Ю.О. Тітов, Н. М. Білявина, В. Я. Марків, член-кореспондент НАН України М.С. Слободяник, В.В. Полубінський

Синтез та кристалічна структура ніобатостанату та танталостанату барію

Термообробкою спільноосаджених гідроксикарбонатів синтезовано сполуки $Ba_6B_4^V SnO_{18}$ ($B^V - Nb$, Ta), методом рентгенівської дифракції на порошках визначено їх кристалічні шаруваті перовськітоподібні структури (ШПС). Встановлено належність кристалічних структур сполук $Ba_6B_4^V SnO_{18}$ ($B^V - Nb$, Ta) до структурного типу $Ba_6Nb_4TiO_{18}$. Параметри елементарних комірок $Ba_6B_4^V SnO_{18}$, нм: a = 0,58021(3), c = 4,2553(3) ($B^V - Nb$); a = 0,5798(1), c = 4,263(1) ($B^V - Ta$); просторова група R-3m. Значення факторів недостовірності R_B дорівнюють 0,061 ($B^V - Nb$) й 0,067 ($B^V - Ta$). Проаналізовано особливості ШПС сполук $Ba_6B_4^V SnO_{18}$ та встановлено взаємозв'язки склад-будова ШПС.

Підвищений інтерес до сполук типу $A_n B_{n-1} O_{3n}$ (A — Ba, Sr, La, Nd; B–Nb, Ta, Ti, Zr; n = 6) із шаруватою перовськітоподібною структурою (ШПС) зумовлений наявністю у керамік на їх основі комплексу діелектричних характеристик, які відповідають вимогам сучасної мікрохвильової техніки [1–5]. Розуміння природи електрофізичних властивостей сполук $A_6B_5O_{18}$ неможливе без знання деталей їх кристалічної будови, проте незначна кількість таких сполук ускладнює розв'язання цієї задачі.

У даній роботі виконано дослідження можливості утворення та визначення кристалічної структури перших олововмісних сполук типу $A_n B_{n-1} O_{3n}$ з n = 6 складу $Ba_6 B_4^V Sn O_{18}$ ($B^V - Nb$, Ta).

Полікристалічні зразки сполук $Ba_6B_4^V SnO_{18}$ (B^V — Nb, Ta) синтезували термообробкою (T = 1570 K, $\tau = 5$ год) шихти спільноосаджених гідроксикарбонатів зі співвідношенням $Ba : B^V : Sn = 6 : 4 : 1$. Як вихідні речовини використано водні розчини $BaCl_2$ й $SnCl_4$ марок "х. ч." та метанольні розчини NbCl₅ й TaCl₅ марок "о. с. ч.". Осаджувач — водний розчин аміаку і (NH₄)₂CO₃ з pH $\approx 8,5$. Рентгенівські дифракційні спектри сполук $Ba_6B_4^V SnO_{18}$ записано на дифрактометрі ДРOH-3 у дискретному режимі (крок сканування 0,03°, експозиція в точці 5 с) на мідному фільтрованому випромінюванні. Управління процесом зйомки та збором інформації, початкова обробка дифрактограм, а також структурні розрахунки виконано з використанням апаратно-програмного комплексу [6].

Дифрактограми сполук $Ba_6B_4^V SnO_{18}$ ($B^V - Nb$, Ta) виявилися подібними до дифрактограм відомих сполук типу $A_nB_{n-1}O_{3n}$ з n = 6. Їх індексування показало належність структури $Ba_6B_4^V SnO_{18}$ ($B^V - Nb$, Ta) до тригональної сингонії. Систематика погасань відбиттів, а також особливості будови ШПС сполук типу $A_nB_{n-1}O_{3n}$ з n = 6 (чергування шарів AO₃ за типом (*гккккг*)₃ [5]) вказують на належність ШПС $Ba_6B_4^V SnO_{18}$ до центросиметричної просторової групи R-3m.

Визначення ШПС сполук $Ba_6B_4^V SnO_{18}$ ($B^V - Nb$, Ta) проведено методом порошку із початковими моделями структури з просторовою групою R-3m, для побудови яких використано структурні дані сполуки $Ba_6Nb_4TiO_{18}$ [7]. Зівставлення експериментальних і розрахованих для таких моделей структури інтенсивностей показало їх задовільну збіжність.

[©] Ю.О. Тітов, Н.М. Білявина, В.Я. Марків, М.С. Слободяник, В.В. Полубінський, 2013

Рис. 1. Фрагмент дифракційного спектра порошків (крапки) та розрахунковий спектр (суцільна лінія) сполуки Ba₆Nb₄SnO₁₈ (CuKα₁ випромінювання)

Результати уточнення моделей структури $Ba_6B_4^V SnO_{18}$ ($B^V - Nb$, Ta), а також їх дифракційні дані демонструють рис. 1–3 і табл. 1, 2. Уточнені при розрахунку структури склади $Ba_6B_4^V SnO_{18}$ у межах похибки визначення відповідали експериментально заданим. ШПС сполук $Ba_6B_4^V SnO_{18}$ ($B^V - Nb$, Ta) виявилися, як і очікувалося, близькими одна

ШПС сполук $Ba_6B_4^V SnO_{18}$ (B^V — Nb, Ta) виявилися, як і очікувалося, близькими одна до одної. Побудовані ШПС з двовимірних (нескінченних у напрямах осей X й Y) перовськітоподібних блоків завтовшки в п'ять шарів октаедрів MeO_6 (див. рис. 2). При цьому безпосередній зв'язок між зовнішньоблочними октаедрами MeO_6 сусідніх перовськітоподібних блоків у ШПС $Ba_6B_4^V SnO_{18}$ (B^V — Nb, Ta) є відсутнім. Блоки розділені зовнішньоблочним шаром деформованих кубооктаедрів $Ba(2)O_{12}$ та утримуються разом за допомогою зв'язків

Позиція	Атом	$Ba_6Nb_4SnO_{18}$				$Ba_6Ta_4SnO_{18}$			
		X	Y	Z	З. п.*	X	Y	Z	З. п.*
6c	Ba(1)	0	0	0,1384(4)	1	0	0	0,1360(5)	1
6c	Ba(2)	0	0	0,3136(3)	1	0	0	0,3168(4)	1
6c	Ba(3)	0	0	0,4137(3)	1	0	0	0,4127(5)	1
6c	$B^{V}(1)$	0	0	0,0500(4)	1	0	0	0,0529(3)	0,75(4)
6c	$\operatorname{Sn}(1)$		—	—	—	0	0	0,0529(3)	0,25(4)
6c	$B^{V}(2)$	0	0	0,2243(5)	1	0	0	0,2235(4)	0,75(4)
6c	$\operatorname{Sn}(2)$	—	—	_	—	0	0	0,2235(4)	0,25(4)
3b	$\operatorname{Sn}(3)$	0	0	0,5	1		_	—	_
3b	Ta(3)	—	—	—	—	0	0	$_{0,5}$	1
18h	O(1)	0,503(2)	-x	0,142(1)	1	$0,\!487(1)$	-x	0,136(2)	1
18h	O(2)	0,495(1)	-x	0,306(1)	1	0,491(1)	-x	0,302(1)	1
18h	O(3)	0,502(2)	-x	0,419(1)	1	0,502(2)	-x	0,419(2)	1
Пр. група		R-3m (no 166)				R-3m (no 166)			
Параметри гратки, нм		a = 0.58021(3), c = 4.2553(3),				a = 0.5798(1), c = 4.263(1),			
		$\alpha = 90^{\circ}, \ \beta = 90^{\circ}, \ \gamma = 120^{\circ}$				$\alpha = 90^{\circ}, \ \beta = 90^{\circ}, \ \gamma = 120^{\circ}$			
Незалежні відбиття		256				234			
Загальний ізотропний		$0,23(2) \cdot 10^{-2}$				$0,55(2) \cdot 10^{-2}$			
В-фактор, нм ²									
Фактор недостовірності		$R_{\rm B} = 0,061$				$R_{\rm B} = 0.067$			

Tаблиця 1. Кристалографічні дані сполук $Ba_6B_4^V SnO_{18} (B^V - Nb, Ta)$

*Заповнення позиції.

ISSN 1025-6415 Доповіді Національної академії наук України, 2013, № 4

Рис. 2. Структура сполуки Ва
6 ${\rm Ta}_4{\rm SnO}_{18}$ у вигляді окта
едрів $({\rm Ta},{\rm Sn}){\rm O}_6$ та атомів Ва

-O-Ba(2)-O-. Із 12 атомів оксигену зовнішньоблочного поліедра $Ba(2)O_{12}$ дев'ять (шість O(2) та три O(3)) належать до того самого блока, що й атоми Ba(2), а три атоми O(2) — до сусіднього (див. рис. 3). Координаційним поліедром внутрішньоблочних атомів Ba(1) і Ba(3) також є кубооктаедр.

Необхідність "зшивання" в ШПС $Ba_6B_4^V SnO_{18}$ ($B^V - Nb$, Ta) перовськітоподібних блоків між собою через зв'язки -O-Ba(2)-O- обумовлює більшу деформацію зовнішньоблочних поліедрів $Ba(2)O_{12}$ у порівнянні з внутрішньоблочними кубооктаедрами $Ba(1)O_{12}$ й $Ba(3)O_{12}$.

Таблиця 2. Деякі міжатомні відстані та ступінь деформації (Δ) поліедрів BaO₁₂, NbO₆, TaO₆, SnO₆ та (Ta,Sn)O₆ у кристалічній структурі сполук Ba₆B^V₄SnO₁₈

$\mathrm{Ba}_6\mathrm{Nb}_4\mathrm{S}$	nO_{18}	${ m Ba_6Ta_4SnO_{18}}$			
атоми	d, нм	атоми	d, нм		
Ba(1) - 3O(3)	0,278(2)	Ba(1) - 3O(3)	0,271(2)		
3O(1)	0,279(2)	6O(1)	0,290(2)		
6O(1)	0,291(3)	3O(1)	0,318(3)		
$Ba(1) - O_{cep}$	0,285	$Ba(1) - O_{cep}$	0,292		
$\Delta Ba(1)O_{12}$	$5 \cdot 10^{-4}$	$\Delta \operatorname{Ba}(1)\operatorname{O}_{12}$	$33 \cdot 10^{-4}$		
$\mathrm{Ba}(2){-}3\mathrm{O}(2)^*$	0,258(1)	$Ba(2) - 3O(2)^*$	0,258(2)		
6O(2)	0,292(2)	6O(2)	0,297(3)		
3O(3)	0,328(3)	3O(3)	0,340(3)		
$Ba(2) - O_{cep}$	0,2925	$Ba(2) - O_{cep}$	0,298		
$\Delta Ba(2)O_{12}$	$72 \cdot 10^{-4}$	$\Delta Ba(2)O_{12}$	$95 \cdot 10^{-4}$		
Ba(3) - 3O(2)	0,278(2)	Ba(3) - 3O(2)	0,259(2)		
$6\mathrm{O}(3)$	0,291(3)	3O(1)	0,287(2)		
3O(1)	0,313(3)	$6\mathrm{O}(3)$	0,291(2)		
$Ba(3) - O_{cep}$	0,293	$Ba(3) - O_{cep}$	0,282		
$\Delta Ba(3)O_{12}$	$19 \cdot 10^{-4}$	$\Delta Ba(3)O_{12}$	$23 \cdot 10^{-4}$		
Nb(1) - 3O(2)	0,198(1)	(Ta, Sn)(1) - 3O(2)	0,199(1)		
3O(3)	0,225(2)	$3\mathrm{O}(3)$	0,217(2)		
$Nb(1) - O_{cep}$	0,2115	$(Ta, Sn)(1) - O_{cep}$	0,208		
$\Delta Nb(1)O_6$	$41 \cdot 10^{-4}$	$\Delta({ m Ta,Sn})(1){ m O}_6$	$19 \cdot 10^{-4}$		
Nb(2) - 3O(3)	0,197(2)	(Ta, Sn)(2) - 3O(3)	0,198(1)		
3O(1)	0,216(2)	3O(1)	0,212(2)		
$Nb(2) - O_{cep}$	0,2065	$(Ta, Sn)(2) - O_{cep}$	0,205		
$\Delta Nb(2)O_6$	$21 \cdot 10^{-4}$	$\Delta(Ta, Sn)(2)O_6$	$12 \cdot 10^{-4}$		
Sn-6O(1)	0,200(3)	Ta-6O(1)	0,202(2)		
${\rm Sn-O_{cep}}$	0,200	$Ta(3) - O_{cep}$	0,202		
ΔSnO_6	0	$\Delta Ta(3)O_6$	0		

Примітка. Ступінь деформації поліедрів MeO_n у кристалічній структурі $Ba_6B_4^V SnO_{18}$ розраховували за такою формулою: $\Delta = 1/n \sum [(R_i - \overline{R})/\overline{R}]^2$, де R_i — відстані Me-O; \overline{R} — середня відстань Me-O; n — координаційне число [8].

*Міжблочна відстань (O2 — атом оксигену октаедра $Me(1)O_6$ із сусіднього перовськітоподібного блока).

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2013, № 4

Рис. 3. Будова міжблочної границі в шаруватій перовськітоподібній структурі сполуки Ва₆Nb₄SnO₁₈

Як показали результати уточнення структури, найбільш істотна відмінність між ШПС $Ba_6Nb_4SnO_{18}$ й $Ba_6Ta_4SnO_{18}$ полягає в характері розподілу атомів типу В у межах п'ятишарового перовськітоподібного блока. В ШПС $Ba_6Nb_4SnO_{18}$ розподіл атомів Nb й Sn має повністю упорядкований характер з локалізацією атомів Sn лише в центральній частині п'ятишарового перовськітоподібного блока, а атомів ніобію тільки в зовнішньоблочному та проміжному шарах перовськітоподібного блока. Характер локалізації атомів Ta й Sn у ШПС $Ba_6Ta_4SnO_{18}$ є частково упорядкованим із статистичним розподілом атомів Sn й Ta по (Ta,Sn)(1) і (Ta,Sn)(2) позиціях перовськітоподібного блока і розташуванням у центральній частині блока лише атомів Ta (див. табл. 1).

Тенденція до упорядкування в іонних кристалах визначається в основному різницею іонних зарядів Δq і радіусів $\Delta R_{\rm B}$ та електронною будовою катіонів. Оскільки розмір і заряд іона Nb⁵⁺ однакові з іоном Ta⁵⁺, то це дає підстави стверджувати, що різний розподіл Sn⁴⁺, Nb⁵⁺ й Ta⁵⁺ у ШПС Ва₆B₄^VSnO₁₈ зв'язаний в основному з електронною будовою катіонів Nb⁵⁺ й Ta⁵⁺. На користь цього висновку свідчить також схожість характеру локалізації атомів чотиривалентних елементів у ШПС Ва₆Nb₄SnO₁₈ й Ва₆Nb₄TiO₁₈ [7]. Хоча в ШПС Ва₆Nb₄TiO₁₈ розподіл атомів титану та ніобію має частково впорядкований характер, але основна частина атомів титану зосереджена в центральному та проміжному шарах перовськітоподібного блока, а частка атомів ніобію є найбільшою в зовнішньоблочному та проміжному шарах блока.

Зіставлення довжин зв'язків Me-O та ступенів деформації (Δ) октаедрів MeO_6 у ШПС Ва₆В₄^VSnO₁₈ (В^V — Nb, Ta) показало, що центральні октаедри перовськітоподібних блоків Sn(3)O₆ й Ta(3)O₆ є практично ідеальними (їх $\Delta = 0$), у той час як для октаедрів Nb(1)O₆, Nb(2)O₆, (Ta,Sn)(1)O₆ та (Ta,Sn)(2)O₆ характерними є досить значні різниці в довжинах зв'язків Me-O (0,014–0,027 нм) та величина Δ ((12–41)10⁻⁴) (див. табл. 2). Найдеформованішими є зовнішньоблочні октаедри Nb(1)O₆ й (Ta,Sn)(1)O₆.

Таким чином, нами встановлено можливість отримання перших оловомісних п'ятишарових представників сімейства шаруватих сполук $A_n B_{n-1} O_{3n}$ складу $Ba_6 B_4^V Sn O_{18}$ ($B^V - Nb$, Ta) та визначено особливості будови їх ШПС. До їх числа насамперед слід віднести нестатистичний та значно відмінний характер локалізації атомів B^V й Sn у перовськітоподібних блоках ШПС сполук $Ba_6 B_4^V Sn O_{18}$ ($B^V - Nb$, Ta), який, безумовно, буде впливати на електрофізичні властивості цих сполук.

ISSN 1025-6415 Доповіді Національної академії наук України, 2013, №4

133

- 1. Lichtenberg F., Herrnberge A., Wiedenmann K. Synthesis, structural, magnetic and transport properties of layered perovskite-related titanates, niobates and tantalates of the type $A_n B_n O_{3n+2}$, $A^I A_{k-1} B_k O_{3k+1}$ and $A_m B_{m-1} O_{3m}$ // Progr. Sol. State Chem. 2008. **36**, No 4. P. 253–387.
- Zhang H., Fang L., Dronskowski R. et al. Some A₆B₅O₁₈ cation-deficient perovskites in the BaO-La₂O₃-TiO₂-Nb₂O₅ system // Ibid. - 2004. - 177, No 11. - P. 4007-4012.
- Zhang H., Fang L., Su H. Microwave dielectric properties of a new A₆B₅O₁₈-type cation deficient perovskites: Sr₅LaTi₂Nb₃O₁₈ // J. Mat. Sci.: Mater. Electron. 2009. 20, No 8. P. 741–744.
- Fang L., Zhang H., Chen L. et al. Preparation and characterization of new dielectric ceramics Ba₅LnTi₂Nb₃O₁₈ (Ln = La, Nd) // Ibid. - 2005. - 16, No 1. - P. 43-46.
- 5. Абакумов А. М., Антипов Е. В., Ковба Л. М. и др. Сложные оксиды со структурами когерентного сростания // Успехи химии. 1995. 64, № 8. С. 769–780.
- Марків В. Я., Белявіна Н. М. Апаратно-програмний комплекс для дослідження полікристалічних речовин за їх дифракційними спектрами // Тез. доп. Другої міжнар. конф. "Конструкційні та функціональні матеріали", 14–16 жовт., 1997. – Львів: Вид-во наук. тов-ва ім. Т. Г. Шевченка, 1997. – С. 260–261.
- Duivenboden H. C., Zandbergen H. W., Ijdo D. J. W. Hexabarium titanium (IV) tetraniobate (V); a Rietveld refinement of neutron powder diffraction data // Acta Crystallogr. – 1986. – C42, No 3. – P. 266–268.
- Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and halcogenides // Acta Crystallogr. – 1976. – A32, No 5. – P. 751–767.

Київський національний університет ім. Тараса Шевченка Надійшло до редакції 10.09.2012

Ю. А. Титов, Н. Н. Белявина, В. Я. Маркив, член-корреспондент НАН Украины Н. С. Слободяник, В. В. Полубинский

Синтез и кристаллическая структура ниобатостанната и танталостанната бария

Термообработкой совместноосажденных гидроксокарбонатов синтезированы соединения $Ba_6B_4^V SnO_{18}$ ($B^V - Nb$, Ta), методом рентгеновской дифракции на порошках определены их кристаллические слоистые перовскитоподобные структуры (СПС). Установлена принадлежность кристаллических структур соединений $Ba_6B_4^V SnO_{18}$ ($B^V - Nb$, Ta) к структурному типу $Ba_6Nb_4TiO_{18}$. Параметры элементарных ячеек $Ba_6B_4^V SnO_{18}$, нм: a = 0,58021(3), c = 4,2553(3) ($B^V - Nb$); a = 0,5798(1), c = 4,263(1) ($B^V - Ta$), пространственная группа R-3т. Значения факторов недостоверности R_B составляют 0,061 ($B^V - Nb$) и 0,067 ($B^V - Ta$). Проанализированы особенности СПС соединений $Ba_6B_4^VSnO_{18}$ и установлены взаимосвязи состав – строение СПС.

Y. A. Titov, N. M. Belyavina, V. Ya. Markiv,

Corresponding Member of the NAS of Ukraine M.S. Slobodyanik, V.V. Polybinskii

Synthesis and crystal structure of barium niobatostannate and tantalostannate

 $Ba_6B_4^V SnO_{18}$ (B^V – Nb, Ta) have been synthesized by heat treatment of co-precipitated hydroxycarbonates, and their crystal layer perovskite-like structures (LPS) are determined by X-ray powder diffraction. It is found that the crystal structures of $Ba_6B_4^V SnO_{18}$ (B^V – Nb, Ta) belong to the $Ba_6Nb_4TiO_{18}$ -type structure. The cell constants of $Ba_6B_4^V SnO_{18}$ are, nm: a = 0.58021(3), c = 4.2553(3) (B^V – Nb), a = 0.5798(1), c = 4.263(1) (B^V – Ta), and the space group is R-3m. The final R_B value is equal to 0.061 (B^V – Nb) and 0.067 (B^V – Ta). The peculiarities of LPS of $Ba_6B_4^V SnO_{18}$ are analyzed, and the composition–constitution correlations of LPS have been identified.

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2013, №4