Н. В. Никитина

О близких к синхронным движениях заряженной частицы в электромагнитной волне

(Представлено академиком НАН Украины А. А. Мартынюком)

Приводятся условия существования близких к синхронным движений заряженной частицы в электромагнитной волне. Рассмотрен эффект образования сгустка ионизированной плазмы

Рассматривается электродинамическая задача, которая связана с общей задачей синхронизации динамических систем [1], а именно, движение заряженной частицы в стоячей электромагнитной волне. В обзоре, посвященном шаровым молниям (ШМ) [2], большое внимание уделено исследованиям П. Л. Капицы [3]. Приведем постановку задачи, согласно [2–4], о движении заряженной частицы в стоячей электромагнитной волне. Перечислим три основные предположения рабочей гипотезы [3].

- 1. Во время свечения к ШМ непрерывно подводится энергия. Известно, что поглощение электромагнитной энергии колебаний происходит при резонансе, когда собственный период электромагнитных колебаний плазмы совпадает с периодом поглощения излучения.
- 2. Возможно, единственный способ подвода энергии это поглощение приходящих извне интенсивных радиоволн. Источником радиоволн является колебательный процесс, происходящий в ионизированной атмосфере.
- 3. Местами, наиболее благоприятными для образования ШМ, будут те области, где радиоволны достигают наибольшей интенсивности. Поглощение электромагнитных колебаний ионным газом может происходить только в определенных поверхностях, параллельных земле. Этот процесс кратковременный.

В данной работе показано, что при определенном уровне диссипации система входит в состояние, близкое к синхронизму, и именно это состояние характерно для возникновения ШМ. Таким образом, в простейшей модели ШМ можно установить критерий синхронизма и объяснить механизм образования этого явления.

Постановка задачи. Простейшая модель. Сила, с которой электромагнитное поле действует на частицу, является силой Лоренца

$$\mathbf{F} = q \left(\mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B} \right),$$

где q — заряд частицы; ${\bf E}$ — напряженность электрического поля; ${\bf B}$ — магнитная индукция; ${\bf v}$ — скорость частицы; c — скорость света [4]. В системе координат OXYZ проекции векторов ${\bf E}$ и ${\bf B}$ имеют вид

$$E_X = 0,$$
 $E_Y = E_0 \cos \omega t \sin kX,$ $E_Z = 0,$

$$B_X = 0,$$
 $B_Y = 0,$ $B_Z = -\frac{E_0}{c}\sin\omega t\cos kX,$

[©] Н.В. Никитина, 2014

где ω — частота колебаний; k — волновое число. Фазы электрических и магнитных полей смещены во времени на $\pi/2$, поэтому энергия в среднем за период равна нулю, что характерно для стоячей волны.

Уравнения движения частицы можно представить в виде

$$\ddot{X} + \frac{H}{M}\dot{X} + \frac{qE_0}{cM}\dot{Y}\sin\omega t\cos kX = 0,$$

$$\ddot{Y} + \frac{H}{M}\dot{Y} - \frac{qE_0}{M}\cos\omega t\sin kX - \frac{qE_0}{cM}\dot{X}\cos\omega t\sin kX = 0,$$

$$\ddot{Z} + \frac{H}{M}\dot{Z} = 0,$$

где H — коэффициент сопротивления; M — масса частицы. Заметим, что координата Z не входит в первые два уравнения.

Перейдем к безразмерным переменным $x=kX,\ y=kY,\ \tau=\omega t$, введем новую переменную $z=\dot{y}$. Учитывая, что $\omega/k=c$, уравнения движения частицы в безразмерном виде запишутся так:

$$\frac{dx}{d\tau} - y = 0, \qquad \frac{dy}{d\tau} + hy + Az\cos x \sin \tau = 0,
\frac{dz}{d\tau} + hz - A\sin x \cos \tau - Ay\cos x \sin \tau = 0,$$
(1)

где $h = H/(M\omega)$, $A = qE_0/(cM\omega)$. Так как в уравнения (1) включена сила сопротивления, волна будет перемещаться параллельно плоскости xy в сторону устойчивой особой точки. Уравнения (1) можно рассматривать в качестве абстрактной трехмерной модели, которая описывает также движение заряженной частицы в электромагнитной волне.

Приведем систему (1) к виду автономной системы

$$\frac{du}{d\tau} = v, \qquad \frac{dv}{d\tau} = -u,
\frac{dx}{d\tau} = y, \qquad \frac{dy}{d\tau} = -hy + Avz\cos x, \qquad \frac{dz}{d\tau} = -hz + Au\sin x - Avy\cos x,$$
(2)

где

$$u = \cos \tau, \qquad v = -\sin \tau, \qquad u(0) = 1, \qquad v(0) = 0.$$
 (3)

Введем малое отклонение δu , δv , δx , δy , δz в системе (2) от частных решений \overline{u} , \overline{v} , \overline{x} , \overline{y} , \overline{z} и составим уравнения в вариациях [5]

$$\frac{d\delta u}{d\tau} - \delta v = 0, \qquad \frac{d\delta v}{d\tau} - \delta u = 0,
\frac{d\delta x}{d\tau} - \delta y = 0, \qquad \frac{d\delta y}{d\tau} + h\delta y - A\overline{z}\cos\overline{x}\delta v + A\overline{v}\overline{z}\sin\overline{x}\delta x - A\overline{v}\cos\overline{x}\delta z = 0,
\frac{d\delta z}{d\tau} + h\delta z - A\sin\overline{x}\delta u + A\overline{y}\cos\overline{x}\delta v - A\overline{u}\cos\overline{x}\delta x - A\overline{v}\overline{y}\sin\overline{x}\delta x + A\overline{v}\cos\overline{x}\delta y = 0.$$
(4)

Характеристическое уравнение системы (4) имеет вид

$$(\lambda^{2} + 1)(\lambda^{3} + 2\lambda^{2}h + \lambda(h^{2} + A^{2}\overline{v}^{2}\cos^{2}\overline{x} + A\overline{v}\overline{z}\sin\overline{x}) - A^{2}\overline{v}\overline{u}\cos^{2}\overline{x} - A^{2}\overline{v}^{2}\overline{y}\sin\overline{x}\cos\overline{x} + Ah\overline{v}\overline{z}\sin\overline{x}) = 0.$$

$$(5)$$

Корни характеристического уравнения (5) разделяются. Имеют место два уравнения

$$\lambda^{2} + 1 = 0,$$

$$\lambda^{3} + 2\lambda^{2}h + \lambda(h^{2} + A^{2}\overline{v}^{2}\cos^{2}\overline{x} + A\overline{v}\overline{z}\sin\overline{x}) - A^{2}\overline{v}\overline{u}\cos^{2}\overline{x} - A^{2}\overline{v}^{2}\overline{y}\sin\overline{x}\cos\overline{x} +$$

$$+ Ah\overline{v}\overline{z}\sin\overline{x} = 0,$$
(6)

где \overline{u} , \overline{v} определяются решением (3). Два корня уравнения имеют вид $\lambda_{1,2} = \pm i$ и соответствуют первым двум уравнениям системы (4), остальные находятся из второго уравнения (6).

Разделение корней характеристического уравнения (5) является предпосылкой того, что частица может совершать движение в состоянии, близком к синхронизации. Вид характеристического уравнения (5) аналогичен виду характеристического уравнения при периодическом воздействии на нелинейный осциллятор, который порождает предельный цикл [5]. Множитель ($\lambda^2 + 1$) в характеристическом уравнении диссипативной системы (5) можно рассматривать как внешний сигнал, что указывает на возможность возникновения движений близких, к синхронизации системы (1). Это качество при определенном значении параметров превратит траектории движения частиц в сгусток ионизированной плазмы.

Введем предположение о малости коэффициента A. Тогда на основе анализа характеристических показателей (ХП) точек траектории системы (1) можно установить порядок второго коэффициента h системы (1), который вызывает движение, близкое к синхронизированному. Качество ХП точек траектории должно ввести систему (1) в состояние, близкое к синхронизму. Процесс возникает на конечном отрезке времени.

Консервативная система. Движение частицы в стоячей электромагнитной волне определяется уравнениями

$$\frac{du}{d\tau} = v, \quad \frac{dv}{d\tau} = -u, \quad \frac{dx}{d\tau} = y, \quad \frac{dy}{d\tau} = Avz\cos x, \quad \frac{dz}{d\tau} = Au\sin x - Avy\cos x. \tag{7}$$

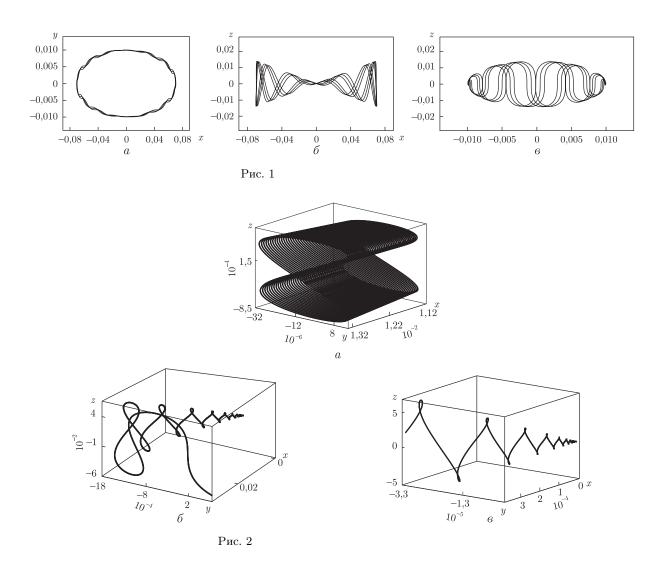
Особая точка O(u=0,v=0,x=0,y=0,z=0) имеет такие XП: $\lambda_{1,2}=\pm i,\ \lambda_3=\lambda_4=$ $=\lambda_5=0.$ Покажем, что из трех нулевых корней два корня кратные. Характеристическая матрица линейной системы (7) распадается на три. Одна из них, соответствующая третьему и четвертому уравнениям системы (7), имеет вид

$$\begin{pmatrix} \lambda & -1 \\ 0 & \lambda \end{pmatrix}. \tag{8}$$

При помощи элементарных преобразований характеристическая матрица (8) приводится к виду

$$\begin{pmatrix} \lambda^2 & 0 \\ 0 & \lambda \end{pmatrix}.$$

Корни $\lambda_3=0,\ \lambda_4=0$ являются кратными.



Рассмотрим характеристическое уравнение системы в вариациях (5) при h=0. Для определения $\overline{x}, \overline{y}, \overline{z}$ применим численное решение системы (7). ХП уравнения (5) разделяются на две группы: периодические $\lambda_{1,2}=\pm i$ и седлофокусные $\lambda_3<0$, $\operatorname{Re}\lambda_{4,5}>0$. Седловая величина при этом $\sigma=\lambda_3+\lambda_4+\lambda_5=0$ для всех точек траектории.

Траектория не замыкается и не уходит, а бесконечно наматывается на орбиту (рис. 1, a, b, b, начальные возмущения лишь y(0) = 0.01).

Система с диссипацией. Разделение ХП в характеристическом уравнении (5) позволяет предсказать существование почти синхронного режима колебаний при $h \neq 0$ с частотой, равной единице (период колебаний $T=2\pi$). На рис. 2, a приведено пространственное изображение синхронизированных колебаний при h=3; A=0,2; x(0)=y(0)=0,01 на отрезке $\tau\in(5,T\cdot40)$, где $T=2\pi$. Синхронизация происходит на конечном промежутке времени, т.е. имеет место переходный процесс, который включает почти синхронизированные колебания. Траектория на отрезке $\tau\in(5,T\cdot40)$ имеет следующие ХП: $\lambda_{1,2}=\pm i$ и узел-фокусные $\lambda_3>0$, $|\lambda_3|\ll 1$, $\mathrm{Re}\,\lambda_{4,5}<0$, $|\mathrm{Re}\,\lambda_{4,5}|\gg 1$, так, что $\sigma=\lambda_3+\lambda_4+\lambda_5<0$, $|\sigma|\gg 1$. Эффект образования сгустка ионизированной плазмы происходит благодаря сильному притяжению витков ($\mathrm{Re}\,\lambda_{4,5}<0$, $|\mathrm{Re}\,\lambda_{4,5}|\gg 1$; $|\sigma|\gg 1$).

При уменьшении диссипации (h=0,3) траектории заряженных частиц не представляют собой сгусток ионизированной плазмы. На рис. 2, δ приведено движение при h=0,3; A=0,2; x(0)=y(0)=0,01 на отрезке $\tau\in(5,T\cdot40),$ где $T=2\pi,$ на рис. 2, ϵ — движение при h=0,3; A=0,2; x(0)=y(0)=0,01 на отрезке $\tau\in(60,T\cdot40).$ Траектория имеет следующие ХП: $\lambda_{1,2}=\pm i$ и узел-фокусные $\lambda_3>0,$ $|\lambda_3|\ll 1,$ Re $\lambda_{4,5}<0,$ $|\text{Re }\lambda_{4,5}|<1,$ так, что $\sigma=\lambda_3+\lambda_4+\lambda_5<0,$ $|\sigma|<1.$ В этом случае слабое притяжение в точках траектории не вызывает движение, близкое к синхронному, с частотой, равной $\omega=1.$

Отметим некоторые особенности качественного анализа движения заряженной частицы в электромагнитной волне.

- 1. Характеристическое уравнение (5), которое включает частные решения системы (2), позволяет указать XП любой точки на траектории движения частицы и рассмотреть механизм образования процесса синхронизации.
- 2. Множитель $(\lambda^2 + 1)$ в характеристическом уравнении диссипативной системы (5) указывает на возможность синхронизации системы (1) с частотой $\omega = 1$.
- 3. В диссипативной модели ШМ поиск синхронного режима связан с нахождением значения параметра h, при котором движение двух объектов объединены в единую систему. Численное значение параметра h в движении, близком к синхронизации, на порядок выше значения параметра A.
 - 1. Блехман И. И. Синхронизация динамических систем. Москва: Наука, 1971. 894 с.
 - 2. Сигнер С. Природа шаровой молнии. Москва: Мир, 1973. 267 с.
 - 3. Капица П. Л. О природе шаровой молнии // Докл. АН СССР. 1955. 101, № 2. С. 245–248.
 - 4. Джексон Дж. Классическая электродинамика. Москва: Мир, 1965. 702 с.
 - 5. Hижитина H.B. Нелинейные системы со сложным и хаотическим поведением траекторий. Киев: Феникс, 2012. 235 с.

Институт механики им. С. П. Тимошенко НАН Украины, Киев Поступило в редакцию 29.05.2014

Н.В. Нікітіна

Про рух, близький до синхронного зарядженої частинки в електромагнітной хвилі

Встановлено умови існування близьких до синхронних рухів зарядженої частинки в електромагнітній хвилі. Розглянуто ефект утворення згустка іонізованої плазми.

N. V. Nikitina

About the motions close to synchronous ones of a charged particle in an electromagnetic wave

The conditions of existence of the motions close to synchronous ones of a charged particle in an electromagnetic wave are presented. The effect of formation of a cluster of the ionized plasma is considered.