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A method of construction of new examples of families of expander graphs of unbounded degree is
presented. The property of being an expander seems significant in many of these mathematical,
computational, and physical contexts. Even more, expanders are surprisingly applicable in other
computational aspects: in the theory of error correcting codes, computer networking theory, the
theory of pseudorandomness, etc. We present the new families of (q + 1)-regular graphs with
the second largest eigenvalue of at most 2

√
q for every prime power q (geometrical Ramanujan

graphs). In particular, we construct a family of new (q+1)-regular Ramanujan graphs of girth 6
of order 2(1+q+q2+q3). They are not isospectric to the geometry of the simple Lie group B2(q).

Introduction. The reader can find missing definitions of graph theory in [1]. We assume that
all graphs under consideration are simple. The girth of a graph is a minimal length of its cycle.
The spectrum of a graph is formed by eigenvalues of its adjacency matrix.

We say that a family of regular graphs of bounded degree q and increasing order n has an
expansion constant c, c > 0, if the inequality |∂A| > c|A| holds for each subset A of the vertex
set X, |X| = n, with |A| 6 n/2. The expansion constant of the family of q-regular graphs can
be estimated via the upper limit q − λn, n → ∞, where λn is the second largest eigenvalue of
a family representative of order n.

According to the known Alon–Boppana theorem, the large enough members of an infinite
family of d-regular graphs with constant d satisfy the inequality λ > 2

√
d− 1 − o(1), where λ

is the second largest eigenvalue in absolute value.
This result motivates the concept of a Ramanujan graph, which is a graph of degree d with

the second largest eigenvalue bounded from above by 2
√
d− 1 (see [2]).

N. Alon [3] demonstrated the importance of families of expanding graphs of unbounded
degree. This class contains families of graphs of unbounded degree di with the second largest λi
such that the upper bound of the sequence λi/di is bounded away from 1. We refer to such
families of graphs as geometrical expanders.

We consider families of graphs Gi of increasing degree ki with the second largest eigenvalue λi
such that the upper limit α of λi/2

√
ki − 1 is at most 1. We refer to such families of graphs as

geometrical Ramanujan graphs.
The natural examples of geometrical Ramanujan graphs are known regular generalizedm-gons

(m = 3, 4, 6) and their affine parts. For instance, the finite projective plane PG2(q) over a finite
field Fq (generalized 3-gon) has degree q + 1 and the second largest eigenvalue

√
q. So, we can

take the infinite family of classical edge transitive graphs PG2(pi), where p is a fixed prime, and
the integer i is unbounded, and form the family of geometrical Ramanujan graphs with α = 1/2.
Our conjecture is that the minimal constant α for the family of geometrical Ramanujan graphs
is α′ = 1/2.
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In fact, the known families of Ramanujan graphs of unbounded degree play an important role
in the theory of finite geometries and have many practical applications, for example, in networking
theory and the construction of a class of error-correcting codes (the so-called LDPC codes).

Root system and generalized polygons. One of the classes of small world bipartite
graphs with additional geometric properties important for many practical applications is a class
of regular generalized m-gons, i. e., regular tactical configurations of diameter m and girth 2m.
For each parameter m, a regular generalized m-gon has degree q + 1 and order 2(1 + q + · · · +
+ qm−1) [4].

The matrices M1 =

(
2 −1
−1 2

)
, M2 =

(
2 −2
−1 2

)
, and M3 =

(
2 −1
−3 2

)
form a complete

list of 2 × 2 Cartan matrices (see [5]). In [5], a lattice H with basis {α1, α2}, i. e., the set
{λ1α1 + λ2α2|λ1, λ2 ∈ Z}, was considered. For an arbitrary two-dimensional matrix A = (ai,j)
from the list above, let us introduce two linear transformations r1 and r2 of the lattice H given
by the formula

ri(αj) = αj − aijαi.

For Mk, k = 1, 2, 3, we have r21 = e, r22 = e, and (r1r2)
m = e, where m = 3, 4, 6 for k = 1, 2, 3,

accordingly. These conditions are generic relations for the Weyl group W (Mk) corresponding
to the 2 × 2 Cartan matrix Mk (see [6]). The set φ = {g(αi)|g ∈ W (Mk), i = 1, 2} is called
a root system.

We use the concept of a root system φ, which is a configuration of vectors in a Euclidean
space satisfying certain geometrical properties. Given a root system φ, we can always choose a
set of positive roots φ+ = φ

⋂{λ1α1 + λ2α2|λi > 0, i = 1, 2} (|φ+| = |φ−|, where φ− a set of
negative roots), in a fixed basis. For generalized regular m-gons, we have φ+(M1) = {α1, α2, α1+
+ α2}, φ+(M2) = {α1, α2, α1 + α2, 2α1 + α2}, φ+(M2) = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2,
3α1 + 2α2}.

An element of φ+ is called a simple root if it cannot be written as the sum of two elements
of φ+. α1, α2 are called simple roots. To determine remaining elements of the set φ+, we use
the linear operators r1 and r2. Originally in [7], α∗

1, α
∗
2 were linear functionals defined on H and

given by the formula

α∗
i (αj) =

{
1, i = j,
0, i 6= j,

α∗
i (sα1 + tα2) = sα∗

i (α1) + tα∗
i (α2),

where sα1 + tα2 ∈ φ+ is a positive root.
Let ∆ = ς ⊕ L be the direct sum of ς and L, ς being the vector space of formal linear

combinations aα∗
1+bα

∗
2, where a and b are elements from Fq. L is the set of all linear combinations

of the form
∑
α∈φ+

tαα and tα ∈ Fq. λ, µ ∈ φ+, and the bilinear product 〈·, ·〉 : ∆ × ∆ → ∆ is

defined as follows:

〈aλ, bµ〉 =
{

(ab)(r + 1)(λ + µ), λ+ µ ∈ φ+,
0, λ+ µ /∈ φ+,

〈α∗
i , α

∗
j 〉 = 0, 〈α∗

i , λ〉 = α∗
i (λ)λ, 〈λ, α∗

i 〉 = −α∗
i (λ)λ.

Here, r is an integer uniquely determined by the condition µ − rλ ∈ φ, µ − (r + 1)λ /∈ φ.
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The generalized polygon Pm (m = 3, 4, 6) can be embedded into ∆ in a way such that (p)I[l],
(p)I[l] ∈ Pm implies 〈p, l〉 = 0 for sufficiently large charFq (see [6]).

More general constructions [7, 8] allow one to get the interpretation of the geometries of
Shevalley groups over finite fields of “sufficiently large characteristic” and some new incidence
systems.

New constructions. Ramanujan graphs and expanders. To create graphs, which have
interesting properties, we can use the root system and a special binary operation. We choose
simple roots α1, α2 and then the remaining n− 2 elements, by making up the n-element set φ+n .
The third element is the sum of simple roots α1 + α2. The following elements can be obtained
by a simple addition of the element α1 or α2 to the one of the already chosen non-simple roots.
Obviously, there is only one 3-element set φ+3 = {α1, α2, α1 + α2}. The sets φ+4 consisting of
four elements can be chosen by two ways: {α1, α2, α1 + α2, 2α1 + α2} and {α1, α2, α1 + α2, α1 +
+ 2α2}, but they are symmetric and give the same results. There are three ways to choose non-
symmetric sets φ+5 : {α1, α2, α1 +α2, 2α1 +α2, α1 +2α2}, {α1, α2, α1 +α2, 2α1 +α2, 2α1 +2α2},
{α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2}. We have φ+3 = φ+(M1), φ

+
4 = φ+(M2), but φ+5 cannot

be obtained, by using linear transformations r1, r2 and any Cartan matrix. In this article, we
only consider cases for n = 3, 4, 5. In our construction, we simplify the concept and define α∗

1,
α∗
2 as follows:

α∗
i (αj) =

{
1, i=j,
0, i 6= j,

α∗
i (sα1 + tα2) = 1α∗

i (α1) + 1α∗
i (α2).

Here, sα1 + tα2 ∈ φ+ is a positive root.
Let ∆ = ς ⊕ L be the direct sum of ς and L as above, λ, µ ∈ φ+, let a and b be elements

from Fq, and let us redefine the binary operation 〈·, ·〉 : ∆ × ∆ → ∆:

〈aλ, bµ〉 =
{

(ab)(λ+ µ), λ+ µ ∈ φ+,
0, λ+ µ /∈ φ+,

〈α∗
i , α

∗
j 〉 = 0, 〈α∗

i , λ〉 = α∗
i (λ)λ, 〈λ, α∗

i 〉 = −α∗
i (λ)λ,

where i, j = 1, 2. We use the operators defined above to simplify our concept. Before the determi-
nation of incidence relations, we describe the set of vertices. Let Γ(n, φ+n ,Fq) denote a bipartite
graph obtained, by using the n-element set φ+n , scalars from Fq, and the binary operator 〈·, ·〉.
Traditionally in geometrical bipartite graphs, one set of vertices is called a set of points P , and
another set of vertices is called a set of lines L.

First, let us consider an ordinary n-gon as a bipartite graph with the vertex set V = P
⋃
L =

= {(1), (2), . . . , (n)}⋃{[1, 2], [2, 3], . . . , [n− 1, n], [n, 1]}. We can write the incidence relation I in
an n-gon as follows:

(m)I[s, t] ⇐⇒ m = s ∨m = t.

The line is incident with a point if this point belongs to the line.
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Let a vertex of the type ti be defined as a vertex corresponding to the i-element subset of
φ+n , i = 0, 1, 2, . . . , n − 1, and let Ai, Bi denote i-element closed subsets of φ+n . We create two
ascending sequences of closed subsets of φ+n . The second element of the first sequence is {α1},
and the second element for the second sequence is {α2}:

A0 = {∅} ⊂ A1 = {α2} ⊂ A2 ⊂ A3 ⊂ · · · ⊂ An−1 = φ+n \ {α1},

B0 = {∅} ⊂ B1 = {α1} ⊂ B2 ⊂ B3 ⊂ · · · ⊂ Bn−1 = φ+n \ {α2}.

For bigger n, the set φ+n has more roots, and the above sequences can be chosen in many ways.
Now, choosing elements from these two sequences alternately, we create a set of points and a set
of lines. For lines, we choose the sets B0 = {∅}, A1 = {α2}, B2, A3, . . . , φ

+
n \ {αj}. For points,

we choose A0 = {∅}, B1 = {α1}, A2, B3, . . . , φ
+
n \ {αi}, where i = 1 and j = 2 if n is odd

and i = 2 and j = 1 if n is even. The number of vertices in the obtained graph Γ(n, φ+n ,Fq) is
|V | = 2(1 + q + q2 + · · ·+ qn−1). The graph is bipartite V = P

⋃
L, and the set V consists of

2 elements of type t0–((1), α
∗
1) and [[1, 2], α∗

2],
2q elements of type t1–((2), α∗

1 + p1α1) and [[1, 2], α∗
2 + l1α2],

2q2 elements of type t2−
(
(n), α∗

2 +
∑
α∈A2

pαα
)

and
[
[2, 3], α∗

1 +
∑
α∈B2

lαα
]
,

...

2qn−1 elements of type tm−1−
(
(⌈(n+ 2)/2⌉) +α∗

j +
∑

α∈φ+n \{αi}

pαα
)

and
[
[⌊(n+ 2)/2⌋, ⌊(n+

+ 4)/2⌋⌋] + α∗
i +

∑
α∈φ+n \{αj}

lαα
]
, where i = 1 and j = 2 if n is odd, and i = 2 and j = 1 if n

is even and p1, l1, pα, lα ∈ Fq.
Brackets and parentheses will allow the reader to distinguish points (·) and lines [·]. The set

of edges consists of all pairs {(p), [l]}, for which (p)IΓ[l]. The incidence relation IΓ in graphs
Γ(n, φ+n ,Fq) is determined by using the operator 〈·, ·〉.

The incidence relation for the graph Γ(n, φ+,Fq) is defined as follows. Let ψ1 and ψ2 be
a closed subset of the set of positive roots φ+, and let Σp and Σl be a linear combination of
elements of the sets ψ1 and ψ2, accordingly, with scalars from Fq. Point (p) = ((m), α∗

i +Σp) is
incident to line [l] = [[s, t], α∗

j + Σl] (we denote it by (p)I[l]) if and only if

(m = s ∨m = t) ∧ (〈α∗
i +Σp, α

∗
j +Σl〉|ψ1∩ψ2

= 0).

This construction allows us to obtain new structures similar in some aspects to generalized regular
polygons, but with different properties, in general. It is easy to see that this is a symmetric
incidence relation (the graphs are simple). For n = 3, this construction yields a projective plane,
which is commonly known. For n = 4, the set of roots is the same as for a generalized quadrangle,
but we obtain two structures with different properties. For n = 5, the set φ+5 cannot be derived
from the Cartan matrix, and we obtain over a dozen of new structures with different properties.

In Table 1, we present the incidence relations for graph Γ(4, φ+4 ,Fq) when the sequences of
closed sets are: {α1} ⊂ {α1, 2α1 + α2} ⊂ {α1, 2α1 + α2, α1 + α2}, {α2} ⊂ {α2, α1 + α2} ⊂
⊂ {α2, α1 + α2, 2α1 + α2}. For these sequences, we obtain better results than for the second
possibility, λ1 =

√
3q.

We checked every possibility to create the ascending sequences of closed subsets of φ+5 . For
some of them, we obtained λ1 = 2

√
q. But, for Γ(5, {α1}, {α1+α2}, {2α1+α2}, {α1+2α2},Fq) and
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Table 1. Incidence relations for graph Γ(4, φ+
4 , Fq)

((1),∅) ((2), p1) ((4), p1, p2) ((3), p1, p2, p3)

[[1, 2],∅] + + — —
[[4, 1], l1] + — + : l1 = p1 —
[[2, 3], l1, l2] — + — + : p1 = l1

p1 = l1 p2 − l2 = p3l1
[[3, 4], l1, l2, l3] — — + : p1 = l1, + : l2 − p2 = p1l1,

p2 = l2 l3 − p3 = p1l2

Table 2. Incidence relations for graph Γ(5, φ+
5 , Fq)

((1),∅) ((2), p1) ((5), p1, p2) ((3), p1, p2, p3) ((4), p1, p2, p3, p4)

[[1, 2],∅] + + — — —
[[1, 5], l1] + — + : p1 = l1 — —
[[2, 3], l1, l2] — + — + : p1 = l1 —

p1 = l1 p2 − l2 = p3l1
[[4, 5], l1, l2, l3] + : p1 = l1, + : p1 = l1,

— — p2 − l2 = p1l3 — p2 − l2 = p1l3 + p3l1
p3 = l3

[[3, 4], l1, l2, l3, l4] + : p1 = l1, + : p2 − l4 = l3p1,
— — — p2 − l2 = p3 − l3 = l1p1

= p1l3 + p3l1 p4 − l2 = l1p3
p3 = l3

Table 3. Expanding properties of graphs Γ(4, φ+,Fq) and Γ(4, φ+,Z2r)

Number field λ0 = q + 1 λ1 2
√
q Ring λ0 = 2r + 1 λ1 2

√
2r

F2 3 2.2882 2.8284 Z4 5 4 4
F3 4 3 3.4641 Z6 7 6 4.899
F4 5 3.4641 4 Z8 9 8 5.6569
F5 6 3.8730 4.4721 Z10 11 10 6.3246
F7 8 4.5826 5.2915 Z12 13 12 6.9282
F8 9 4.899 5.6568 Z14 15 14 7.4833
F9 10 5.1962 6 Z16 17 16 8
F11 12 5.7446 6.6332 Z18 19 18 8.4853
F13 14 6.2450 7.2111 Z20 21 20 8.9443
F17 18 7.1414 8.2462 Z22 23 22 9.3808
F19 20 7.5498 8.7178 Z24 25 24 9.798
F23 24 8.3066 9.59 Z26 27 26 10.198

the sequences {α1} ⊂ {α1, 2α1+α2} ⊂ {α1, 2α1+α2, α1+α2} ⊂ {α1, 2α1+α2, α1+α2, α1+2α2}
and {α2} ⊂ {α2, α1 + 2α2} ⊂ {α2, α1 + 2α2, α1 + α2} ⊂ {α2, α1 + 2α2, α1 + α2, 2α1 + 2α2}, the
results are the best with λ1 < 2

√
q. We present the incidence relations for these choices of

sequences in Table 2. Table 3 and Table 4 contain results for the second largest eigenvalue λ1
for the graphs described in Tables 1 and 2, accordingly. In addition, we consider the case where
we use a ring Z2r (r ∈ Z+) and modulo operations instead of the number field Fq. Note that the
vertex ((m), α∗

i + p1αi+ p2α3 + p3α4), where αi is a simple root and α3, α4 are nonsimple roots,
can be identified with ((m), p1, p2, p3) to simplify the notation of incidence relations.

We announce the following statement.
Theorem 1. Graphs Γ(4, φ+,Fq) for an arbitrary prime power q have girth 6. The incidence

graph of the geometry of a simple group of the Lie type B2(q) is not isospectric to Γ(4, φ+,Fq).
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Table 4. Expanding properties of graphs Γ(5, φ+,Fq)

Number
field

regularity q + 1
first eigenvalue

second
eigenvalue

2
√
q

F2 3 2.4495 2.8284
F3 4 3.2004 3.4641
F4 5 4 4
F5 6 4.1317 4.4721
F7 8 4.8887 5.2915
F8 9 5.6569 5.6569
F9 10 5.5433 6
F11 12 6.1283 6.6332

Theorem 2. If φ+5 = {α1, α2, α1 + α2, 2α1 + α2, α1 + 2α2} and the sequences of closed sets
are {α1} ⊂ {α1, 2α1 + α2} ⊂ {α1, 2α1 + α2, α1 + α2} ⊂ {α1, 2α1 + α2, α1 + α2, α1 + 2α2},
{α2} ⊂ {α2, α1 + 2α2} ⊂ {α2, α1 + 2α2, α1 + α2} ⊂ {α2, α1 + 2α2, α1 + α2, 2α1 + 2α2}, then
graphs Γ(5, φ+,Fq) have girth 8 for an arbitrary prime power q.

Based on the results contained in Tables 3 and 4, we formulate the following conjectures.
Conjecture 1. Graphs Γ(4, φ+,Fq) for an arbitrary prime power q > 2 are (q + 1)-regular
Ramanujan graphs with λ1 =

√
3q.

Conjecture 2. Graphs Γ(4, φ+,Z2r) for arbitrary r ∈ Z+ are (2r + 1)-regular expander
graphs with constant spectral gap |2r + 1 − λ1| = 1.

Conjecture 3. If φ+5 = {α1, α2, α1 + α2, 2α1 + α2, α1 + 2α2}, and the sequences of closed
sets are {α1} ⊂ {α1, 2α1 + α2} ⊂ {α1, 2α1 + α2, α1 + α2} ⊂ {α1, 2α1 + α2, α1 + α2, α1 + 2α2},
{α2} ⊂ {α2, α1+2α2} ⊂ {α2, α1+2α2, α1+α2} ⊂ {α2, α1+2α2, α1+α2, 2α1+2α2}, then, for an
arbitrary prime power q, graphs Γ(5, φ+,Fq) are (q+1)-regular Ramanujan graphs, and λ1 6 2

√
q.

4. On the comparison with Moore graphs of girth 8. Let v(2m,k+1) be the minimal
order of a (k+1)-regular graph of girth 2m. Then v(2m,k+1) > 2(1+k+k2+· · ·+km−1) (see [9]).

In fact, the graphs Γ(4, φ+, Fq) have some similarity with Moore cages of girth 8 and degree
q + 1. Really, |V (Γ(4, φ+, Fq))| = 2(1 + q + q2 + q3) = v(q + 1, 8).

As is known, the cages with such parameters are regular generalized 4-gons of degree q +
+ 1. They are Ramanujan graphs. We produce another family of Ramanujan graphs of order
v(q + 1, 8). Girth 6 indicates that our graphs are not isomorphic to Moore graphs. The tables
demonstrate that the graphs from these two families of the same order and degree are not
isospectric.

The authors were the participants of the International Algebraic Conference dedicated to the 100-th
anniversary of L.A. Kaluzhnin (July 7–12, 2014, Kyiv, Ukraine). Our paper is dedicated to the memory
of Lev Kaluzhnin and his achievements in mathematics.
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М. Полак, В.А. Устименко

Про новi експандери необмеженого степеня для практичного
застосування в iнформатицi

Розглянуто метод побудови нових прикладiв родин графiв-експандерiв необмеженого степе-
ня. Графи з властивiстю експансiї пов’язанi з багатьма концепцiями чистої математики,
теорiї обчислень та фiзики. Крiм того, експандери застосовуються в рiзних напрямках
iнформатики: теорiї кодування, теорiї мереж, теорiї псевдовипадкових процесiв i т. д. На-
ведено приклади сiмейств (q + 1)-регулярних графiв таких, що їх друге власне число не
перевищує подвоєного кореня квадратного з q (родин геометричних графiв Рамануджана).
Зокрема, побудовано родину нових (q+1)-регулярних графiв Рамануджана обхвату 6 порядку
2(1+ q+ q2+ q3), але вони не є iзоспектральними до геометрiй простих груп типу Лi B2(q).

М. Полак, В.А. Устименко

О новых экспандерах неограниченной степени для практического
применения в информатике

Представлен метод построения новых примеров семейств графов-экспандеров неограничен-
ной степени. Графы со свойством экспансии связаны с многими концепциями в чистой
математике, теории вычислений и физики. Кроме того, экспандеры применяются в раз-
личных направлениях информатики: теории кодирования, теории сетей, теории псевдослу-
чайных процессов и т. д. Приведены примеры семейств (q+1)-регулярных графов с вторым
собственным значением, не превышаюшим удвоенного корня квадратного из q (семейств
геометрических графов Рамануджана). В частности, построено семейство новых (q+1)-ре-
гулярных графов Рамануджана обхвата 6 порядка 2(1+q+q2+q3), но они не изоспектральны
геометриям простых групп типа Ли B2(q).
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