УДК 519.1 © 2012

K.D. Protasova, T.M. Provotar

Rainbow graphs and semigroups

(Presented by Corresponding Member of the NAS of Ukraine S. I. Lyashko)

We give an algebraic characterization of rainbow graphs. A connected graph Γ is called rainbow if there is a vertex coloring of Γ , which is bijective on the set of neighbors of each vertex of Γ .

A rainbow graph [3] is a connected graph Γ with the set of vertices $V(\Gamma)$ and the set of edges $E(\Gamma)$ that can be vertex-colored $\chi: V(\Gamma) \longrightarrow \kappa$ so that every color $x \in \kappa$ is represented once, and only once, among the neighbors $N(v) = \{u \in V(\Gamma) : \{u, v\} \in E(\Gamma)\}$ of each vertex $v \in V(\Gamma)$. For applications of rainbow graphs, see [1]. If one removes the edge-matching of the monochrome edges of a rainbow graph, one gets a kaleidoscopical graph [2, Chapter 6].

Let κ be a cardinal. A rainbow semigroup $RS(\kappa)$ is a semigroup in the alphabet κ determined by the relations xxx = x, xyx = x for all $x, y \in \kappa$. We identify $RS(\kappa)$ with the set of all nonempty words in κ with no factors xxx, xyx.

For $x \in \kappa$, a rainbow group $RG(\kappa, x)$ is a subset of $RS(\kappa)$ containing x and all words of the form $xwx, w \in RS(\kappa)$. The word xx is the identity of $RG(\kappa, x), x^{-1} = x$, and $(xwx)^{-1} = xx\widetilde{w}xx$, where \widetilde{w} is the word w written in the reverse order.

Theorem 1. For any cardinal κ and each $x \in \kappa$, the following statements hold:

(i) the idempotents of $RS(\kappa)$ are only yz, where $y, z \in \kappa$;

(ii) $RG(\kappa, x)$ is a free product of the cyclic group $\langle x \rangle$ of order 2 and the family of infinite cyclic groups $\{\langle xabx \rangle : a, b \in \kappa, a \neq x, b \neq x\};$

(iii) $RS(\kappa)$ is a sandwich product $RS(\kappa) = L(x) \times RG(\kappa, x) \times R(x)$, where $L(x) = \{yx : y \in \kappa\}$, $R(x) = \{xy : y \in \kappa\}$, and the multiplication $(l_1, w_1, r_1)(l_2, w_2, r_2) = (l_1, w_1r_1l_2w_2, r_2)$.

Let κ be a cardinal, $x \in \kappa$. An equivalence \sim on $RS(\kappa)$ is called a *rainbow equivalence* if, for any $w_1, w_2 \in RS(\kappa)$, we have

• $w_1 \sim w_2 \Longrightarrow l(w_1) = l(w_2)$, where l(w) is the first letter of w;

- $w_1 \sim w_2 \Longrightarrow yw_1 = yw_2$ for each $y \in \kappa$;
- $l(w) = y \implies w$ and yw are not equivalent;
- $w \sim wxx$ for each $w \in KS(\kappa)$.

Each rainbow equivalence \sim on $RS(\kappa)$ determines the rainbow graph $\Gamma(\kappa, k)$ as follows. The set $V(\Gamma)$ of vertices of Γ is a factor-set $RS(\kappa)/\sim = \{[w]: w \in RS(\kappa)\}$, where [w] is the class of equivalence \sim containing w. By definition, $\{u, v\} \in E(\Gamma)$ if and only if $u \neq v$, and there exists $w \in u$ such that $yw \in v$. Then the mapping $\chi: V(\Gamma) \longrightarrow \kappa$ defined by $\chi([w]) = l(w)$ does not depend on the choice of w and determines a rainbow coloring of Γ .

In turn, every rainbow equivalence \sim on $RS(\kappa)$ is uniquely determined by the subgroup

 $S_x = [xx] \bigcap RG(\kappa, x)$

of $RG(\kappa, x)$ because

 $w_1 \sim w_2 \iff l(w_1) = l(w_2) \wedge xw_1 xx \sim xw_2 xx \iff (xw_1 xx)^{-1} (xw_2 xx) \in S_x.$

ISSN 1025-6415 Доповіді Національної академії наук України, 2012, № 7

We say that two rainbow graphs Γ_1 , Γ_2 with rainbow colorings $\chi_1 \colon V(\Gamma_1) \longrightarrow \kappa$, $\chi_2 \colon V(\Gamma_2) \longrightarrow \kappa$ are rainbow isomorphic if there exists a bijection $f \colon V(\Gamma_1) \longrightarrow V(\Gamma_2)$ such that • $\forall u, v \in V(\Gamma_1) \colon \{u, v\} \in E(\Gamma_1) \iff \{f(u), f(v)\} \in E(\Gamma_2);$

• $\forall u \in V(\Gamma_1): \chi_1(u) = \chi_2(f(u)).$

Now, we are ready to characterize all rainbow graphs up to rainbow isomorphisms.

Let Γ be a rainbow graph with rainbow coloring $\chi: V(\Gamma) \longrightarrow \kappa$. We define a transitive action of $RS(\kappa)$ on the set $V(\Gamma)$ as follows. Let $v \in V(\Gamma)$, $x \in \kappa$. Pick $u \in N(v)$ such that $\chi(u) = x$ and put x(v) = u. Then we extend the action onto $KS(\kappa)$ inductively. If $w = RS(\kappa)$, w = xw', $x \in \kappa$, we put $w(v) = \chi(w'(v))$. Given any $v_1, v_2 \in V(\Gamma)$, the sequence of colors of the vertices on a path from v_1 to v_2 determines a word $w \in RS(\kappa)$ such that $w(v_1) = v_2$, so $RS(\kappa)$ acts on $V(\Gamma)$ transitively. Clearly, the group $RG(\kappa, x)$ acts transitively on the set of vertices of color x.

We fix $v \in V(\Gamma)$ with $\chi(v) = x$, determine a rainbow equivalence ~ on $RS(\kappa)$ by the rule

 $w \sim w' \iff w(v) = w'(v),$

and note that the graphs Γ and $\Gamma(\kappa, \sim)$ are rainbow isomorphic via the bijection $f: V(\Gamma) \longrightarrow KS(\kappa) / \sim, f(u) = \{ w \in KS(\kappa) : w(v) = u \}.$

Thus, we get the following statement.

Theorem 2. For every rainbow graph Γ with rainbow coloring $\chi: V(\Gamma) \longrightarrow \kappa$, there exists a rainbow equivalence \sim on $RS(\kappa)$ such that Γ and $\Gamma(\kappa, \sim)$ are rainbow isomorphic. Every rainbow equivalence on $RS(\kappa)$ is uniquely determined by some subgroup of $RG(\kappa, x)$.

Let $\Gamma(V, E)$ be a connected graph with the set of vertices V, and let the set of edges E, d be the path metric on V, $B(v, r) = \{u \in V : d(v, u) \leq r\}, v \in V, r \in \omega = \{0, 1, \ldots\}.$

A graph $\Gamma(V, E)$ is called *kaleidoscopical* [6] if there exists a coloring (a surjective mapping) $\chi: V \longrightarrow \kappa, \kappa$ is a cardinal such that the restriction $\chi \mid B(v, 1): B(v, 1) \longrightarrow \kappa$ is a bijection on each unit ball $B(v, 1), v \in V$. For kaleidoscopical graphs, see also [2, Chapter 6] and [5].

Let G be a group, and let X be a transitive G-space with the action $G \times X \longrightarrow X$, $(g, x) \longmapsto gx$. A subset A of X, $|A| = \kappa$ is said to be a *kaleidoscopical configuration* [4] if there exists a coloring $\chi \colon X \longrightarrow \kappa$ such that, for each $g \in G$, the restriction $\chi \mid gA \colon gA \longrightarrow \kappa$ is a bijection.

We note that kaleidoscopical graphs and kaleidoscopical configurations can be considered as partial cases of kaleidoscopical hypergraphs defined in [2, p.5]. Recall that a hypergraph is a pair (X, \mathfrak{F}) , where X is a set, \mathfrak{F} is a family of subsets of X.

A hypergraph (X, \mathfrak{F}) is said to be *kaleidoscopical* if there exists a coloring $\chi \colon X \longrightarrow \kappa$ such that, for each $F \in \mathfrak{F}$, the restriction $\chi \mid F \colon F \longrightarrow \kappa$ is a bijection.

Clearly, a graph $\Gamma(V, E)$ is kaleidoscopical if and only if the hypergraph $(V, \{B(v, 1) : v \in V\})$ is kaleidoscopical. A subset A of a G-space X is kaleidoscopical if and only if the hypergraph $(X, \{g(A) : g \in G\})$ is kaleidoscopical.

We say that two hypergraphs $(X_1, \mathfrak{F}_1), (X_2, \mathfrak{F}_2)$ with kaleidoscopical colorings $\chi_1 \colon X_1 \longrightarrow \kappa$, $\chi_2 \colon X_2 \longrightarrow \kappa$ are *kaleidoscopically isomorphic* if there is a bijection $f \colon X_1 \longrightarrow X_2$ such that

• $\forall A \subseteq X_1 \colon A \in \mathfrak{F}_1 \iff f(A) \in \mathfrak{F}_2;$

• $\forall x \in X_1 \colon \chi_1(x) = \chi_2(f(x)).$

We describe an algebraic construction which gives all kaleidoscopical graphs up to isomorphisms.

The kaleidoscopical semigroup $KS(\kappa)$ is a semigroup in the alphabet κ determined by the relations xx = x, xyx = x for all $x, y \in \kappa$. For our purposes, it is convenient to identify $KS(\kappa)$ with the set of all non-empty words in κ with no factors xx, xyx, where $x, y \in \kappa$.

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2012, № 7

44

For every $x \in \kappa$, the set $KG(\kappa, x)$ of all words from $KS(\kappa)$ with the first and the last letter x is a subgroup (with the identity x) of the semigroup $KS(\kappa)$. To obtain the inverse element to the word $w \in KG(\kappa, x)$, it suffices to write w in the inverse order. The group $KG(\kappa, x)$ is called the *kaleidoscopical group* in the alphabet κ with the identity x.

For finite cardinals κ , the following theorem is proved in [2, pp. 64–66]: but corresponding arguments work for arbitrary κ .

Theorem 3. For any cardinal κ , the following statements hold:

(i) idempotents of the semigroup $KS(\kappa)$ are the only words x, xy, where $x, y \in \kappa, x \neq y$,

(ii) the kaleidoscopical group KG(k, x) is a free group with the set of free generators

 $\{xyzx: y, z \in \kappa \setminus \{x\}, y \neq z\},\$

(iii) the kaleidoscopical semigroup $KS(\kappa)$ is isomorphic to the sandwich product $L(x) \times KG(\kappa, x) \times R(x)$ with the multiplication

$$(l_1, g_1, r_1)(l_2, g_2, r_2) = (l_1, g_1 r_1 l_2 g_2, r_2),$$

where $L(x) = \{yx \colon y \in \kappa\}, R(x) = \{xy \colon y \in \kappa\}.$

We fix $x \in \kappa$, denote the first letter of the word $w \in KS(\kappa)$ by $\mathfrak{E}(w)$, and say that an equivalence \sim on $KS(\kappa)$ is *kaleidoscopical* if, for all $w, w' \in KS(\kappa)$ and $y \in \kappa$,

$$w \sim w' \Longrightarrow \mathfrak{A}(w) = \mathfrak{A}(w') \wedge yw = yw',$$
$$w \sim w' \Longleftrightarrow wx \sim w'x.$$

Let [w] be the class of equivalence \sim containing $w \in KS(\kappa)$. We put

$$S_x = [x] \bigcap KG(\kappa, x)$$

observe that S_x is a subgroup of $KG(\kappa, x)$, and show that ~ is uniquely determined by S_x :

$$w \sim w' \iff \mathfrak{E}(w) = \mathfrak{E}(w') \wedge xwx \sim xw'x \iff (xwx)^{-1}(xw'x) \in S_x.$$

We see also that any subgroup of $KG(\kappa, x)$ can be taken as S_x to determine a kaleidoscopical equivalence on $KS(\kappa)$.

A kaleidoscopical equivalence ~ determines a graph $\Gamma(\kappa, \sim)$ with the set of vertices $KS(\kappa)/\sim$ and the set of edges E defined by the rule:

$$(u,v) \in E \iff \exists w \in u \exists y \in \kappa \colon \mathfrak{A}(w) \neq y \land yw \in v.$$

A coloring $\chi: KS(\kappa)/\sim \to \kappa$ defined by $\chi([w]) = \mathfrak{E}(w)$ shows that $\Gamma(\kappa, \sim)$ is kaleidoscopical.

Now let $\Gamma(V, E)$ be a kaleidoscopical graph with kaleidoscopical coloring $\chi: V \longrightarrow \kappa$. We define a transitive action of the semigroup $KS(\kappa)$ on the set V as follows. Let $v \in V$, $x \in \kappa$. Pick $u \in B(v, 1)$ such that $\chi(u) = x$ and put x(v) = u. Then we extend the action onto $KS(\kappa)$ inductively. If $w = KS(\kappa)$, w = xw', $w' \in KS(\kappa)$, $x \in \kappa$, we put w(v) = x(w'(v)). Given any $v_1, v_2 \in V$, the sequence of colors of the vertices on a path from v_1 to v_2 determines a word $w \in KS(\kappa)$ such that $w(v_1) = v_2$, so $KS(\kappa)$ acts on V transitively. Clearly, the group $KG(\kappa, x)$ acts transitively on the set $\chi^{-1}(x)$ of vertices of color x.

ISSN 1025-6415 Доповіді Національної академії наук України, 2012, № 7

We fix $v \in V$ with $\chi(v) = x$, determine a kaleidoscopical equivalence \sim on $KS(\kappa)$ by the rule

 $w \sim w' \iff w(v) = w'(v),$

and note that the graphs $\Gamma(V, E)$ and $\Gamma(\kappa, \sim)$ are kaleidoscopically isomorphic via the bijection $f: V \longrightarrow KS(\kappa) / \sim, f(u) = \{ w \in KS(\kappa) : w(v) = u \}.$

All above considerations are focused in the following theorem.

Theorem 4. For every kaleidoscopical graph $\Gamma(V, E)$ with kaleidoscopical coloring $\chi: V \longrightarrow \kappa$, there exists a kaleidoscopical equivalence \sim on the semigroup $KS(\kappa)$ such that $\Gamma(V, E)$ is kaleidoscopically isomorphic to $\Gamma(\kappa, \sim)$. Every kaleidoscopical equivalence \sim on $KS(\kappa)$ is uniquely determined by some subgroup of the group $KG(\kappa, x)$.

Every group G can be considered as a G-space with the left regular action $(g, x) \mapsto yx$. Let A be a kaleidoscopical configuration in G. By [4, Corollary 1.3], A is complemented, i.e. there exists a subset B of G such that the multiplication $A \times B \longrightarrow G$, $(a, b) \longmapsto ab$ is bijective.

Let A be a system of generators of a group G such that $A = A^{-1}$ and $e \in A$, e is the identity of G. We consider the Cayley graph Cay(G, A) with the set of vertices G and the set of edges E defined by the rule:

$$(g,h) \in E \iff g^{-1}h \in A, g \neq h.$$

Clearly, Cay(G, A) is connected. Assume that Cay(G, A) is kaleidoscopical with kaleidoscopical coloring $\chi: G \longrightarrow |A|$. Since B(g, 1) = gA and χ is bijective on each ball B(g, 1), we see that A is a kaleidoscopical configuration. On the other hand, if A is a kaleidoscopical configuration in G with kaleidoscopical coloring $\chi: G \longrightarrow A$, then χ is bijective on each set gA. So, Cay(G, A) is kaleidoscopical. Thus, we get the following theorem.

Theorem 5. Let G be a group, and let A be a system of generators of G such that $A = A^{-1}$ and $e \in A$. Then A is a kaleidoscopical configuration if and only if Cay(G, A) is kaleidoscopical. We conclude the paper with two open questions.

Question 1. How can one detect whether a kaleidoscopical hypergraph is kaleidoscopically isomorphic to a hypergraph of unit balls of some kaleidoscopical graph?

Question 2. How can one detect whether a kaleidoscopical hypergraph is kaleidoscopically isomorphic to a hypergraph determined by a kaleidoscopical configuration in a G-space?

- Lazebnik F., Woldar A. J. General properties of some families of graphs defined by systems of equations // J. Graph Theory. – 2001. – 38. – P. 65–86.
- 2. Protasov I., Banakh T. Ball structures and colorings of groups and graphs. Lviv: VNTL, 2003. 148 p.
- 3. Woldar A. J. Rainbow graphs // Codes and Designs, edited by K. T. Arasu and A. Seress. Berlin: W. de Gruyter, 2002. P. 313–322.
- Banakh T., Petrenko O., Protasov I., Slobodianuk S. Kaleidoscopical configurations in G-space // Electron. J. Combinatorics. – 2012. – 19. – 16 p.
- Protasov I. V., Protasova K. D. Kaleidoscopical graphs and Hamming codes // Voronoi's Impact on Modern Science. – Kiev: Institute Math. of the NAS of Ukraine, 2008. – P. 240–245.
- 6. Protasova K. D. Kaleidoscopical graphs // Mat. Studii. 2002. 18. P. 3-9.

Taras Schevchenko Kyiv National University

Received 23.12.2011

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2012, № 7

46

К.Д. Протасова, Т.М. Провотар

Веселкові графи і напівгрупи

Отримано алгебраїчну характеризацію веселкових графів. Зв'язний граф Γ називається веселковим, якщо існує розфарбування множини вершин Γ , що є бієктивним на множині сусідів кожної вершини Γ .

К.Д. Протасова, Т.М. Провотар

Радужные графы и полугруппы

Получена алгебраическая характеризация радужных графов. Связный граф Γ называется радужным, если существует раскраска множества вершин Γ , биективная на множестве соседей для каждой вершины Γ .