K. D. Protasova, T. M. Provotar

Rainbow graphs and semigroups

(Presented by Corresponding Member of the NAS of Ukraine S. I. Lyashko)
We give an algebraic characterization of rainbow graphs. A connected graph Γ is called rainbow if there is a vertex coloring of Γ, which is bijective on the set of neighbors of each vertex of Γ.

A rainbow graph [3] is a connected graph Γ with the set of vertices $V(\Gamma)$ and the set of edges $E(\Gamma)$ that can be vertex-colored $\chi: V(\Gamma) \longrightarrow \kappa$ so that every color $x \in \kappa$ is represented once, and only once, among the neighbors $N(v)=\{u \in V(\Gamma):\{u, v\} \in E(\Gamma)\}$ of each vertex $v \in V(\Gamma)$. For applications of rainbow graphs, see [1]. If one removes the edge-matching of the monochrome edges of a rainbow graph, one gets a kaleidoscopical graph [2, Chapter 6].

Let κ be a cardinal. A rainbow semigroup $R S(\kappa)$ is a semigroup in the alphabet κ determined by the relations $x x x=x, x y x=x$ for all $x, y \in \kappa$. We identify $R S(\kappa)$ with the set of all nonempty words in κ with no factors $x x x$, $x y x$.

For $x \in \kappa$, a rainbow group $R G(\kappa, x)$ is a subset of $R S(\kappa)$ containing x and all words of the form $x w x, w \in R S(\kappa)$. The word $x x$ is the identity of $R G(\kappa, x), x^{-1}=x$, and $(x w x)^{-1}=x x \widetilde{w} x x$, where \widetilde{w} is the word w written in the reverse order.

Theorem 1. For any cardinal κ and each $x \in \kappa$, the following statements hold:
(i) the idempotents of $R S(\kappa)$ are only $y z$, where $y, z \in \kappa$;
(ii) $R G(\kappa, x)$ is a free product of the cyclic group $\langle x\rangle$ of order 2 and the family of infinite cyclic groups $\{\langle x a b x\rangle: a, b \in \kappa, a \neq x, b \neq x\}$;
(iii) $R S(\kappa)$ is a sandwich product $R S(\kappa)=L(x) \times R G(\kappa, x) \times R(x)$, where $L(x)=\{y x: y \in$ $\in \kappa\}, R(x)=\{x y: y \in \kappa\}$, and the multiplication $\left(l_{1}, w_{1}, r_{1}\right)\left(l_{2}, w_{2}, r_{2}\right)=\left(l_{1}, w_{1} r_{1} l_{2} w_{2}, r_{2}\right)$.

Let κ be a cardinal, $x \in \kappa$. An equivalence \sim on $R S(\kappa)$ is called a rainbow equivalence if, for any $w_{1}, w_{2} \in R S(\kappa)$, we have

- $w_{1} \sim w_{2} \Longrightarrow l\left(w_{1}\right)=l\left(w_{2}\right)$, where $l(w)$ is the first letter of w;
- $w_{1} \sim w_{2} \Longrightarrow y w_{1}=y w_{2}$ for each $y \in \kappa$;
- $l(w)=y \Longrightarrow w$ and $y w$ are not equivalent;
- $w \sim w x x$ for each $w \in K S(\kappa)$.

Each rainbow equivalence \sim on $R S(\kappa)$ determines the rainbow graph $\Gamma(\kappa, k)$ as follows. The set $V(\Gamma)$ of vertices of Γ is a factor-set $R S(\kappa) / \sim=\{[w]: w \in R S(\kappa)\}$, where $[w]$ is the class of equivalence \sim containing w. By definition, $\{u, v\} \in E(\Gamma)$ if and only if $u \neq v$, and there exists $w \in u$ such that $y w \in v$. Then the mapping $\chi: V(\Gamma) \longrightarrow \kappa$ defined by $\chi([w])=l(w)$ does not depend on the choice of w and determines a rainbow coloring of Γ.

In turn, every rainbow equivalence \sim on $R S(\kappa)$ is uniquely determined by the subgroup

$$
S_{x}=[x x] \bigcap R G(\kappa, x)
$$

of $R G(\kappa, x)$ because

$$
w_{1} \sim w_{2} \Longleftrightarrow l\left(w_{1}\right)=l\left(w_{2}\right) \wedge x w_{1} x x \sim x w_{2} x x \Longleftrightarrow\left(x w_{1} x x\right)^{-1}\left(x w_{2} x x\right) \in S_{x}
$$

We say that two rainbow graphs Γ_{1}, Γ_{2} with rainbow colorings $\chi_{1}: V\left(\Gamma_{1}\right) \longrightarrow \kappa$, $\chi_{2}: V\left(\Gamma_{2}\right) \longrightarrow \kappa$ are rainbow isomorphic if there exists a bijection $f: V\left(\Gamma_{1}\right) \longrightarrow V\left(\Gamma_{2}\right)$ such that

- $\forall u, v \in V\left(\Gamma_{1}\right):\{u, v\} \in E\left(\Gamma_{1}\right) \Longleftrightarrow\{f(u), f(v)\} \in E\left(\Gamma_{2}\right) ;$
- $\forall u \in V\left(\Gamma_{1}\right): \chi_{1}(u)=\chi_{2}(f(u))$.

Now, we are ready to characterize all rainbow graphs up to rainbow isomorphisms.
Let Γ be a rainbow graph with rainbow coloring $\chi: V(\Gamma) \longrightarrow \kappa$. We define a transitive action of $R S(\kappa)$ on the set $V(\Gamma)$ as follows. Let $v \in V(\Gamma), x \in \kappa$. Pick $u \in N(v)$ such that $\chi(u)=x$ and put $x(v)=u$. Then we extend the action onto $K S(\kappa)$ inductively. If $w=R S(\kappa), w=x w^{\prime}$, $x \in \kappa$, we put $w(v)=\chi\left(w^{\prime}(v)\right)$. Given any $v_{1}, v_{2} \in V(\Gamma)$, the sequence of colors of the vertices on a path from v_{1} to v_{2} determines a word $w \in R S(\kappa)$ such that $w\left(v_{1}\right)=v_{2}$, so $R S(\kappa)$ acts on $V(\Gamma)$ transitively. Clearly, the group $R G(\kappa, x)$ acts transitively on the set of vertices of color x.

We fix $v \in V(\Gamma)$ with $\chi(v)=x$, determine a rainbow equivalence \sim on $R S(\kappa)$ by the rule

$$
w \sim w^{\prime} \Longleftrightarrow w(v)=w^{\prime}(v)
$$

and note that the graphs Γ and $\Gamma(\kappa, \sim)$ are rainbow isomorphic via the bijection $f: V(\Gamma) \longrightarrow$ $\rightarrow K S(\kappa) / \sim, f(u)=\{w \in K S(\kappa): w(v)=u\}$.

Thus, we get the following statement.
Theorem 2. For every rainbow graph Γ with rainbow coloring $\chi: V(\Gamma) \longrightarrow \kappa$, there exists a rainbow equivalence \sim on $R S(\kappa)$ such that Γ and $\Gamma(\kappa, \sim)$ are rainbow isomorphic. Every rainbow equivalence on $R S(\kappa)$ is uniquely determined by some subgroup of $R G(\kappa, x)$.

Let $\Gamma(V, E)$ be a connected graph with the set of vertices V, and let the set of edges E, d be the path metric on $V, B(v, r)=\{u \in V: d(v, u) \leqslant r\}, v \in V, r \in \omega=\{0,1, \ldots\}$.

A graph $\Gamma(V, E)$ is called kaleidoscopical [6] if there exists a coloring (a surjective mapping) $\chi: V \longrightarrow \kappa, \kappa$ is a cardinal such that the restriction $\chi \mid B(v, 1): B(v, 1) \longrightarrow \kappa$ is a bijection on each unit ball $B(v, 1), v \in V$. For kaleidoscopical graphs, see also [2, Chapter 6] and [5].

Let G be a group, and let X be a transitive G-space with the action $G \times X \longrightarrow X,(g, x) \longmapsto$ $\rightarrow g x$. A subset A of $X,|A|=\kappa$ is said to be a kaleidoscopical configuration [4] if there exists a coloring $\chi: X \longrightarrow \kappa$ such that, for each $g \in G$, the restriction $\chi \mid g A: g A \longrightarrow \kappa$ is a bijection.

We note that kaleidoscopical graphs and kaleidoscopical configurations can be considered as partial cases of kaleidoscopical hypergraphs defined in [2, p.5]. Recall that a hypergraph is a pair (X, \mathfrak{F}), where X is a set, \mathfrak{F} is a family of subsets of X.

A hypergraph (X, \mathfrak{F}) is said to be kaleidoscopical if there exists a coloring $\chi: X \longrightarrow \kappa$ such that, for each $F \in \mathfrak{F}$, the restriction $\chi \mid F: F \longrightarrow \kappa$ is a bijection.

Clearly, a graph $\Gamma(V, E)$ is kaleidoscopical if and only if the hypergraph $(V,\{B(v, 1): v \in V\})$ is kaleidoscopical. A subset A of a G-space X is kaleidoscopical if and only if the hypergraph $(X,\{g(A): g \in G\})$ is kaleidoscopical.

We say that two hypergraphs $\left(X_{1}, \mathfrak{F}_{1}\right),\left(X_{2}, \mathfrak{F}_{2}\right)$ with kaleidoscopical colorings $\chi_{1}: X_{1} \longrightarrow \kappa$, $\chi_{2}: X_{2} \longrightarrow \kappa$ are kaleidoscopically isomorphic if there is a bijection $f: X_{1} \longrightarrow X_{2}$ such that

- $\forall A \subseteq X_{1}: A \in \mathfrak{F}_{1} \Longleftrightarrow f(A) \in \mathfrak{F}_{2} ;$
- $\forall x \in X_{1}: \chi_{1}(x)=\chi_{2}(f(x))$.

We describe an algebraic construction which gives all kaleidoscopical graphs up to isomorphisms.

The kaleidoscopical semigroup $K S(\kappa)$ is a semigroup in the alphabet κ determined by the relations $x x=x, x y x=x$ for all $x, y \in \kappa$. For our purposes, it is convenient to identify $K S(\kappa)$ with the set of all non-empty words in κ with no factors $x x, x y x$, where $x, y \in \kappa$.

For every $x \in \kappa$, the set $K G(\kappa, x)$ of all words from $K S(\kappa)$ with the first and the last letter x is a subgroup (with the identity x) of the semigroup $K S(\kappa)$. To obtain the inverse element to the word $w \in K G(\kappa, x)$, it suffices to write w in the inverse order. The group $K G(\kappa, x)$ is called the kaleidoscopical group in the alphabet κ with the identity x.

For finite cardinals κ, the following theorem is proved in [2, pp. 64-66]: but corresponding arguments work for arbitrary κ.

Theorem 3. For any cardinal κ, the following statements hold:
(i) idempotents of the semigroup $K S(\kappa)$ are the only words x, $x y$, where $x, y \in \kappa, x \neq y$,
(ii) the kaleidoscopical group $K G(k, x)$ is a free group with the set of free generators

$$
\{x y z x: y, z \in \kappa \backslash\{x\}, y \neq z\}
$$

(iii) the kaleidoscopical semigroup $K S(\kappa)$ is isomorphic to the sandwich product $L(x) \times$ $\times K G(\kappa, x) \times R(x)$ with the multiplication

$$
\left(l_{1}, g_{1}, r_{1}\right)\left(l_{2}, g_{2}, r_{2}\right)=\left(l_{1}, g_{1} r_{1} l_{2} g_{2}, r_{2}\right)
$$

where $L(x)=\{y x: y \in \kappa\}, R(x)=\{x y: y \in \kappa\}$.
We fix $x \in \kappa$, denote the first letter of the word $w \in K S(\kappa)$ by $æ(w)$, and say that an equivalence \sim on $K S(\kappa)$ is kaleidoscopical if, for all $w, w^{\prime} \in K S(\kappa)$ and $y \in \kappa$,

$$
\begin{aligned}
& w \sim w^{\prime} \Longrightarrow æ(w)=æ\left(w^{\prime}\right) \wedge y w=y w^{\prime} \\
& w \sim w^{\prime} \Longleftrightarrow w x \sim w^{\prime} x .
\end{aligned}
$$

Let $[w]$ be the class of equivalence \sim containing $w \in K S(\kappa)$.
We put

$$
S_{x}=[x] \bigcap K G(\kappa, x),
$$

observe that S_{x} is a subgroup of $K G(\kappa, x)$, and show that \sim is uniquely determined by S_{x} :

$$
w \sim w^{\prime} \Longleftrightarrow æ(w)=æ\left(w^{\prime}\right) \wedge x w x \sim x w^{\prime} x \Longleftrightarrow(x w x)^{-1}\left(x w^{\prime} x\right) \in S_{x}
$$

We see also that any subgroup of $K G(\kappa, x)$ can be taken as S_{x} to determine a kaleidoscopical equivalence on $K S(\kappa)$.

A kaleidoscopical equivalence \sim determines a graph $\Gamma(\kappa, \sim)$ with the set of vertices $K S(\kappa) / \sim$ and the set of edges E defined by the rule:

$$
(u, v) \in E \Longleftrightarrow \exists w \in u \exists y \in \kappa: æ(w) \neq y \wedge y w \in v
$$

A coloring $\chi: K S(\kappa) / \sim \longrightarrow \kappa$ defined by $\chi([w])=æ(w)$ shows that $\Gamma(\kappa, \sim)$ is kaleidoscopical.
Now let $\Gamma(V, E)$ be a kaleidoscopical graph with kaleidoscopical coloring $\chi: V \longrightarrow \kappa$. We define a transitive action of the semigroup $K S(\kappa)$ on the set V as follows. Let $v \in V, x \in \kappa$. Pick $u \in B(v, 1)$ such that $\chi(u)=x$ and put $x(v)=u$. Then we extend the action onto $K S(\kappa)$ inductively. If $w=K S(\kappa), w=x w^{\prime}, w^{\prime} \in K S(\kappa), x \in \kappa$, we put $w(v)=x\left(w^{\prime}(v)\right)$. Given any $v_{1}, v_{2} \in V$, the sequence of colors of the vertices on a path from v_{1} to v_{2} determines a word $w \in K S(\kappa)$ such that $w\left(v_{1}\right)=v_{2}$, so $K S(\kappa)$ acts on V transitively. Clearly, the group $K G(\kappa, x)$ acts transitively on the set $\chi^{-1}(x)$ of vertices of color x.

We fix $v \in V$ with $\chi(v)=x$, determine a kaleidoscopical equivalence \sim on $K S(\kappa)$ by the rule

$$
w \sim w^{\prime} \Longleftrightarrow w(v)=w^{\prime}(v)
$$

and note that the graphs $\Gamma(V, E)$ and $\Gamma(\kappa, \sim)$ are kaleidoscopically isomorphic via the bijection $f: V \longrightarrow K S(\kappa) / \sim, f(u)=\{w \in K S(\kappa): w(v)=u\}$.

All above considerations are focused in the following theorem.
Theorem 4. For every kaleidoscopical graph $\Gamma(V, E)$ with kaleidoscopical coloring $\chi: V \longrightarrow$ $\rightarrow \kappa$, there exists a kaleidoscopical equivalence \sim on the semigroup $K S(\kappa)$ such that $\Gamma(V, E)$ is kaleidoscopically isomorphic to $\Gamma(\kappa, \sim)$. Every kaleidoscopical equivalence \sim on $K S(\kappa)$ is uniquely determined by some subgroup of the group $K G(\kappa, x)$.

Every group G can be considered as a G-space with the left regular action $(g, x) \longmapsto y x$. Let A be a kaleidoscopical configuration in G. By [4, Corollary 1.3], A is complemented, i.e. there exists a subset B of G such that the multiplication $A \times B \longrightarrow G,(a, b) \longmapsto a b$ is bijective.

Let A be a system of generators of a group G such that $A=A^{-1}$ and $e \in A, e$ is the identity of G. We consider the Cayley graph $\operatorname{Cay}(G, A)$ with the set of vertices G and the set of edges E defined by the rule:

$$
(g, h) \in E \Longleftrightarrow g^{-1} h \in A, g \neq h
$$

Clearly, $\operatorname{Cay}(G, A)$ is connected. Assume that $\operatorname{Cay}(G, A)$ is kaleidoscopical with kaleidoscopical coloring $\chi: G \longrightarrow|A|$. Since $B(g, 1)=g A$ and χ is bijective on each ball $B(g, 1)$, we see that A is a kaleidoscopical configuration. On the other hand, if A is a kaleidoscopical configuration in G with kaleidoscopical coloring $\chi: G \longrightarrow A$, then χ is bijective on each set $g A$. So, $\operatorname{Cay}(G, A)$ is kaleidoscopical. Thus, we get the following theorem.

Theorem 5. Let G be a group, and let A be a system of generators of G such that $A=A^{-1}$ and $e \in A$. Then A is a kaleidoscopical configuration if and only if $\operatorname{Cay}(G, A)$ is kaleidoscopical.

We conclude the paper with two open questions.
Question 1. How can one detect whether a kaleidoscopical hypergraph is kaleidoscopically isomorphic to a hypergraph of unit balls of some kaleidoscopical graph?

Question 2. How can one detect whether a kaleidoscopical hypergraph is kaleidoscopically isomorphic to a hypergraph determined by a kaleidoscopical configuration in a G-space?

1. Lazebnik F., Woldar A. J. General properties of some families of graphs defined by systems of equations // J. Graph Theory. - 2001. - 38. - P. 65-86.
2. Protasov I., Banakh T. Ball structures and colorings of groups and graphs. - Lviv: VNTL, 2003. - 148 p.
3. Woldar A. J. Rainbow graphs // Codes and Designs, edited by K. T. Arasu and A. Seress. - Berlin: W. de Gruyter, 2002. - P. 313-322.
4. Banakh T., Petrenko O., Protasov I., Slobodianuk S. Kaleidoscopical configurations in G-space // Electron. J. Combinatorics. $-2012 .-19 .-16 \mathrm{p}$.
5. Protasov I. V., Protasova K. D. Kaleidoscopical graphs and Hamming codes // Voronoi's Impact on Modern Science. - Kiev: Institute Math. of the NAS of Ukraine, 2008. - P. 240-245.
6. Protasova K. D. Kaleidoscopical graphs // Mat. Studii. - 2002. - 18. - P. 3-9.

К. Д. Протасова, Т. М. Провотар

Веселкові графи і напівгрупи

Отримано алгебраїчну характеризацін веселкових графів. Зв'язний граф Г називається веселковим, якщо існуе розфарбування множини вершин Г, що є бієктивним на множині сусідів кожної вершини Г.

К. Д. Протасова, Т. М. Провотар

Радужные графы и полугруппы

Получена алгебраическая характеризация радужсных графов. Связный граф Г называется радужным, если существует раскраска множества вершин Г, биективная на множестве соседей для каждой вершины Г.

