

 $7 \bullet 2014$

НАУКИ ПРО ЗЕМЛЮ

УДК 551.466.61

С.Ф. Доценко, Н.А. Миклашевская

Возмущения уровня Каркинитского залива Черного моря, вызванные прохождением атмосферного фронта

(Представлено академиком НАН Украины В. Н. Еремеевым)

В рамках двумерной модели поверхностных длинных волн выполнен численный анализ возмущений уровня Каркинитского залива Черного моря, вызванных равномерным переносом в зональном направлении атмосферного фронта конечной ширины. Учитывается совместное воздействие на поверхность моря барического поля и ветровых касательных напряжений. Рассмотрено влияние на реакцию уровня залива скорости переноса и ширины фронтальной зоны.

Низкочастотные колебания уровня Мирового океана связаны с динамическими процессами в атмосфере [1]. Размах синоптических колебаний уровня Черного моря достигает 3 м [2]. В Азовском море высоты сгонно-нагонных колебаний могут превышать катастрофические значения, составляющие 3 м и более [3, 4].

Колебания уровня Черного моря связаны с изменениями барического и ветрового полей. Это касается и мезомасштабных колебаний, к которым можно отнести сейши, приливы и инерционные колебания [2]. Высоты сейш здесь достигают первых десятков сантиметров, приливов — 10 см, инерционных колебаний — нескольких сантиметров.

Максимальные сгонно-нагонные подъемы и понижения уровня у побережья Черного моря, в его бухтах и заливах вызываются проходящими над ними циклонами и атмосферными фронтами. Для них характерны параметры: радиус 200–400 км, скорость переноса — 5–15 м · c⁻¹, перепад давления между центром и периферией — 20–40 гПа [5]. Баротропные колебания уровня Черного моря, вызванные прохождением циклонов и фронтов, численно моделировались в работах [6–8 и др.] для различных параметров атмосферных возмущений.

Ниже представлена двумерная длинноволновая модель и результаты ее применения для численного анализа баротропного отклика уровня Каркинитского залива (северо-западный Крым) на прохождение атмосферного фронта. Плоская задача ранее рассмотрена в статье [8].

Математическая постановка задачи. В плоскости Oxy(x, y -зональная и меридиональная координаты) рассматривается бассейн переменной глубины H(x, y) > 0 (рис. 1).

[©] С.Ф. Доценко, Н.А. Миклашевская, 2014

Рис. 1. Батиметрия Каркинитского залива Черного моря (в м)

Над бассейном в положительном направлении ос
иOx(с запада на восток) движется с постоянной скоростью
 U>0атмосферный фронт. Распределение возмущений атмосферного давления в нем задается в виде

$$p_a = a_0 \rho g F(\xi), \qquad \xi = x - Ut, \tag{1}$$

где a_0 — амплитуда возмущений атмосферного давления (в метрах водяного столба); ρ — плотность жидкости; g — ускорение свободного падения. Безразмерная функция $F(\xi)$ такова, что $F(\xi) \to 0$ при $\xi \to +\infty$, $F(\xi) \to 1$ при $\xi \to -\infty$. В начальный момент времени t = 0 жидкость в заливе неподвижна, ее свободная поверхность горизонтальная, а зона атмосферных возмущений (ширина зоны переменного давления вдоль оси Ox равна W) располагается вне расчетной области.

Для описания реакции жидкости в заливе на прохождение атмосферного фронта применена линейная теория баротропных длинных волн с учетом вращения Земли, квадратичного придонного трения и касательных напряжений ветра. В этом случае движение жидкости описывается системой трех уравнений

$$\frac{\partial u}{\partial t} - fv = -g \frac{\partial(\zeta + \widetilde{\zeta})}{\partial x} - k \frac{u\sqrt{u^2 + v^2}}{H} + \frac{1}{\rho H} \tau_x^w, \tag{2}$$

$$\frac{\partial v}{\partial t} + fu = -g \frac{\partial(\zeta + \widetilde{\zeta})}{\partial y} - k \frac{v\sqrt{u^2 + v^2}}{H} + \frac{1}{\rho H} \tau_y^w,\tag{3}$$

$$\frac{\partial\zeta}{\partial t} + \frac{\partial(uH)}{\partial x} + \frac{\partial(vH)}{\partial y} = 0 \tag{4}$$

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2014, № 7

с начальными условиями

$$u = v = \zeta = 0$$
 $(t = 0),$ (5)

где u, v — проекции на оси x и y осредненной по глубине горизонтальной скорости течения; ζ — смещение свободной поверхности от горизонтального положения; $\tilde{\zeta} = a_0 F(\xi)$ — аномалия атмосферного давления (в метрах водяного столба); τ_x^w, τ_y^w — проекции касательных напряжений ветра на оси x и $y; k = 2,6 \cdot 10^{-3}$ — коэффициент придонного трения; f постоянный параметр Кориолиса.

На боковой границе бассейна (вертикальная стенка) задается условие непротекания жидкости

$$(u,v)_n = 0. (6)$$

На жидкой границе при x = 0 принято условие свободного выхода вол
н из расчетной области

$$\frac{\partial u}{\partial t} - c\frac{\partial u}{\partial x} + \frac{g}{c}\frac{\partial \widetilde{\zeta}}{\partial t} = 0,$$
(7)

где $c = \sqrt{gH(0,y)}$ — скорость распространения длинных волн в точках жидкой границы области.

Задача (2)–(7) при $t \ge 0$ решалась численно в частично занятой жидкостью области. Применена явная для уравнений (2), (3) и неявная для уравнения (4) конечно-разностная одношаговая по времени схема в плоскости *Оху* на разнесенных для u, v и ζ прямоугольных сетках с шагами по пространству $\Delta x = 197$ м и $\Delta y = 281$ м [9].

Результаты численного анализа. Анализ отклика жидкости в бассейне на прохождение атмосферного фронта проводился для различных скоростей переноса U и ширины Wатмосферной аномалии. Распределение возмущений атмосферного давления $F(\xi)$ в формуле (1) задавалось в виде гладкой ступени:

$$F = \sin^2 \frac{\pi\xi}{2W} \quad (-W < \xi < 0), \qquad F = 1 \quad (\xi \leqslant -W), \qquad F = 0 \quad (\xi \ge 0).$$
(8)

Цель вычислительных экспериментов — исследование эффективности генерации колебаний жидкости в заливе при совместном действии барического поля и касательных напряжений ветра. Для этого необходима связь между возмущениями атмосферного давления и вызванного ими поля касательных напряжений ветра. В случае неподвижного распределения аномалий барического поля касательные напряжения ветра обычно рассчитываются по формулам Акерблома [10]:

$$\begin{cases} \tau_x^w \\ \tau_y^w \end{cases} = \mp \sqrt{\frac{\nu_{\rm a}}{2f}} \left(\frac{\partial p_{\rm a}}{\partial x} \pm \frac{\partial p_{\rm a}}{\partial y} \right), \tag{9}$$

где $\nu_{\rm a}$ — коэффициент турбулентной вязкости воздуха.

В работе [8] выведены отличные от (9) соотношения между касательными напряжениями ветра и аномалиями атмосферного давления. Они учитывают равномерный зональный перенос со скоростью U возмущений барического поля. Их вывод опирается на асимптотические (по вертикальной координате) решения упрощенных уравнений планетарного

ISSN 1025-6415 Доповіді Національної академії наук України, 2014, № 7

пограничного слоя атмосферы. Считая, что барический фронт стационарен в связанной с движущимся фронтом (1), (8) системе координат, для касательных напряжений ветра справедливы формулы

$$\tau_x^w = \frac{1}{4}\pi a_0 \rho g(G_1 + G_2), \qquad \tau_y^w = -\frac{1}{4}\pi a_0 \rho g(G_3 + G_4), \tag{10}$$

где

$$\begin{cases} G_1\\ G_3 \end{cases} = \int_0^{m_0} \frac{\cos(mW/2)}{\pi^2 - m^2W^2} \Big[(Q^+ + Q^-) \cos m \Big(\xi + \frac{W}{2} \Big) \mp (Q^+ - Q^-) \sin m \Big(\xi + \frac{W}{2} \Big) \Big] dm, \\ \begin{cases} G_2\\ G_4 \end{cases} = \int_{m_0}^{+\infty} \frac{\cos(mW/2)}{\pi^2 - m^2W^2} (Q^+ \pm Q^-) \Big[\cos m \Big(\xi + \frac{W}{2} \Big) \mp \sin m \Big(\xi + \frac{W}{2} \Big) \Big] dm, \\ Q^{\pm} = \sqrt{\frac{2\nu_a}{|mU \pm f|}}, \qquad m_0 = \frac{f}{U}. \end{cases}$$

Коэффициент турбулентной вязкости атмосферы ν_a принимался равным 5 м² · c⁻¹.

Каркинитский залив как полузамкнутый бассейн можно условно разделить на две неравные части (см. рис. 1). Мелководная часть, где глубина составляет менее 6 м, ограничена с севера, востока и юга береговой линией, с запада — Бакальской банкой, с северо-запада — о. Джарылгач. Глубоководная часть залива, ограниченная с запада жидкой границей, имеет в центральной части глубины 28–30 м.

Численный анализ возмущений уровня моря для барического фронта и в случае дополнительного учета ветровых напряжений показал, что последний фактор (ветровые напряжения) существенно изменяет характер возмущений уровня моря, особенно в мелководной части залива. Смещения уровня моря под движущимся атмосферным фронтом при действии ветровых напряжений на порядок больше смещений уровня моря, найденных без учета ветровых напряжений.

На рис. 2 показаны возмущения уровня моря при прохождении над заливом с различной скоростью ($U = 3, 6, 9 \text{ M} \cdot \text{c}^{-1}$) атмосферного фронта фиксированной ширины. Поля соответствуют моментам времени, когда передняя граница фронта достигает последней четверти залива.

Максимальные понижения уровня в глубоководной части залива формируются у северо-западного берега, примыкающего к жидкой границе. Они составляют 3,2, 2,8 и 2,2 м при скоростях переноса фронта U = 3, 6 и 9 м \cdot c⁻¹ соответственно, что в 20–30 раз больше максимальных смещений для этой части бассейна в случае, когда ветровые напряжения не учитываются. В мелководной восточной части залива максимальное возвышение уровня наблюдается в районе Перекопского залива и составляет 2,4 и 0,8 м при U = 3 и $U = 9 \text{ м} \cdot \text{c}^{-1}$ соответственно, что на один-два порядка больше, чем без учета воздействия ветра.

В районе Джарылгачского залива происходит существенное понижение уровня, сопоставимое по абсолютным значениям со смещениями в открытой части акватории (2,8 м при $U = 3 \text{ м} \cdot \text{c}^{-1}$ и 2,2 м при $U = 9 \text{ м} \cdot \text{c}^{-1}$). Оно приводит к обнажению участка дна. Как видно из анализа результатов, увеличение скорости переноса фронта в 3 раза приводит к уменьшению экстремальных смещений уровня в 1,45 и 3 раза для зон понижения уровня в открытой части залива и для зон подъема уровня на мелководном участке соответственно.

Рис. 2. Поля возмущений уровня моря (в м) при различной скорости перемещения фронта: $a - U = 3 \text{ м} \cdot \text{c}^{-1}$; $b - U = 6 \text{ м} \cdot \text{c}^{-1}$; $b - U = 9 \text{ м} \cdot \text{c}^{-1}$.

Поля приведены для моментов времени, когда передняя граница атмосферного фронта шириной 100 км при всех U находится в точке $x = 0.75l_x$ (l_x — длина залива по оси Ox). Глубина барического фронта $a_0 = 0.3$ м водяного столба

Что касается влияния ширины фронта на динамические смещения уровня моря в заливе, то оно ослабевает при увеличении W (рис. 3). В случае узкого фронта учет ветрового воздействия приводит к понижению уровня в Джарылгачском заливе, сопоставимому по абсолютной величине со сгоном в глубоководной части залива (см. *a* на рис. 3). Аналогичное

ISSN 1025-6415 Доповіді Національної академії наук України, 2014, № 7

Рис. 3. Поля возмущений уровня моря (в м) для различной ширины атмосферного фронта в момент времени t=168 мин при скорости перемещения $U=6~{\rm m\cdot c^{-1}}$: $a-W=50~{\rm кm};~ b-W=150~{\rm km}.$ Передняя граница фронта находится в точке $x=0,75l_x.$ Глубина барического фронта $a_0=0,3~{\rm m}$ водяного столба

понижение уровня отмечено также в районе Каланчакского залива и Карабайской косы. В обоих случаях происходит осушение прибрежной зоны. С ростом ширины фронтов зоны обмеления дна в Джарылгачском заливе убывают по площади (см. *б*, *в* на рис. 3).

- 1. Лаппо С. С. Среднемасштабные динамические процессы океана, возбуждаемые атмосферой. Москва: Наука, 1979. 181 с.
- 2. Горячкин Ю. Н., Иванов В. А. Уровень Черного моря: прошлое, настоящее и будущее. Севастополь: Мор. гидрофиз. ин-т НАН Украины, 2006. 210 с.
- 3. Шнюков Е. Ф., Митин Л. И., Цемко В. П. Катастрофы в Черном море. Киев: Манускрипт, 1994. 296 с.
- 4. Доценко С. Ф., Иванов В. А. Природные катастрофы Азово-Черноморского региона. Севастополь: НПЦ "ЭКОСИ-Гидрофизика", 2010. 175 с.
- 5. Полонский А.Б., Бардин М.Ю., Воскресенская Е. Н. Статистические характеристики циклонов и антициклонов над Черным морем во второй половине XX века // Мор. гидрофиз. журн. 2007. № 6. С. 47–58.
- 6. *Еремеев В. Н., Коновалов А. В., Черкесов Л. В.* Моделирование длинных баротропных волн в Черном море, вызываемых движущимися барическими возмущениями // Океанология. 1996. **36**, № 2. С. 191–196.
- 7. Иванов В. А., Коновалов А. В., Манилюк Ю. В., Черкесов Л. В. Математическое моделирование сгонно-нагонных колебаний в Черном море // Метеорология и гидрология. 1999. № 11. С. 56–63.

- 8. Доценко С. Ф., Миклашевская Н. А. Генерация волн в ограниченном бассейне движущимся фронтом атмосферного давления и связанным с ним полем касательных напряжений ветра // Мор. гидрофиз. журн. 2011. № 4. С. 13–27.
- 9. Вольцингер Н. Е., Пясковский Р. В. Основные океанологические задачи теории мелкой воды. Ленинград: Гидрометеоиздат, 1968. 300 с.
- 10. Кочергин В. П. Теория и методы расчета океанических течений. Москва: Наука, 1978. 128 с.

Морской гидрофизический институт НАН Украины, Севастополь Поступило в редакцию 10.02.2014

С.П. Доценко, Н.А. Міклашевська

Збурення рівня Каркінітської затоки Чорного моря, що викликані проходженням атмосферного фронту

У рамках двовимірної моделі поверхневих довгих хвиль виконано математичний аналіз збурень рівня Каркінітської затоки Чорного моря, що викликані рівномірним перенесенням в зональному напрямі атмосферного фронту кінцевої ширини. Враховується спільний вплив на поверхню моря баричного поля й вітрових дотичних напружень. Розглянуто вплив на реакцію рівня затоки швидкості перенесення та ширини фронтальної зони.

S.F. Dotsenko, N.A. Miklashevskaya

Disturbances of the Karkinitsky Bay level of the Black Sea caused by the passage of the atmospheric front

In the frame of a two-dimensional model of long surface waves, the level disturbances of the Karkinitsky Bay in the Black Sea due to the uniform zonal transmission of the finite width atmospheric front is carried out. The joint action of the sea surface pressure field and wind shear stresses is taken into account. The influence of the front transfer velocity and its width on the response of the bay level is studied.