UDC 519.176, 519.157.2
M. Polak, V. A. Ustimenko

On new expanders of unbounded degree for practical
applications in informatics

(Presented by Corresponding Member of the NAS of Ukraine O. M. Trofimchuk)

A method of construction of new examples of families of expander graphs of unbounded degree is
presented. The property of being an expander seems significant in many of these mathematical,
computational, and physical contexts. Fven more, expanders are surprisingly applicable in other
computational aspects: in the theory of error correcting codes, computer networking theory, the
theory of pseudorandomness, etc. We present the new families of (q + 1)-regular graphs with
the second largest eigenvalue of at most 2,/q for every prime power q (geometrical Ramanujan
graphs). In particular, we construct a family of new (q+1)-regular Ramanugjan graphs of girth 6
of order 2(1 +q+q2—|—q3). They are not isospectric to the geometry of the simple Lie group Ba(q).

Introduction. The reader can find missing definitions of graph theory in [1]. We assume that
all graphs under consideration are simple. The girth of a graph is a minimal length of its cycle.
The spectrum of a graph is formed by eigenvalues of its adjacency matrix.

We say that a family of regular graphs of bounded degree ¢ and increasing order n has an
expansion constant ¢, ¢ > 0, if the inequality |0A| > ¢|A| holds for each subset A of the vertex
set X, |X| = n, with |A] < n/2. The expansion constant of the family of g-regular graphs can
be estimated via the upper limit ¢ — A, n — 0o, where A, is the second largest eigenvalue of
a family representative of order n.

According to the known Alon-Boppana theorem, the large enough members of an infinite
family of d-regular graphs with constant d satisfy the inequality A > 2v/d — 1 — o(1), where A
is the second largest eigenvalue in absolute value.

This result motivates the concept of a Ramanujan graph, which is a graph of degree d with
the second largest eigenvalue bounded from above by 2vd — 1 (see [2]).

N. Alon [3] demonstrated the importance of families of expanding graphs of unbounded
degree. This class contains families of graphs of unbounded degree d; with the second largest \;
such that the upper bound of the sequence \;/d; is bounded away from 1. We refer to such
families of graphs as geometrical expanders.

We consider families of graphs G; of increasing degree k; with the second largest eigenvalue \;
such that the upper limit « of \;/2v/k; — 1 is at most 1. We refer to such families of graphs as
geometrical Ramanujan graphs.

The natural examples of geometrical Ramanujan graphs are known regular generalized m-gons
(m = 3,4,6) and their affine parts. For instance, the finite projective plane PG2(q) over a finite
field F, (generalized 3-gon) has degree g 4+ 1 and the second largest eigenvalue /g. So, we can
take the infinite family of classical edge transitive graphs PGa(p;), where p is a fixed prime, and
the integer 7 is unbounded, and form the family of geometrical Ramanujan graphs with a = 1/2.
Our conjecture is that the minimal constant « for the family of geometrical Ramanujan graphs
is o/ = 1/2.
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In fact, the known families of Ramanujan graphs of unbounded degree play an important role
in the theory of finite geometries and have many practical applications, for example, in networking
theory and the construction of a class of error-correcting codes (the so-called LDPC codes).

Root system and generalized polygons. One of the classes of small world bipartite
graphs with additional geometric properties important for many practical applications is a class
of regular generalized m-gons, i.e., regular tactical configurations of diameter m and girth 2m.
For each parameter m, a regular generalized m-gon has degree ¢ + 1 and order 2(1 + ¢+ --- +
+4q™") [4].

The matrices M, = <_21 _21>, My = <_21 _22>, and Mg = ( 23 _21> form a complete
list of 2 x 2 Cartan matrices (see [5]). In [5], a lattice H with basis {a1,as}, i.e., the set
{Aaq + Aeas|Ai, A2 € Z}, was considered. For an arbitrary two-dimensional matrix A = (a; ;)
from the list above, let us introduce two linear transformations r1 and ro of the lattice H given
by the formula

’I“i(Oéj) = Oéj — aijozl-.

For My, k =1,2,3, we have r; = e, 73 = e, and (r175)™ = e, where m = 3,4,6 for k = 1,2, 3,
accordingly. These conditions are generic relations for the Weyl group W(M}) corresponding
to the 2 x 2 Cartan matrix My (see [6]). The set ¢ = {g(a;)|g € W(My),i = 1,2} is called
a root system.

We use the concept of a root system ¢, which is a configuration of vectors in a Euclidean
space satisfying certain geometrical properties. Given a root system ¢, we can always choose a
set of positive roots ¢ = ¢ (V{A1a1 + Aaaa|N; = 0,i = 1,2} (|¢7| = |¢7|, where ¢~ a set of
negative roots), in a fixed basis. For generalized regular m-gons, we have ¢ (My) = {a1, az, oy +
+ s}, ¢T(Mz) = {a1, 0, a1 + a2,2a1 + as}, ¢ (Ms) = {1, a2, 1 + as,2a; + az,3a; + az,
3aq + 20[2}.

An element of ¢ is called a simple root if it cannot be written as the sum of two elements
of . a1, ap are called simple roots. To determine remaining elements of the set ¢, we use
the linear operators r; and ry. Originally in [7], @], a3 were linear functionals defined on H and
given by the formula

y 1, 1=y,
aj (sap + tag) = saj (aq) + tag (az),

where sa; + tas € ¢ is a positive root.
Let A = ¢ @® L be the direct sum of ¢ and L, ¢ being the vector space of formal linear
combinations acj +baj, where a and b are elements from F,. L is the set of all linear combinations

of the form Y t,a and t, € Fy. A\, u € ¢, and the bilinear product (-,-): A x A — A is
acopt
defined as follows:

_ [ (@) (r+ 1A +p), A+peodT,
<aA’b“>_{0, A p g ot

(0f,07) =0, (i, \) =af(MA, (M) = —af (M)A

Here, r is an integer uniquely determined by the condition p —r\ € ¢, p— (r + 1)\ & ¢.
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The generalized polygon P, (m = 3,4,6) can be embedded into A in a way such that (p)I[l],
(p)I[l] € Py, implies (p,l) = 0 for sufficiently large charF, (see [6]).

More general constructions [7, 8| allow one to get the interpretation of the geometries of
Shevalley groups over finite fields of “sufficiently large characteristic” and some new incidence
systems.

New constructions. Ramanujan graphs and expanders. To create graphs, which have
interesting properties, we can use the root system and a special binary operation. We choose
simple roots a1, ap and then the remaining n — 2 elements, by making up the n-element set ¢.'.
The third element is the sum of simple roots a1 + 9. The following elements can be obtained
by a simple addition of the element 1 or as to the one of the already chosen non-simple roots.
Obviously, there is only one 3-element set gb;{ = {a1,a9,a1 + as}. The sets gbj{ consisting of
four elements can be chosen by two ways: {1, ag, a1 + ag,2aq + as} and {a1, ag, a1 + ag, aq +
+ 2ap}, but they are symmetric and give the same results. There are three ways to choose non-
symmetric sets qﬁ;: {a1, a0, 01 + 2,201 + ag, a1 + 200}, {1, ag, a1 + a2, 201 + o, 201 + 202},
{a1, 2,01 + ag,201 + a9,3a1 + as}. We have gb; = ¢ (M), gbjl' = ¢ (My), but qﬁg' cannot
be obtained, by using linear transformations ry, ro and any Cartan matrix. In this article, we
only consider cases for n = 3,4, 5. In our construction, we simplify the concept and define of,
o as follows:

* 1’ Z:]a

aj (say +taw) = lag (a1) + 1ag (a2).

Here, sa; + tag € qﬁ+ is a positive root.
Let A = ¢ @ L be the direct sum of ¢ and L as above, A\, u € ¢T, let a and b be elements
from F,, and let us redefine the binary operation (-,-): A x A — A:

+
o) = { G0 A nE s

(07, 05) =0, {ai, ) =7 (M)A, (A af) = —a7 (M)A,

where 7,7 = 1,2. We use the operators defined above to simplify our concept. Before the determi-
nation of incidence relations, we describe the set of vertices. Let I'(n, ¢;f, F;) denote a bipartite
graph obtained, by using the n-element set ¢, scalars from F,, and the binary operator (-,-).
Traditionally in geometrical bipartite graphs, one set of vertices is called a set of points P, and
another set of vertices is called a set of lines L.

First, let us consider an ordinary n-gon as a bipartite graph with the vertex set V.= P|JL =
={(1),(2),...,(n)}U{[1,2],[2,3],...,[n—1,n],[n,1]}. We can write the incidence relation I in

an n-gon as follows:
(m)I[s,t] <= m=sVm=t.
The line is incident with a point if this point belongs to the line.
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Let a vertex of the type t; be defined as a vertex corresponding to the i-element subset of
¢F,i=0,1,2,...,n —1, and let A;, B; denote i-element closed subsets of ¢;". We create two
ascending sequences of closed subsets of ¢,". The second element of the first sequence is {1},

and the second element for the second sequence is {as}:
AOZ{Q} C Ay :{042} CAyCA3C---C A1 :gbj;\{ozl},
B():{Q} C B :{041} CBy,CBy3C---CBp_1 :(ﬁZ\{ag}.

For bigger n, the set ¢, has more roots, and the above sequences can be chosen in many ways.
Now, choosing elements from these two sequences alternately, we create a set of points and a set
of lines. For lines, we choose the sets By = {@}, A1 = {az}, Ba, As,..., ¢ \ {a;}. For points,
we choose Ay = {@}, By = {a1}, A, Bs,...,é \ {a;}, where i = 1 and j = 2 if n is odd
and ¢ = 2 and j = 1 if n is even. The number of vertices in the obtained graph I'(n, gb:,Fq) is
V| =2(14¢q+¢*+---+¢" ). The graph is bipartite V = P|J L, and the set V consists of

2 elements of type to—((1),a]) and [[1,2], @3],

2q elements of type t1—((2),a] + pia1) and [[1,2], a5 + l1as],

2¢° elements of type t2—<(n),0z’2‘ + > paa) and [[2,3],0/{ + > laa},
acAg a€By

2¢" ! elements of type tm,1—<([(n +2)/2]) +aj+ X paoz> and [[L(n +2)/2],[(n+
acdf \{as}
+4)/2|]]+ai+ >, laa|, wherei=1and j =2ifnisodd, and i =2and j=1ifn
aedi\{a;}
is even and pi, U1, pa, lo € Fy.

Brackets and parentheses will allow the reader to distinguish points (-) and lines [-]. The set
of edges consists of all pairs {(p), [l]}, for which (p)Ip[l]. The incidence relation It in graphs
['(n, ¢;,F,) is determined by using the operator (-,-).

The incidence relation for the graph F(n,¢+,Fq) is defined as follows. Let w1 and 9 be
a closed subset of the set of positive roots ¢*, and let ¥, and ¥; be a linear combination of
elements of the sets ¢; and 19, accordingly, with scalars from F,. Point (p) = ((m), o + X,) is
incident to line [I] = [[s,?], &} + %] (we denote it by (p)I[l]) if and only if

(m=sVm=1t)A({a] + Ep,a; + El>\wm¢2 =0).

This construction allows us to obtain new structures similar in some aspects to generalized regular
polygons, but with different properties, in general. It is easy to see that this is a symmetric
incidence relation (the graphs are simple). For n = 3, this construction yields a projective plane,
which is commonly known. For n = 4, the set of roots is the same as for a generalized quadrangle,
but we obtain two structures with different properties. For n = 5, the set qﬁg' cannot be derived
from the Cartan matrix, and we obtain over a dozen of new structures with different properties.

In Table 1, we present the incidence relations for graph I'(4, qﬁj,Fq) when the sequences of
closed sets are: {a1} C {a1,201 + as} C {01,207 + a9, 1 + o}, {a2} C {ag,a1 + ag} C
C {ag,a1 + a2,2aq + as}. For these sequences, we obtain better results than for the second
possibility, \; = \/@

We checked every possibility to create the ascending sequences of closed subsets of (ﬁ;f. For
some of them, we obtained A\ = 2,/q. But, for I'(5, {1 }, {1 + a2}, {201 + a2}, {1 +200}, ;) and
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Table 1. Incidence relations for graph I'(4, ¢f ,F)

| .2 | @) | (@pp) | (3).p1,02,p5)
[[172]7@] + + * *
[[47 1]7 ll] + — +:l = p1 _
[[2,3],[1712] — + — +:p; =1
p1=1h p2 —l2 = p3ls
[[374]7l17127l3] - - +5p1:ll7 +Il2*p2:pll1,
p2 =l I3 —p3s =pilo

Table 2. Incidence relations for graph I'(5, ¢F , Fy)

| (W,2) | (@.00) | (B)pip2) | ((3)pr,p2ps) | ((4),p1,02,p5,04)
[[1,2], 2] + + — — -
1, 5], 1] + — +:pi=Uh — —
[12, 3], 11, 2] — + — +:pp=h —
p1=h p2 —la = psh
[[475],l1,lz,lg] +:p1 =1, +:p1 =1,
— — p2 —l2 = p1l3 — p2 — l2 = pils + pshy
p3 =l3
13,4],11,12,13,14] +:p1 =1, + 1 p2 —ls = l3p1,
— — — p2—l2 = p3 — I3 =1l1ip1
= pils + psli pa —l2 = lips
p3 =13
Table 3. Expanding properties of graphs I'(4, ¢+7Fq) and I'(4, ¢+7ZQT~)
Number field M=q+1 ‘ A1 ‘ 2\/q ‘ Ring ‘ Xo=2r+1 A1 ‘ 2v/2r
Fo 3 2.2882 2.8284 Z4 5 4 4
Fs 4 3 3.4641 Z¢ 7 6 4.899
Fy 5 3.4641 4 Zs 9 8 5.6569
Fs 6 3.8730 4.4721 YA 11 10 6.3246
F~ 8 4.5826 5.2915 Z12 13 12 6.9282
Fs 9 4.899 5.6568 Z1a 15 14 7.4833
Fq 10 5.1962 6 AT 17 16 8
F11 12 5.7446 6.6332 VAT 19 18 8.4853
Fi3 14 6.2450 7.2111 Zi2o 21 20 8.9443
Fi7 18 7.1414 8.2462 Ziao 23 22 9.3808
Fig 20 7.5498  8.7178 Zi2a 25 24 9.798
Fas 24 8.3066 9.59 Zoe 27 26 10.198

the sequences {1} C {a1,201+as} C {a1,201 +ag, a1 +as} C {ag, 201 +ag, a1 +ag, a1 +2a2}
and {ag} C {ag, a1 + 2a2} C {9, a1 + 200, a1 + as} C {ag, a1 + 209, a1 + ag, 201 + 2a0}, the
results are the best with A\ < 2,/q. We present the incidence relations for these choices of
sequences in Table 2. Table 3 and Table 4 contain results for the second largest eigenvalue \;
for the graphs described in Tables 1 and 2, accordingly. In addition, we consider the case where
we use a ring Zg, (r € Z) and modulo operations instead of the number field F,. Note that the
vertex ((m), o + piroy + paas + psay), where «; is a simple root and a3, a4 are nonsimple roots,
can be identified with ((m), p1, p2, p3) to simplify the notation of incidence relations.

We announce the following statement.

Theorem 1. Graphs I'(4, ot F,) for an arbitrary prime power q have girth 6. The incidence
graph of the geometry of a simple group of the Lie type Ba(q) is not isospectric to T'(4, ¢, F,).

48 ISSN 1025-6415  Reports of the National Academy of Sciences of Ukraine, 2014, Ne12



Table 4. Expanding properties of graphs I'(5, ¢T, F,)

Number regularity ¢ + 1 second 2,4

field first eigenvalue eigenvalue

Fo 3 2.4495 2.8284
Fs 4 3.2004 3.4641
Fy 5 4 4
Fs 6 4.1317 4.4721
Fr 8 4.8887 5.2915
Fs 9 5.6569 5.6569
Fo 10 5.5433 6
Fi1 12 6.1283 6.6332

Theorem 2. If gb;r = {a1, ag, 1 + a9,20q + ag, a1 + 2a2} and the sequences of closed sets
are {a1} C {1,201 + as} C {1,201 + @z, a1 + as} C {1,201 + ag, 01 + ag, a1 + 200},
{ag} C {ag,aq1 + 202} C {a2,0q + 209,01 + a} C {9,010 + 202, a1 + 9,207 + 22}, then
graphs P(5,¢+,Fq) have girth 8 for an arbitrary prime power q.

Based on the results contained in Tables 3 and 4, we formulate the following conjectures.
Conjecture 1. Graphs T'(4, ¢+,Fq) for an arbitrary prime power q > 2 are (q + 1)-regular
Ramanugjan graphs with A\ = \/@

Conjecture 2. Graphs T'(4,¢",Zs,) for arbitrary r € Z, are (2r + 1)-reqular expander
graphs with constant spectral gap [2r +1 — A| = 1.

Conjecture 3. If qﬁg' = {aq, a9, 01 + ag,201 + ag, a1 + 209}, and the sequences of closed
sets are {a1} C {aq,201 + as} C {aq,201 + ag, a1 + @} C {aq, 201 + ag, a1 + g, a1 + 202},
{as} C {ag, a1 +2as} C {ag, a1 +2as, a1+ s} C {ag, a1+ 209, a1 +ag, 201 + 23}, then, for an
arbitrary prime power q, graphs T'(5,¢™,F,) are (q+1)-regular Ramanugan graphs, and \1 < 2+/q.

4. On the comparison with Moore graphs of girth 8. Let v(2m, k + 1) be the minimal
order of a (k+1)-regular graph of girth 2m. Then v(2m, k+1) > 2(1+k+k%+---+k™ 1) (see [9]).

In fact, the graphs I'(4, ¢™, F;,) have some similarity with Moore cages of girth 8 and degree
¢+ 1. Really, [V(I'(4,¢", F))| = 200 + ¢ + ¢ + ¢°) = v(g + 1,8).

As is known, the cages with such parameters are regular generalized 4-gons of degree ¢ +
+ 1. They are Ramanujan graphs. We produce another family of Ramanujan graphs of order
v(q + 1,8). Girth 6 indicates that our graphs are not isomorphic to Moore graphs. The tables
demonstrate that the graphs from these two families of the same order and degree are not
isospectric.

The authors were the participants of the International Algebraic Conference dedicated to the 100-th
anniversary of L. A. Kaluzhnin (July 7-12, 2014, Kyiv, Ukraine). Our paper is dedicated to the memory
of Lev Kaluzhnin and his achievements in mathematics.
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M. ITonak, B. A. YcrumeHKO

IIpo HOBi eKcnaHaepn HEOOMEXKEHOTO CTEeNeHs /IJisi MPAKTUIHOTO
3acTOoCyBaHHs B iH(dopmaTuUili

Poszeasrymo memod nobydosu Hosux npukaadie podur epadic-excnaHdepie HeobMmesceH020 cmene-
Ha. I'padu 3 saacmusicmio excnancii nos’a3ani 3 6a2amoma KOHUENUTAMU YUCTNOT MATNEMATIUKU,
meopii obuucaenv ma gisuru. Kpim moezo, excnandepu 3acmocosyomuves 6 DIBHUL HANPAMKGL
THPOpMAMUKU: MEOPTT K0dYysarHA, Meopii mepestc, meopii ncesdosunadkosur npouecié i m. d. Ha-
sedeno npukaadu cimeticms (q + 1)-peeyaspruz epadic markuxr, wo ix dpyze 6AACHE “UCAO He
nepesuuiye nodeoeHo2o Kopens keadpammnozo 3 q (podun zeomempuunur epadie Pamanydoicara).
3okpema, nobydosaro poduny nosux (¢+1)-peeyaaprux epagie Pamanydocarna obxeamy 6 nopadky
2(1+q+ P+ q3), ane BOHU He € i30cnexmpanrvrumu do 2eomempiti npocmux epyn muny JIi Ba(q).

M. ITonak, B. A. YcrumeHKO

O HOBBIX 3KCIIAHJIEPAX HEOTPAHUYEHHOUN CTEIleHU JJisl ITPAKTUIECKOTrO
npuMeHeHns B MHOpMaTUKe

IIpedcmasaer memod nocmpoenus HOBHLT NPUMEPOS CEMETCME 2PaPO8-IKCNAHOEPOS HEOZPAHUYEH-
1ot cmenenu. I'padol co c60UCMBOM IKCNAHCUU CEAZANDL C MHOLUMU KOHUENUUAMY 6 “UCTNOT
MAMEMAMUKE, MEoPu 8uuucierut u dusuku. Kpome mozo, sKkcnandeps, NPumMenaomcs 6 pas-
AUNHDLE HANPABAEHUAT UHPOPMAMUKU: MEOPUL KOOUPOBAHUA, MEOPUU, cemetl, Meopul, ncesdocay-
watinoir npoueccos u m. d. Ipusederv. npumepos cemeticns (q + 1)-peeyasproir epagos ¢ 6mopvim
COOCMBEHHBIM ZHAUEHUEM, HE NPEBLRUAIOWUM YOBOEHH020 KOPHA KEaOpamHno20 u3 q (cemeticme
2eomempuueckur epados Pamanydsrcana). B wacmmuocmu, nocmpoero cemeticmeo noswx (q+1)-pe-
eyaaprwix epagos Pamanyoocana obxsama 6 nopadka 2(1+q+q>+q>), no onu ne usocnexmparvio,
2eomempuam npocmux epynn muna Ju Ba(q).
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