Д.В. Болотов

O вложениях S^2 в E^4

(Представлено членом-корреспондентом НАН Украины А. А. Борисенко)

Доказано, что для любой гладко вложенной сферы S^2 в евклидово пространство E^4 всегда найдется точка такая, что любая двумерная плоскость, проходящая через эту точку, пересекает сферу S^2 .

Целью данной работы является доказательство следующего результата.

Теорема 1. Пусть $S^2 \subset E^4 - д$ вумерная сфера, $C^2 - г$ ладко вложенная в евклидово четырехмерное пространство. Тогда найдется такая точка $x \in E^4$, что любая двумерная плоскость, проходящая через x, пересекает S^2 .

Доказательство. Сфера S^2 лежит в некотором шаре B^4 , граница которого S^3 касается сферы S^2 . Пусть $p \in S^3 \cap S^2$. Введем в E^4 евклидовы координаты $\{x^i, i=1,\ldots,4\}$ так, что точка p является началом координат, а координатный репер $\{e^i, i=1,\ldots,4\}$ обладает тем свойством, что $\{e^1,e^2\}$ определяет базис касательной плоскости сферы S^2 в точке p, а e^3 ортогонален касательной плоскости к S^3 в точке p. Тогда в некоторой окрестности U_p точки p сфера S^2 задается системой

$$\begin{cases} x^3 = f(x^1, x^2), \\ x^4 = g(x_1, x_2), \end{cases}$$

где f — выпуклая функция. Это означает, что множество γ_{ε} : $f=\varepsilon$ определяет выпуклую кривую в трехмерной плоскости Π : $x^4=0$. Пусть Π_{ε} — трехмерная плоскость $x^3=\varepsilon$. Если ε достаточно мало, то кривая $\gamma=S^2\bigcap\Pi_{\varepsilon}$ на сфере S^2 принадлежит U_p и однозначно проектируется в γ_{ε} при ортогональной проекции $E^4\to\Pi$. Кроме того, γ лежит на цилиндре $f=\varepsilon$, который ограничивает выпуклое множество в Π_{ε} . Отсюда следует, что γ лежит на границе своей выпуклой оболочки $L_{\gamma}\subset\Pi_{\varepsilon}$.

Теперь будем рассуждать от противного. Предположим, что через всякую точку $x\in E^4\setminus S^2$ проходит двумерная плоскость π_x такая, что

$$\pi_x \cap S^2 = \varnothing. \tag{*}$$

Рассмотрим два случая.

Случай 1. Предположим, что γ — плоская кривая, лежащая в некоторой двумерной плоскости $\alpha \subset \Pi_{\varepsilon}$. Тогда L_{γ} гомеоморфно двумерному диску и для всякой точки $x \in \operatorname{int} L_{\gamma}$ пересечение $\pi_x \cap \Pi_{\varepsilon}$ есть прямая l_x , которая пересекает диск L_{γ} в одной точке x, где π_x удовлетворяет (*). В противном случае $\pi_x \cap \Pi_{\varepsilon}$ пересекает γ , что невозможно по предположению. Это означает, что γ представляет нетривиальный элемент фундаментальной группы $\pi_1(E^4 \setminus \pi_x)$, так как косая проекция $p \colon E^4 \to \alpha$, параллельная π_x , оставляет неподвижными точки α , и является деформационной ретракцией $E^4 \setminus \pi_x$ на $\alpha \setminus x$, а значит, индуцирует

[©] Д.В. Болотов, 2013

изоморфизм фундаментальных групп. Однако ясно, что γ является представителем образующей группы $\pi_1(\alpha \setminus x) = \mathbb{Z}$. С другой стороны, γ стягивается по сфере $S^2 \subset \pi_1(E^4 \setminus \pi_x)$ в точку, так как сфера односвязна. Получаем противоречие.

Случай 2. Предположим, что γ — пространственная кривая, лежащая в трехмерной плоскости Π_{ε} . Тогда L_{γ} гомеоморфно трехмерному шару B и для всякой точки $x \in \operatorname{int} L_{\gamma}$ пересечение $\pi_x \cap \Pi_{\varepsilon}$ есть прямая l_x , которая пересекает граничную сферу $S := \partial L_{\gamma}$ в двух точках. Заметим, что $\pi_x \cap \Pi_{\varepsilon}$ не может быть плоскостью, так как всякая плоскость, проходящая через x должна пересекать γ . Кривая γ разделяет сферу S на два диска D_1, D_2 . Допустим $\#(l_x \cap D_i) = 1$. Диск D_1 вместе с одним из дисков, на которые γ разбивает сферу S^2 , образуют многообразие S', также гомеоморфное сфере. Мы можем считать, что l_x пересекает D_1 в гладкой точке y, если надо немного пошевелив π_x . Напомним, что гладкой точкой границы выпуклого множества называется точка границы, в которой имеется единственная опорная плоскость. Заметим, что почти все точки границы выпуклого множества гладкие [1]. Заменим S' гладким многообразием S'', аппроксимируя S' вне некоторого конуса с центром в y и осью l_x . Тогда S'' пересекает π_x трансверсально в единственной точке y. Теперь рассмотрим одноточечную компактификацию E^4 , гомеоморфную S^4 . При этом плоскость π_x компактифицируется в сферу $S''' \subset S^4$. По построению S'' и S''' пересекаются трансверсально в единственной точке. Напомним, что класс Тома ориентируемого p-мерного векторного расслоения E над гладким многообразием R — это когомологический класс $\Phi(E) \in H^p_{DR}(E)$, ограничение которого на каждый слой F есть образующая старших когомологий с компактными носителями $H_c^p(F)$ слоя F [2, § 6, с. 76]. Как известно, класс Тома $\Phi(NR) \in H^p_{DR}(M)$ нормального расслоения NR к замкнутому ориентируемому подмногообразию R коразмерности p ориентируемого многообразия M является двойственным по Пуанкаре к R [2, § 6, с. 76]. Заметим, что NR естественно отождествляется с трубчатой окрестностью R [2, § 6, с. 77]. А если подмногообразия R и S пересекаются трансверсально в том смысле, что для любой точки пересечения $x \in R \cap S$ имеем $T_xR+T_xS=T_xM$, то $\Phi(N_{R\cap S})=\Phi(N_R\oplus N_S)=\Phi(N_R)\wedge\Phi(N_S)$ [2, § 6, с. 80]. В нашем случае имеем $0 \neq \Phi(N_{S'' \cap S'''}) = \Phi(N_{S''}) \land \Phi(N_{S'''})$, так как двойственный по Пуанкаре класс к точке в ориентируемом многообразии не нулевой и, более того, является образующей в старших когомологиях $H^n_c(M)$ (см. [2, § 6]). Однако классы $\Phi(N_{S''})$ и $\Phi(N_{S'''})$ нулевые, так как они принадлежат тривиальной группе $H^2_{DR}(S^4)$. Мы получаем противоречие, а значит, предположение, что $\#(l_x \cap D_i) = 1$, неверно. Поэтому либо $\#(l_x \cap D_i) = 0$, либо $\#(l_x \cap D_i) = 2$.

Пусть $x \in D_1, y \in D_2$ — гладкие точки границы S выпуклого тела L_γ , а π_x и π_y — плоскости, удовлетворяющие (*). Так как x и y принадлежат L_γ , пересечения $\Pi_\varepsilon \cap \pi_x$ и $\Pi_\varepsilon \cap \pi_y$ должны быть прямыми, которые мы обозначим l_x и l_y соответственно. Если l_x и l_y оказались лежащими в опорных плоскостях T_x и T_y для L_γ , то, сколь угодно мало пошевелив π_x и π_y , найдем плоскости π'_x и π'_y , по-прежнему удовлетворяющие (*) и пересекающие Π_ε по прямым l'_x и l'_y так, что $l'_x \cap T_x = x$ и $l'_y \cap T_y = y$. Так как T_x и T_y являются касательными конусами в x и y соответственно, то l'_x и l'_y имеют непустое пересечение c int L_γ . Пусть I — отрезок, соединяющий точки $x_1 \in l'_x \cap \text{int } L_\gamma$ и $x_2 \in l'_y \cap \text{int } L_\gamma$. Представим I в виде дизьюнктного объединения $I = C_1 \cup C_2$, где C_i определяются следующим образом: $x \in C_i$, если существует плоскость π_x , удовлетворяющая (*), такая, что $l_x \cap S \subset D_i$. Так как по построению $C_i \neq \varnothing$ и, кроме того, C_i являются открытыми множествами, а отрезок I связен, то существует точка $x \in C_1 \cap C_2$. Пусть π_1, π_2 — плоскости, удовлетворяющие (*), такие, что $\pi_1 \cap \pi_2 = x$ и пересекающие Π_ε по прямым l_1, l_2 соответственно, таким, что $l_i \cap S \subset D_i$.

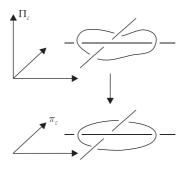


Рис. 1

Определим плоскость $\pi_{\varepsilon} := \Pi_{\varepsilon} \cap \Pi$

$$\begin{cases} x^3 = \varepsilon, \\ x^4 = 0. \end{cases}$$

Заметим, что плоскость π_{12} , натянутая на l_1, l_2 , пересекает γ минимум в четырех точках. А так как кривая γ однозначно проектируется в выпуклую кривую γ_{ε} относительно ортогональной проекции $r: \Pi_{\varepsilon} \to \pi_{\varepsilon}$, образ $r(\pi_{12})$ не может вырождаться в прямую, поскольку прямая пересекает выпуклую кривую максимум в двух точках. Пусть \overline{n} — нормаль к π_{ε} , \overline{x} — радиус-вектор точки x, а \overline{v}_1 — направляющий вектор прямой l_1 . Рассмотрим семейство плоскостей π_1^t , проходящих через некоторую точку $x_1 \in \pi_1 \setminus l_1$ с радиусом-вектором \overline{x}_1 параллельно векторам $\overline{x} + t\overline{n} - \overline{x}_1$ и \overline{v}_1 . При t = 0 мы имеем исходную плоскость π_1 , а при малых t мы добъемся того, что π_1^t и π_2 по-прежнему удовлетворяют (*), находятся в общем положении, а $\pi_1^t \cap \Pi_{\varepsilon}$ и $\pi_2 \cap \Pi_{\varepsilon}$ есть непересекающиеся прямые $l_1^t \subset \Pi_{\varepsilon}$ и $l_2 \subset \Pi_{\varepsilon}$ такие, что $\#(l_1^t \cap D_1) = \#(l_2 \cap D_2) = 2$. В зависимости от знака t одна из прямых l_1 или l_2 проходит выше относительно проекции на плоскость π_{ε} . Предположим, при t>0 реализуется случай, показанный на рис. 1.

Заметим, что пространство $\Pi_{\varepsilon} \setminus (l_1^t \bigcup l_2)$ гомотопически эквивалентно евклидовой плоскости без двух точек. Чтобы построить соответствующую гомотопию, мы сначала должны гомеоморфно отобразить Π_{ε} в себя так, чтобы прямые стали параллельны, а затем продеформировать образ $\Pi_{\varepsilon} \setminus (l_1^t \bigcup l_2)$ на ортогональную прямым плоскость с двумя выколотыми точками. Детали мы опустим. Поэтому фундаментальная группа $\Pi_{\varepsilon} \setminus (l_1^t \bigcup l_2)$ совпадает с фундаментальной группой плоскости без двух точек и равна свободной группе с двумя образующими. То есть

$$\pi_1(\Pi_\varepsilon \setminus (l_1^t \bigcup l_2)) = \mathbb{Z} * \mathbb{Z}.$$

Пусть γ_a, γ_b — замкнутые кривые, представляющие образующие a, b фундаментальной группы $\pi_1(\Pi_{\varepsilon} \setminus (l_1^t \bigcup l_2)).$

Рассмотрим случай t>0. В этом случае $\gamma\simeq\gamma_a\circ\gamma_a'$, а $\gamma_a'\simeq\gamma_b\circ\gamma_a^{-1}\circ\gamma_b^{-1}$ (рис. 2). То есть γ представляет нетривиальный элемент $aba^{-1}b^{-1}$ фундаментальной группы $\pi_1(\Pi_\varepsilon\setminus(l_1^t\bigcup l_2))$. Положим $E_+^4=\{(x^1,\ldots,x^4)\colon x^3\geqslant\varepsilon\}$ и $E_-^4=\{(x^1,\ldots,x^4)\colon x^3\leqslant\varepsilon\}$. Заметим, что кривые $\Pi_\varepsilon\bigcap S^2$ связны и стягиваются к точке $\Pi_0\bigcap S^2$ при $\varepsilon\to 0$. Это означает, что один из дисков, на которые кривая γ разбивает S^2 , лежит в E_-^4 , а другой диск лежит в E_+^4 . Вспомним, что плоскости π_1^t и π_2 находятся в общем положении и имеют единственную точку пересечения, которую мы обозначим z. Пусть $z \in E_-^4$. Так как ретракция

$$r \colon E_+^4 \setminus (\pi_1^t \bigcup \pi_2) \to \Pi_{\varepsilon} \setminus (l_1^t \bigcup l_2),$$



Рис. 2

сопоставляющая точке $e \in E_+^4$ пересечение прямой l_e , проходящей через точки e и z, с плоскостью Π_{ε} , является деформационной ретракцией, то γ представляет нетривиальный элемент группы

$$\pi_1(E_+^4 \setminus (\pi_1^t \bigcup \pi_2)).$$

Но, как отмечалось выше, один из дисков, на которые γ разбивает сферу S^2 , лежит в E_+^4 . А так как по построению $S^2 \cap (\pi_1^t \cup \pi_2) = \varnothing$, то $[\gamma] = 0$ в $\pi_1(E_+^4 \setminus (\pi_1^t \cup \pi_2))$. Мы пришли к противоречию. Случай, когда $z \in E_+^4$ рассматривается аналогично и также приводит к противоречию. Значит, предположение о том, что через каждую точку $x \in E^4$ вне S^2 проходит плоскость π_x такая, что $\pi_x \cap S^2 = \varnothing$, неверно, и теорема доказана.

Замечание 1. Можно показать, что для двумерного тора данная теорема уже не верна. Примером является стандартный тор Клиффорда $T^2 \subset S^3 \subset E^4$.

Автор выражает благодарность проф. А.А. Борисенко за постановку задачи, внимание к работе и ряд усовершенствований в доказательстве. Так же автор выражает благодарность проф. Ю.Б. Зелинскому, который сформулировал эту задачу, проф. А.А. Борисенко и В.А. Горькавому за обсуждение работы и полезные замечания.

- 1. Лейхтвейс К. Выпуклые множества. Москва: Наука, 1985. 336 с.
- 2. *Ботт Р.*, $\mathit{Ty}\ \mathit{Л}$. В. Дифференциальные формы в алгебраической топологии. Москва: Наука, 1989. 336 с.

Физико-технический институт низких температур им. Б. И. Веркина НАН Украины, Харьков

Поступило в редакцию 01.03.2013

Д. В. Болотов

Про вкладення S^2 у E^4

Доведено, що для будь-якої гладко вкладеної сфери S^2 у евклідів простір E^4 завжди знайдеться точка така, що будь-яка двовимірна площина, яка проходить через цю точку, перетинає сферу S^2 .

D. V. Bolotov

On the embedding of S^2 in E^4

We prove that, for any smoothly embedded sphere S^2 in the Euclidean space E^4 , there is a point such that any two-dimensional plane passing through this point intersects the sphere S^2 .