mathematical modeling and simulation of phenol degradation in biofilters // Biochem. Eng. J. 2004. 19. P. 267-275.
- Viotti P., Eramo B., Boni M. R. et al. Development and calibration of a mathematical model for the simulation on the biofiltration process // Advances in Environ. Res. – 2002. – 7. – P. 11–33.
- 5. Поляков В. Л. Моделирование биофильтрования воды с ограниченным содержанием органического субстрата. Аэробная биопленка // Доп. НАН України. 2011. № 5. С. 72–77.
- 6. Поляков В. Л. Моделирование биофильтрования воды с ограниченным содержанием органического субстрата. Биореактор-фильтр // Там само. 2011. № 7. С. 58–66.
- Atkinson B., Davies F. J. The overall rate of substrate uptake (reaction) by microbial films. A biological rate equation // Trans Inst. Chem. Eng. – 1974. – 52. – P. 248–259.
- Baveye P., Valocchi A. J. An evaluation of mathematical models of the transport of biologically reacting solutes in saturated soils and aquifers // Water Resour. Res. – 1989. – 25. – P. 1413–1421.
- Krailas S., Pham Q. T. Macrokinetic determination and water movement in a downward flow biofilter for methanol removal // Biochem. Eng. J. – 2002. – 10. – P. 103–113.
- Sudian M. T., Rittmann B. E., Traeger U. K. Criteria establishing biofilm-kinetic types // Water. Res. 1987. – 21. – P. 491–498.
- 11. *Олійник О. Я., Рибаченко С. О.* Теоретичний аналіз процесів доочистки стічних вод // Доп. НАН України. 2008. № 3. С. 6–63.
- Cunningham A. B., Characklis W. G., Abedeen F., Crawford D. Influence of biofilm accumulation on porous media hydrodynamics // Environ. Sci. Technol. – 1991. – 38. – P. 1305–1311.
- Bancole A., Brissaud F., Gnagne T. Oxidation processes and clogging in intermittent unsaturated infiltration // Water Sci. Tech. – 2003. – 48, No 11–12. – P. 139–148.

Институт гидромеханики НАН Украины, Киев

Поступило в редакцию 25.11.2010

V.L. Polyakov

On the calculation of non-steady biofiltration

A task of nonsteady-state biofiltration of water with low-content organic compounds when the biomass growth is limited has been formulated. An exact solution to the task has been obtained, and a number of calculation formulae has been proposed to use in practice. At numerous examples, a quantitative analysis of substrate and biomass concentrations changing in time and along the filter medium height, as well as the time of the filter protection action, has been performed.