© 2012

Академик НАН Украины А.А. Мартынюк

О стабилизации движения систем с последействием импульсными возмущениями

Исследуется класс механических систем, описываемых уравнениями с последействием и импульсными возмущениями. С помощью метода Ляпунова—Разумихина и функций Ляпунова, определенных на произведении пространств, установлены достаточные условия устойчивости.

Импульсное возмущение может стабилизировать и/или дестабилизировать движение нелинейной системы с последействием. Цель данной работы — получение условий стабилизации движения системы с последействием на основе двух подходов: путем применения функций Ляпунова—Разумихина и функций Ляпунова на произведении пространств.

Постановка задачи. Рассмотрим систему уравнений возмущенного движения с последействием вида

$$\frac{dx}{dt} = f(t, x_t), \qquad t \geqslant t_0,
x(\sigma) = \varphi(s) \in PC([-\tau, 0], \mathbb{R}^n), \qquad \sigma \geqslant t_0, \tag{1}$$

где $x \in \mathbb{R}^n$, $x_t \in PC([-\tau,0],\mathbb{R}^n)$, $f : \mathbb{R}_+ \times PC \times \to \mathbb{R}^n$; $PC = PC([-\tau,0],\mathbb{R}^n)$ — пространство кусочно-непрерывных справа функций $\varphi \colon [-\tau,0] \to \mathbb{R}^n$; $S(H) = \{x \in \mathbb{R}^n, \|x\| < H\}$.

Пусть $|\varphi| = \sup_{-\tau \leqslant s \leqslant 0} \|\varphi(s)\|$, где $\|\cdot\|$ — евклидова норма вектора в \mathbb{R}^n и $x_t(s) = x(t+s)$ при $-\tau \leqslant s \leqslant 0$; dx/dt обозначает правую производную вектора состояния системы (1).

Наряду с системой (1) будем рассматривать уравнения возмущенного движения системы при импульсных возмущениях

$$\frac{dx}{dt} = f(t, x_t, \alpha), t \neq \tau_k,
\Delta x = I_k(t, x(t^-)), t = \tau_k, k \in \mathbb{N}_+,$$
(2)

где $I_k \colon \mathbb{R}_+ \times S(H) \to \mathbb{R}^n$, $\Delta x = x(t) - x(t^-)$; $t_0 < \tau_k < \tau_{k+1}$, $\tau_k \to +\infty$ при $k \to +\infty$, $k \in \mathbb{N}_+$; \mathbb{N}_+ — множество всех положительных чисел.

Движение системы с последействием (1) стабилизируемо с помощью импульсных возмущений, если существует последовательность моментов $\{\tau_k\}$, $\tau_k - \tau_{k-1} \neq 0$, и последовательность соответствующих вектор-функций $\{I_k(x)\}$, $k \in \mathbb{N}_+$, таких, что нулевое решение системы (2) обладает определенным типом устойчивости, более сильным, чем устойчивость состояния x=0 системы (1). Например, нулевое решение системы (1) может быть устойчивым, но не асимптотически, в то время как импульсное возмущение упрочняет движение системы (2) до асимптотически или экспоненциально устойчивого.

Наша задача — получить условия стабилизации движения системы (1) при помощи импульсных возмущений.

О классе вспомогательных функций для системы (1). Для системы (1) будем применять функцию

$$V_2(t,x) = \theta^T U(t,*)\theta, \qquad \theta \in \mathbb{R}^2_+, \tag{3}$$

где

$$U(t,*) = \begin{pmatrix} v_{11}(t,x_1) & v_{12}(t,x_1,x_2) \\ v_{21}(t,x_1,x_2) & v_{22}(t,x_2) \end{pmatrix}.$$

Здесь $x_1 \in \mathbb{R}^{n_1}$, $x_2 \in \mathbb{R}^{n_2}$, $n_1 + n_2 = n$, $v_{11}(t, x_1) \colon \mathbb{R}_+ \times S(H_1) \to \mathbb{R}_+$, $v_{22}(t, x_2) \colon \mathbb{R}_+ \times S(H_2) \to \mathbb{R}_+$ и $v_{12}(t, x_1, x_2) = v_{21}(t, x_1, x_2) \colon \mathbb{R}_+ \times \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}$, $S(H_1) = \{x_1 \in \mathbb{R}^{n_1} \colon ||x_1|| < H_1\}$, $S(H_2) = \{x_2 \in \mathbb{R}^{n_2} \colon ||x_2|| < H_2\}$, $H_1, H_2 > 0$.

Заметим, что для некоторых классов систем вида (1) матричная функция U(t,*) может быть построена в явном виде путем решения матричных уравнений Ляпунова и специального уравнения для определения элемента $v_{12}(t,x_1,x_2)$.

Функция (3) удовлетворяет условию B_2 , если:

- а) $V_2(t,x)$ непрерывна на любом множестве $[\tau_{k-1},\tau_k) \times \mathbb{R}^n \times \mathbb{R}^n$ и при всех $x,y \in \mathbb{R}^n$ и $k \in \mathbb{N}_+$ существует предел $\lim_{(t,y)\to(\tau_k^-,x)} = V_2(\tau_k^-,x);$
 - б) $V_2(t,x)$ локально липшицева по $x\in\mathbb{R}^n$ и $V_2(t,0)=0$ при всех $t\geqslant t_0$.

Теоремы о стабилизации решений системы (1). Имеет место следующее утверждение.

Теорема 1. Пусть для системы (1) построена функция $V_2(t,x)$, удовлетворяющая условию B_2 . Кроме того, существуют постоянные $p, c_1, c_2, \lambda > 0$ и $\beta > \tau$ такие, что

- 1) $c_1 ||x||^p \leq V_2(t,x) \leq c_2 ||x||^p$ npu $ext \geq t_0 \ u \ x \in \mathbb{R}^n$;
- 2) вдоль решений системы (1) верна оценка

$$D^+V_2(t,\varphi(0))\big|_{(1)} \le 0$$

при всех $t \in [\tau_{k-1}, \tau_k)$, $k \in \mathbb{N}_+$, как только $qV_2(t, \varphi(0)) \geqslant V_2(t+s, \varphi(s))$ при $s \in [-\tau, 0]$, $q \geqslant e^{2\lambda\beta}$;

- 3) существуют постоянные $d_k > 0$, $k \in \mathbb{N}_+$, такие, что $V_2(\tau_k, \varphi(0) + I_k(\varphi)) \le d_k V_2(\tau_k^-, \varphi(0));$
 - 4) npu $\operatorname{scex} k \in \mathbb{N}_+ \ \tau \leqslant \tau_k \tau_{k-1} \leqslant \beta \ u \ln(d_k) + \lambda \beta < -\lambda(\tau_{k+1} \tau_k).$

Tогда cостояние x=0 cистемы (1) экспоненциально устойчиво в целом.

Доказательство. Пусть $x(t,\varphi)=x(t,t_0,\varphi)$ — любое решение системы (1) с начальной функцией $x_{t_0}=\varphi$. Оценим $c_2|\varphi|^p$ так: выберем m>0 при заданном q таким, чтобы

$$c_2|\varphi|^p < m|\varphi|^p e^{-\lambda(\tau_1 - \tau_0)} \leqslant qc_2|\varphi|^p$$
.

При выполнении условий теоремы 1 нетрудно показать, что

$$V_2(t, x(t, \varphi)) \leq m|\varphi|^p e^{-\lambda(t-t_0)}$$

при всех $t \in [\tau_{k-1}, \tau_k)$. Поэтому в силу условия 1 теоремы 1 имеем

$$||x(t,\varphi)|| \leqslant m^* |\varphi| e^{-\frac{\lambda}{p}(t-t_0)}$$

при всех $t \in [\tau_{k-1}, \tau_k), k \in \mathbb{N}_+$, где $m^* \geqslant \max\{1, (m/c_1)^{1/p}\}$. Этим теорема 1 доказана.

При известных ограничениях на элементы $v_{ij}(t,\cdot)$ матричной функции U(t,*) величины c_1, c_2 вычисляются в явном виде как собственные значения специальных матриц.

Заметим, что условие 2 теоремы 1 для системы с последействием без импульсных возмущений не гарантирует устойчивость состояния x=0. Действие импульсных возмущений стабилизирует движение системы (1).

Далее применим функцию Ляпунова на произведении пространств \mathbb{R}^n и $PC([-\tau,0],\mathbb{R}^n)$.

Теорема 2. Предположим, что для системы (1) построена функция (3) со слагаемыми $V_1(t,\varphi,\eta)$ и $V_2(t,x,\eta)$, удоблетворяющими условиям B_0 , B_2 соответственно. Кроме того, существуют постоянные $0 < p_1 < p_2$ и β , μ , c, c_1 , c_2 , $c_3 > 0$, $d_k \geqslant 0$ при $k \in \mathbb{N}_+$ такие, что

- 1) $c_1||x||^{p_1} \leq V_2(t,x) \leq c_2||x||^{p_1}$, $0 \leq V_1(t,\varphi) \leq c_3|\varphi|^{p_2}$ npu $scex\ t \in \mathbb{R}_+$, $x \in \mathbb{R}^n$, $\varphi \in PC([-\tau,0),\mathbb{R}^n)$;
 - 2) при любом $k \in \mathbb{N}_+$ и $x \in \mathbb{R}^n$ верна оценка

$$V_2(\tau_k, x + I_k(x)) \leqslant d_k V_2(\tau_k^-, x);$$

3) для функции $V(t,\psi) = V_1(t,\psi) + V_2(t,\psi(0))$ выполняется оценка

$$D^+V(t,\psi)\big|_{(1)} \leqslant cV(t,\psi)$$

 $npu\ scex\ t\in [\tau_{k-1},\tau_k),\ \psi\in PC([-\tau,0),\mathbb{R}^n),\ k\in \mathbb{N}_+;$

4) при любых
$$k \in \mathbb{N}_+ \ \tau \leqslant \tau_k - \tau_{k-1} \leqslant \mu \ u \ln \left(d_k + \frac{c_3}{c_1} e^{(p_2/p_1 - 1)ck\mu} \right) \leqslant -(\beta + c)\mu.$$

Tогда cостояние x=0 cистемы (1) экспоненциально устойчиво в целом.

Доказательство. Пусть $x(t,\varphi)$ — любое решение системы (1) с начальной функцией $\varphi \in PC(\delta)$. Для заданного значения $\varepsilon \in (0,1]$ выберем $\delta = \delta(\varepsilon)$ так, чтобы выполнялось неравенство

$$c_2 \delta^{p_1} + c_3 \delta^{p_2} < c_1 \varepsilon^{p_1} e^{-(\beta + c)\mu}. \tag{4}$$

Из условия 3 теоремы 2 следует, что

$$V(t) \leqslant V(\tau_{k-1})e^{c(t-\tau_{k-1})} \tag{5}$$

при всех $t\in [\tau_{k-1},\tau_k),\ k\in \mathbb{N}_+$. Применяя оценки (4) и (5) для k=1 и k=j+1, нетрудно показать, что при выполнении условий (1)–(4) теоремы 2 верна оценка $V(t)<< c_1 \varepsilon^{p_1} e^{-(\beta+c)k\mu} e^{c(t-t_0)}$ и при всех $t\in [\tau_{k-1},\tau_k),\ k\in \mathbb{N}_+,\ \|x(t,\varphi)\|< \varepsilon e^{-(\beta/p_1)(t-t_0)}$. Этим теорема 2 доказана.

Заметим, что условие 3 теоремы 2 допускает, что $D^+V(t,\varphi)|_{(1)}>0$ при $t\neq \tau_k,\ k\in\mathbb{N}_+,$ при $\psi(0)\neq 0$. Это означает, что непрерывная компонента системы (1) может быть неустойчивой. С другой стороны, условие 4 устанавливает связь между частотой импульсов и ростом функции $V(t,\psi)$, при которых импульсные возмущения стабилизируют движение системы (1) к экспоненциально устойчивому в целом.

Пример. Рассмотрим систему с последействием второго порядка (см. [3])

$$\frac{d^2x}{dt^2} + b(t)\frac{dx}{dt} + a(t)x(t - \tau) = 0, \qquad t \ge t_0,$$

$$x(t) = \varphi(t),$$

$$\frac{dx}{dt} = \psi(t), \qquad t_0 - \tau \le t \le t_0,$$

и соответствующую ей систему с импульсным возмущением

$$\frac{d^2x}{dt^2} + b(t)\frac{dx}{dt} + a(t)x(t - \tau) = 0, \qquad t \neq \tau_k,
x(\tau_k) = I_k(x(\tau_k^-)),
\frac{dx}{dt}(\tau_k) = J_k\left(\frac{dx}{dt}(\tau_k^-)\right),
x(t) = \varphi(t),
\frac{dx}{dt} = \psi(t), \qquad t_0 - \tau \leqslant t \leqslant t_0,$$

где $t_0 < \tau_1 < \dots < \tau_k < \dots, \ k \in \mathbb{N}_+, \ \lim \tau_k = +\infty$ при $k \to \infty, \ I_k, \ J_k, \ \varphi$ и $\psi \in C(\mathbb{R}, \mathbb{R})$ и $I_k(0) = J_k(0) = 0$ при $k \in \mathbb{N}_+.$

Пусть параметры $a(t),\ b(t)\in C([t_0,\infty),\mathbb{R})$ и существуют постоянные $\overline{a},\ \overline{b}$ такие, что $|a(t)|\leqslant \overline{a},\ |b(t)|\leqslant \overline{b}$ при всех $t\in [t_0,\infty),\ \overline{a},\ \overline{b}>0.$ Пусть импульсные возмущения происходят в моменты $\{\tau_k\}$ такие, что $\theta_1\leqslant \tau_k-\tau_{k-1}\leqslant \theta_2,$ где $\theta_1,\ \theta_2>0,\ \theta_2<+\infty.$

Рассмотрим последовательность функций $\{I_k(u)=J_k(u)\}$, где $I_k(u)=(d_k/2)^{1/2}u$ при всех $k\in\mathbb{N}_+$. Если существует постоянная $\alpha>0$ такая, что

$$\ln(d_k + \overline{a}\theta_1) < -(\alpha + 1 + \overline{a} + 2\overline{b})\theta_2,$$

где $\theta_1 = \tau$, $\theta_2 < +\infty$, то движение системы с последействием стабилизируемо импульсными возмущениями до экспоненциальной устойчивости в целом.

- 1. *Мартынюк А. А., Мартынюк-Черниенко Ю. А.* О робастной устойчивости систем с последействием // Доп. НАН України. -2012. № 8. С. 47–53.
- 2. Yan J., Shen J. Impulsive stabilization of functional differential equations by Lyapunov–Razumikhin functions // Nonlinear Analysis. 1999. 37. P. 245–255.
- 3. Wang Q. Stability and boundedness of impulsive systems with time delay. Waterloo: Univ. of Waterloo, 2007. 204 p.

Институт механики им. С. П. Тимошенко НАН Украины, Киев Поступило в редакцию 28.12.2011

Академік НАН України А. А. Мартинюк

Про стабілізацію руху систем з післядією імпульсними збуреннями

Досліджується клас механічних систем, що описуються рівняннями з післядією та імпульсними збуреннями. За допомогою методу функцій Ляпунова—Разуміхіна та функцій Ляпунова, означених на добутку просторів, встановлено достатні умови стійкості.

Academician of the NAS of Ukraine A. A. Martynyuk

On the stabilization of a motion of systems with delay by impulses

We investigate a class of mechanical systems, which are described by the equations with delay and impulsive perturbation. By using the method of Lyapunov-Razumikhin and Lyapunov functions defined on a product of spaces, the sufficient stability criteria are established.