УДК 532.59

Академик НАН Украины В. А. Иванов, член-корреспондент НАН Украины Л. В. Черкесов, Т. Я. Шульга

Изучение влияния параметров атмосферных возмущений на волны, течения и процесс трансформации загрязнения различных начальных размеров в Азовском море

Представлены результаты исследования методом математического моделирования влияния на течения и волны в Азовском море однородных по пространству и времени ветров зональных направлений (северо-западного, западного и юго-западного). Выполнен анализ физических закономерностей распространения пассивной примеси в Азовском море различной начальной площади с учетом стационарных течений.

В настоящее время наблюдается определенное несоответствие между уровнем знаний о гидродинамических процессах в прибрежно-шельфовой зоне Азовского моря и необходимостью эффективного прогнозирования возможных экологических изменений вследствие ее интенсивного экономического освоения, усиливающегося в последние годы. Имеются научные публикации [1–4], посвященные исследованию волнового режима для типичных полей ветра, характерных для этого региона. При изучении трансформации примеси генератором движения водной среды рассматривались постоянный ветер [1, 2] и усредненный на определенных промежутках времени [5].

В данном сообщении методом математического моделирования анализируется влияние однородных по пространству и времени характерных [6] для Азово-Черноморского региона ветров зональных направлений (северо-западного, западного и юго-западного) на течения, волны и трансформацию областей загрязнения различной начальной площади.

1. Введем прямоугольную систему координат, в которой ось x — направлена на восток, y — на север, z — вертикально вверх. Математическая модель основывается на уравнениях движения и неразрывности с использованием приближения гидростатики [7, 8]. При этом u, v, w — проекции скорости по осям x, y, z; t — время; p — давление; ρ — плотность; g ускорение свободного падения; f — параметр Кориолиса; $\zeta(x, y, t)$ — профиль свободной поверхности.

Коэффициент горизонтальной вязкости A_M вычисляется с использованием модели подсеточной вязкости [9] в зависимости от горизонтальных градиентов скорости:

$$A_M = \frac{1}{2} C_M \sqrt{\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2 + \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)^2}.$$
(1)

Соотношения для расчета коэффициентов вертикальной вязкости K_M и турбулентной диффузии K_H в соответствии с полуэмпирической моделью [10, 11] имеют вид:

$$K_M = qlS_M; \qquad K_H = qlS_H. \tag{2}$$

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2014, № 1

104

[©] В.А. Иванов, Л.В. Черкесов, Т.Я. Шульга, 2014

Здесь C_M , S_M и S_H — эмпирические константы. Данная параметризация основана на решении двух дополнительных уравнений в частных производных для определения кинетической энергии турбулентности $(q^2/2)$ и макромасштаба турбулентности (l):

$$\frac{dq^2}{dt} = \frac{\partial}{\partial x} \left(\epsilon_q \frac{\partial q^2}{\partial x} \right) + \frac{\partial}{\partial y} \left(\epsilon_q \frac{\partial q^2}{\partial y} \right) + \frac{\partial}{\partial z} \left(\epsilon_q \frac{\partial q^2}{\partial z} \right) + 2 \left(P_S - \frac{q^3}{B_1 l} \right), \tag{3}$$

$$\frac{dq^2l}{dt} = \frac{\partial}{\partial x} \left(\epsilon_q \frac{\partial q^2 l}{\partial x} \right) + \frac{\partial}{\partial y} \left(\epsilon_q \frac{\partial q^2 l}{\partial y} \right) + \frac{\partial}{\partial z} \left(\epsilon_q \frac{\partial q^2 l}{\partial z} \right) + lE_1 P_S + lE_1 E_3 \frac{g}{\rho_0} \left(\frac{\partial \rho}{\partial z} - \frac{1}{v_s^2} \right) - \frac{q^3}{B_1} \left(1 + E_2 \left(\frac{l}{kL} \right) \right)^2.$$
(4)

При этом $P_S = qlS_z \left(\left(\frac{\partial u}{\partial z} \right)^2 + \left(\frac{\partial v}{\partial z} \right)^2 \right)$ — скорость генерации турбулентности за счет вертикального сдвига скорости течения. Коэффициент S_z определяется по формуле

$$S_z = A_2(1 - 6A_1/A_2)(1 - (3A_2B_2 + 18A_1A_2)G_H),$$

где $G_H = -\frac{l^2}{q^2} \frac{g}{\rho_0} \frac{\partial \rho}{\partial z}$; $L = (\zeta - z)^{-1} + (H - z)^{-1}$; $\epsilon_q = 0,2$; k = 0,4 — постоянная Кармана; $A_1 = 0,92$; $A_2 = 0,74$; $B_1 = 16,6$; $B_2 = 10,1$; $C_1 = 0,08$; $E_1 = 1,33$; $E_2 = 0,025$ — эмпирические постоянные.

Для решения уравнений (3), (4) имеют место следующие граничные условия:

$$q^{2}|_{z=\zeta} = B_{1}^{2/3} u_{0}^{2}, \qquad l|_{z=\zeta} = 0; \qquad q^{2}|_{z=-H} = B_{1}^{2/3} u_{b}^{2}, \qquad l|_{z=-H} = 0; \tag{5}$$

$$w\Big|_{z=\zeta} = \frac{\partial\zeta}{\partial z} + u\frac{\partial\zeta}{\partial x} + v\frac{\partial\zeta}{\partial y}; \qquad K_M\left(\frac{\partial u}{\partial z}, \frac{\partial v}{\partial z}\right)\Big|_{z=\zeta} = (\tau_{0x}, \tau_{0y}). \tag{6}$$

В этом случае u_0 и u_b — скорости в поверхностном и придонном слоях соответственно; $\tau_{0x} = C_a W_x |\mathbf{W}|$ и $\tau_{0y} = C_a W_y |\mathbf{W}|$ — проекции касательных напряжений скорости ветра (W) на высоте 10 м над уровнем моря [7]; C_a — эмпирический коэффициент поверхностного трения [12], который зависит от скорости ветра:

$$10^{3}C_{a} = \begin{cases} 2,5, & |\mathbf{W}| > 22 \text{ M/c}, \\ (0,49 + 0,0065 |\mathbf{W}|), & 8 \leq |\mathbf{W}| \leq 22 \text{ M/c}, \\ 1,2, & 4 \leq |\mathbf{W}| \leq 8 \text{ M/c}, \\ 1,1, & 1 \leq |\mathbf{W}| \leq 4 \text{ M/c}. \end{cases}$$
(7)

На дне (z = -H(x, y)) равна нулю нормальная составляющая скорости жидкости, придонные касательные напряжения связаны со скоростью квадратичной зависимостью [7]:

$$\left(w+u\frac{\partial H}{\partial x}+v\frac{\partial H}{\partial y}\right)\Big|_{z=-H}=0, \qquad K_M\left(\frac{\partial u}{\partial z},\frac{\partial v}{\partial z}\right)\Big|_{z=-H}=(\tau_{1x},\tau_{1y}). \tag{8}$$

105

Здесь $\tau_{1x} = C_b u_b \sqrt{u_b^2 + v_b^2}$ и $\tau_{1y} = C_b v_b \sqrt{u_b^2 + v_b^2}$ (где C_b — коэффициент донного трения, который вычисляется по формуле $C_b = k^2 / \ln^2(h_b/z_0)$ (h_b — шаг по вертикали в придонном

ISSN 1025-6415 Доповіді Національної академії наук України, 2014, №1

слое, $z_0 = 0,003$ м — параметр шероховатости донной поверхности)). На боковых границах выполняются условия прилипания. В качестве начальных (t = 0) принимаются условия отсутствия движения жидкости и колебаний свободной поверхности до включения атмосферных возмущений.

Для расчета распространения примеси концентрации C(x, y, z, t) используется уравнение переноса и диффузии, при этом на свободной поверхности и в придонном слое к динамическим граничным условиям добавляются условия отсутствия потоков примеси через свободную поверхность, боковые стенки и дно бассейна [7].

Начальная область загрязнения для всех рассматриваемых далее видов атмосферных возмущений в момент установления движения жидкости ($t_0 = 48$ ч) расположена в поверхностном слое:

$$C(x, y, z, t_0) = \begin{cases} 1, & r \leq R, & 0 \geq z \geq -z_1, \\ 0, & r > R, & z \leq 0; & r \leq R, & z < -z_1, \end{cases}$$
(9)

где C(x, y, z, t) — концентрация загрязнения; r — расстояние от центра начальной области загрязнения до точки, в которой вычисляется концентрация; R — ее радиус; z_1 — толщина верхнего расчетного слоя.

В качестве параметров, характеризующих эволюцию пассивной примеси, выбраны: время рассеивания загрязнения (t_d) , коэффициент максимальной площади ее распространения на различных горизонтах (K_{max}) . При этом $K_{\text{max}} = S_{\text{max}}/S_0$, где S_0 — площадь области начального загрязнения в поверхностном слое; S_{max} — наибольшее значение площади загрязнения на рассматриваемом горизонте в процессе трансформации примеси. Условием полного рассеивания загрязнения принимается величина концентрации, не превышающая $2,5 \cdot 10^{-2}$ во всей акватории моря.

Для численной реализации выполняется переход от координаты z к сигма-координате [1, 7, 13]. В этом случае алгоритм решения базируется на применении двухслойных разностных схем. Используются равномерные шаги по горизонтальным координатам Δx , Δy и по координате σ . Выбор шагов интегрирования по временным и пространственным координатам осуществляется в соответствии с критерием устойчивости для баротропных волн [14]. Топография дна на модельную сетку интерполирована с использованием массива глубин, приведенного в навигационных картах. Отклонения уровня моря анализируются на девяти станциях, расположенных вблизи крупных населенных пунктов.

2. В первой серии численных экспериментов исследуется влияние различных направлений и скоростей постоянного ветра на сгонно-нагонные процессы и течения, возникающие в море. Вследствие относительно симметричной конфигурации берегов, весьма однородных глубин и небольших размеров моря, характеристики волн при различных направлениях ветра меняются незначительно. Над Азовским морем преобладают [6, 15] ветры зональных направлений (северо-западное, западное и юго-западное), которые в общей циркуляции атмосферы обусловливают обмен воздуха между различными широтами Земли.

Максимальные величины скоростей стационарных течений (\mathbf{U}_{st} , м/с), вызванных постоянным ветром двух скоростей и трех характерных направлений, демонстрирует табл. 1. Здесь указаны координаты \mathbf{U}_{st} и время их достижения на различных глубинах Азовского моря. Из анализа приведенных данных следует, что наибольшие скорости движения жидкости в море достигаются при северо-западном ветре, а наименьшие — при западном. Так, в случае действия ветра наибольшей из рассматриваемых скоростей (15 м/с) величины \mathbf{U}_{st} при северо-западном ветре больше, чем при западном в 1,18, 1,17, 1,15 и 1,19 раз на глубинах 1, 3, 5 и 10 м соответственно. Превышение скоростей течений, возникающих при северо-западном ветре, составляет не более 16% относительно скоростей течений, вызванных западным ветром. При этом для данных скоростей и направлений ветра значения U_{st} убывают с ростом глубины на каждом из указанных интервалов не более чем на 5%.

Для рассматриваемых величин и трех направлений скоростей ветра в случае установившегося движения жидкости в табл. 2 представлены максимумы нагонов и сгонов на береговых станциях Азовского моря. Анализ приведенных здесь данных, свидетельствует о том, что ветер одного направления, но большей скорости, увеличивает предельные значения сгонов и нагонов на 31 и 80% для скоростей 5 и 15 м/с соответственно.

Ветры одной и той же величины скорости, но различных ее направлений (от юго-западного к северо-западному), могут приводить к изменению районов максимальных значений нагонов. Так, постоянные юго-западный и северо-западный ветры со скоростью 15 м/с вызывают наибольшие нагоны на ст. Таганрог (204 см) и Приморско-Ахтарск (102 см) соответственно.

В то же время под действием скоростей ветра (рассматриваемых величин и направлений) изменения районов максимальных сгонов не происходит. Во всех случаях наибольшие значения сгонов достигаются на ст. Геническ. При этом для ветра 15 м/с максимальная величина сгона (139 см) имеет место для западного направления. Отметим так же, что для одной и той же величины скорости, но разных направлений ветра, в одном и том же береговом районе могут быть и нагоны и сгоны. На ст. Мариуполь при 15 м/с возникают нагоны (119 и 88 см) для юго-западного и западного направлений и сгон (42 см) для северо-западного.

Из анализа изолиний, приведенных на рис. 1, следует, что для ветра 15 м/с всех трех направлений имеет место в каждом случае одна узловая линия в центральном районе моря, ориентированная перпендикулярно направлению действующего ветра. При этом к юго-западу от нее происходит увеличение уровня моря, к северо-западу — уменьшение. Как видно

Горизонт, м	$\mathbf{W}_{ ext{st}}^1 = 5 ext{m/c}$			$\mathbf{W}_{\mathrm{st}}^2 = 15\mathrm{m/c}$		
	юзапад	запад	сзапад	юзапад	запад	сзапад
0	0,14	0,16	0,18	$0,\!66$	0,72	0,74
3	0,11	0,13	0,15	0,54	$0,\!61$	$0,\!62$
5	0,09	0,10	0,12	0,41	0,51	0,53
10	0,07	0,08	0,10	0,32	0,37	0,39

Таблица 1

Таблица	\mathcal{Z}
---------	---------------

Береговые	$\mathbf{W}_{ ext{st}}^1 = 5 ext{m/c}$			$\mathbf{W}_{ ext{st}}^2 = 15 ext{m/c}$		
станции	юзапад	запад	сзапад	юзапад	запад	сзапад
Геническ	-9	-12	$^{-8}$	-96	-139	-101
Бердянск	3	-4	-6	46	-47	-78
Мариуполь	13	10	-4	119	88	-42
Таганрог	22	21	6	204	180	52
Ейск	13	14	6	117	123	63
ПримАхтарск	7	10	9	86	117	102
Темрюк	-5	6	7	-41	73	89
Опасное	-6	4	5	-59	41	72
Мысовое	-8	-6	4	-92	-65	47

ISSN 1025-6415 Доповіді Національної академії наук України, 2014, №1

Рис. 1. Изолинии уровня (м) Азовского моря, обусловленные действием постоянных ветров трех направлений со скоростью 15 м/с: юго-западного (a), западного (б) и северо-западного (c) в случае установившихся движений жидкости

из рисунка, при северо-западном ветре область наименьших высот волн смещается в сторону юго-западной части моря (a). При западном и юго-западном ветрах той же скорости (δ, e) область наименьших высот волн (узловая линия) располагается над центральной частью моря с некоторым смещением к югу.

3. В следующей серии численных экспериментов поставим своей целью получить оценку влияния скорости и направления зональных ветров на трансформацию области загрязнения в центральном районе Азовского моря (A_0) . Известно [16], что основными источниками поступления загрязняющих веществ в морскую среду являются реки, ливневые стоки и сточные коллекторы бытовых вод вблизи больших городов. Часть из них действуют в режиме мгновенных сбросов (например, ливневые канализации).

Полагаем, что в момент их выброса ($t_0 = 48$ ч) на поверхность моря центр области (12) находится в пункте A_0 с координатами: $x_0 = 110$ км, $y_0 = 145$ км. Радиусы этих областей при $t = t_0$ в рассматриваемых экспериментах принимаем равными 6,364, 9 и 12,728 км. При этом площадь каждой из них составляет $S_0/2$, S_0 и $2S_0$ соответственно ($S_0 = 254$ км²). Отметим, что при $t \ge t_0$ скорости течений для всех характеристик ветра не зависят от времени.

Дальнейшее изменение концентрации загрязняющих веществ и занимаемой им области определяются в основном течениями, существенно зависящими от характеристик действующего ветра. В численных экспериментах для изучения механизмов переноса и трансформации загрязняющих веществ используются поля постоянного ветра трех направлений, указанных в п. **2**.

В численном эксперименте с наименьшей начальной площадью загрязнения $(S_0/2)$ при скорости ветра 5 м/с максимум ее площади $(K_{\text{max}} = 1,23)$ достигается в 5,11 ч; при 15 м/с (1,36) — в 4,15 ч. Отметим, что северо-западное направление ветра сильнее влияет на величину площади примеси и время ее рассеивания по сравнению с юго-восточным и западным направлениями. Так, для северо-западного ветра время ее полного рассеивания в поверх-

ностном слое увеличивается с ростом его скорости (5 и 15 м/с) и имеет место в 14,25 и 14,4 ч соответственно.

В этом же численном эксперименте $(S_0/2)$ для всех значений скорости ветра наибольшая площадь распространения загрязнения отмечается в случае северо-западного ветра и составляет 1,29 $(\mathbf{W}_{\rm st}^1)$ и 1,46 $(\mathbf{W}_{\rm st}^2)$. При этом растет и время ее достижения — 14,20 и 16,7 ч. Увеличивается также с ростом начальной площади загрязнения время его полного рассеивания. На "тихой воде" $(\mathbf{W}_0 = 0)$ t_d принимает значения 45, 50 и 55 ч для $S_0/2$, S_0 и $2S_0$ соответственно. При наличии атмосферных возмущений ($\mathbf{W}_{\rm st}^k$, k = 1, 2) t_d возрастает следующим образом: 53, 58 и 63 ч для $S_0/2$ и S_0 , $2S_0$ соответственно.

Выполним теперь сравнение времени рассеивания загрязняющих веществ (t_d) и максимумов размеров занимаемых ими областей $(K_{\rm max})$ в зависимости от начальной площади $(\gamma S_0, \gamma = 1/2, 1, 2)$. Анализ результатов численных экспериментов по выявлению закономерностей переноса и распространения примеси показал, что начальные размеры областей загрязнений мало влияют на характер их горизонтальных и вертикальных перемещений. Для оценки интенсивности трасформации примеси рассмотрен эксперимент с северо-западным ветром 15 м/с при дву- и четырехкратном увеличении начальной площади загрязнения. В этом случае в поверхностном слое моря $K_{\rm max}$ незначительно убывает (1,36, 1,27 и 1,18) с ростом начальной площади, в придонном слое $K_{\rm max}$ так же уменьшается (1,58, 1,41 и 1,26).

Исследуем влияние размеров начального загрязнения на продолжительность полного рассеивания загрязнений. Отсюда следует, что наибольшее значение t_d имеет место при юго-западном ветре 5 м/с. В этом случае в придонном слое ($z = \tilde{H}_b$) с ростом начальных площадей значение t_d увеличивается на 11 и 25% и составляет: 49 ч для $S_0/2$; 54,3 ч для (S_0) ; 61,3 ч для $(2S_0)$.

Таким образом анализируя, приведенные результаты, пришли к следующему выводу: наибольшая площадь загрязнения по отношению к площади начального загрязнения увеличивается на 28% на "тихой воде" и на 58% при наличии рассматриваемых атмосферных возмущений.

- 1. Иванов В. А., Черкесов Л. В., Шульга Т. Я. Динамические процессы и их влияние на распространение и трансформацию загрязняющих веществ в ограниченных морских бассейнах. – Севастополь: ЭКОСИ-Гидрофизика, 2010. – 178 с.
- Иванов В. А., Черкесов Л. В., Шульга Т. Я. Атлас сгонно-нагонных процессов, волн и течений, вызываемых действием атмосферных возмущений в Азовском море. Севастополь: ЭКОСИ-Гидрофизика, 2012. 96 с.
- 3. *Доценко С. Ф., Иванов В. А.* Природные катастрофы Азово-Черноморского региона. Севастополь: ЭКОСИ-Гидрофизика, 2010. 174 с.
- 4. Шульга Т. Я. Течения и сгонно-нагонные процессы, вызываемые переменным по пространству и времени ветром в Азовском море // Доп. НАН України. 2011. № 2. С. 121–124.
- Иванов В. А., Черкесов Л. В., Шульга Т. Я. Исследование влияния переменного по пространству и времени ветра на течения, сгонно-нагонные процессы и распространение примеси в Азовском море // Метеорология и гидрология. – 2012. – № 8. – С. 69–79.
- 6. *Гидрометеорология* и гидрохимия морей СССР. Т. 5. Азовское мор: Справ. изд. Проект моря СССР. СПб.: Гидрометеоиздат, 1991. 234 с.
- Blumberg A. F., Mellor G. L. A description of three dimensional coastal ocean circulation model in threedimensional coast ocean models // Coastal and Estuarine Sci. – 1987. – 4. – P. 1–16.
- 8. Черкесов Л. В., Иванов В. А., Хартиев С. М. Введение в гидродинамику и теорию волн. СПб: Гидрометеоиздат, 1992. – 264 с.
- Smagorinsky J. General circulation experiments with primitive equations. I. The basic experiment // Mon. Weather Rev. – 1963. – 91. – P. 99–164.

ISSN 1025-6415 Доповіді Національної академії наук України, 2014, № 1

- Mellor G. L., Yamada T. Development of a turbulence closure model for geophysical fluid problems // Rev. Geophys. Space Phys. – 1982. – 20, No 4. – P. 851–875.
- 11. *Rodi W.* Turbulence models and their application in hydraulics. Balkema (The Netherlands): IAHR Monograph Series, 1993. 116 p.
- Wannawong W., Humphries U. W., Wongwises P., Vongvisessomjai S. Mathematical modeling of storm surge in three dimensional primitive equations // Intern. J. Computat. and Mathemat. Sci. - 2011. -No 5. - P. 44-53.
- 13. Фомин В. В. Численная модель циркуляции вод Азовского моря: Науч. тр. УкрНИГМИ. Севастополь: Укр. н.-исслед. гидрометереолог. ин-т, 2002. – Вып. 249. – С. 246–255.
- 14. Courant R., Friedrichs K. O., Lewy H. On the partial difference equations of mathematical physics // IBM J. 1967. **3**. P. 215–234.
- 15. Научно-прикладной справочник по климату СССР. Сер. 3. Многолетние данные. Ленинград: Гидрометеоиздат, 1990. Кн. 1, вып. 10. 604 с.
- 16. Геоэкология шельфа и морских берегов морей России // Под ред. Н. А. Айбулатова. Москва: Ноосфера, 2001. 428 с.

Морской гидрофизический институт НАН Украины, Севастополь Поступило в редакцию 29.07.2013

Академік НАН України В. О. Іванов, член-кореспондент НАН України Л. В. Черкесов, Т. Я. Шульга

Вивчення впливу параметрів атмосферних збурень на хвилі, течії та процес трансформації забруднювання різних початкових розмірів в Азовському морі

Представлено результати дослідження методом математичного моделювання впливу на течії та хвилі в Азовському морі однорідних за простором і часом вітрів зональних напрямів (північно-західного, західного і південно-західного). Виконаний аналіз фізичних закономірностей поширення пасивної домішки в Азовському морі різної початкової площі з урахуванням стаціонарних течій.

Academician of the NAS of Ukraine V. A. Ivanov, Corresponding Member of the NAS of Ukraine L. V. Cherkesov, T. Ya. Shul'ga

Study of the influence of parameters of atmospheric perturbations on waves, flows, and the process of transformation of a contamination of various initial sizes in the Sea of Azov

The results of simulation of the influence of winds of zonal directions (north-western, western, and south-western), which are homogeneous in space and time, on flows and waves in the Sea of Azov are presented. The analysis of the physical regularities of the propagation of a passive admixture of various initial areas in the Sea of Azov is executed with regard for the stationary flows.