

MATEMATИKA

УДК 517.94

З. Н. Гладкая

О коэффициенте отражения оператора Шредингера с гладким потенциалом

(Представлено академиком НАН Украины Е. Я. Хрусловым)

Изучен характер убывания коэффициентов отражения оператора Шредингера с гладким потенциалом типа ступеньки в зависимости от числа производных потенциала и скорости его стремления к своим фоновым асимптотам.

Как известно, одним из важных этапов в решении задачи Коши для уравнения Кортевега— де Фриза (КдФ) $u_t + u_{xxx} - 6uu_x = 0$ с убывающими начальными данными u(x,0) = q(x) является вопрос о скорости убывания при $x \to \pm \infty^1$ функций вида $F_{\pm}(x,t) = \int_{\mathbb{R}} R_{\pm}(k) \mathrm{e}^{\pm 4\mathrm{i}k^3t} \mathrm{e}^{\pm \mathrm{i}kx} dk$, где $R_{\pm}(\sqrt{\lambda})$ — коэффициенты отражения соответствующего уравнения Шредингера

$$-\frac{d^2}{dx^2}f(x) + q(x)f(x) = \lambda f(x), \qquad x \in \mathbb{R}.$$
 (1)

Функции F_{\pm} являются основной частью ядер уравнений Марченко, поэтому скорость их убывания обусловливает скорость убывания решения u(x,t) уравнения КдФ. При наличии достаточного числа производных у коэффициентов отражения и достаточно быстрого убывания этих производных на бесконечности эту скорость легко определить путем нескольких интегрирований по частям:

$$F_{\pm}(x,t) = \frac{1}{\pm ik} \int_{\mathbb{D}} (R'_{\pm}(k) \pm 12ik^2 R(k)) e^{\pm 4ik^3 t} e^{\pm ikx} dk = \cdots$$

В частности, для потенциала класса Шварца наличие всех производных R_{\pm} , убывающих быстрее любой степени k, было показано в работе [1]. Вместе с тем более точные оценки того, как гладкость начальных данных и количество их суммируемых моментов сказываются

^{© 3.} H. Гладкая, 2014

 $^{^1}$ Здесь и ниже символ \pm в предложении означает два независимых утверждения, одно для + случая, одно для -.

на аналогичных свойствах коэффициентов отражения, а значит, и на скорости убывания решения КдФ, не проводились. Кроме того, в отличие от убывающих начальных данных, где метод обратной задачи рассеяния (МОЗР) является отнюдь не единственным в вопросе о разрешимости задачи Коши и классические методы исследования уравнений в частных производных тоже дают эффективные результаты, разрешимость уравнения КдФ с начальными данными типа ступеньки

$$q(x) \to c_+, \qquad x \to +\infty, \qquad q(x) \to c_-, \qquad x \to -\infty, \qquad c_+ \neq c_-,$$
 (2)

не исследовалась другими методами, кроме МОЗР. Разрешимость в классе шварцевских возмущений фонов была получена в [2]. Для решения задачи Коши в более широких классах начальных данных в настоящей работе предлагаются уточненные оценки на операторы преобразования и на коэффициенты отражения для гладких потенциалов типа ступеньки. Результаты являются новыми и для убывающего случая. Введем необходимые определения.

Определение 1. Пусть $m \geqslant 1$ и $n \geqslant 0$ — фиксированные целые числа и $f \colon \mathbb{R} \mapsto \mathbb{R}$ — n раз дифференцируемая функция. Будем говорить, что $f \in L^n_m(\pm)$, если $f^{(n)} \in L^{\mathrm{loc}}_1(\mathbb{R})$ и $\int\limits_{\mathbb{R}} |f^{(i)}(x)| \, |x|^m dx < \infty, \ i = 0, \dots, n.$

Определение 2. Пусть c_+, c_- заданные вещественные, а $m \geqslant 1$ и $n \geqslant 0$ — целые числа. Мы говорим, что функция q(x) принадлежит классу $\mathcal{L}^n_m(c_+, c_-)$, если $q_+(x) := q(x) - c_+ \in L^n_m(+)$ и $q_-(x) := q(x) - c_- \in L^n_m(-)$.

В данной работе мы предполагаем, что потенциал задачи (1), (2) является функцией класса $\mathcal{L}_m^n(c_+,c_-)$ при произвольных наперед заданных m и n. Функции q_\pm называются возмущениями потенциала относительно фонов, в данном случае возмущения имеют одинаковый характер стремления к своим асимптотам. Отметим, что прямая и обратная задачи рассеяния решены в классах $\mathcal{L}_2^0(0,c^2)$ [3] и $\mathcal{L}_1^0(0,-c^2)$ [4]. Гладкий случай $n\geqslant 1$ и случай большего числа моментов m>2 подробно не изучены, а между тем именно они служат основой для использования метода обратной задачи рассеяния при решении задачи Коши для уравнения Кд Φ с начальными данными типа ступеньки.

Определение 3. Функция $g(\xi)$ принадлежит пространству $L_2(+\infty)$ (соответственно, $L_2(-\infty)$), если существует такое $b \gg 1$ ($b \ll -1$), что $g(\cdot) \in L_2(b, +\infty)$ (соответственно, $g(\cdot) \in L_2(-\infty, b)$). Будем говорить, что $g \in L_2(\infty)$, если $g \in L_2(+\infty) \cap L_2(-\infty)$.

Обозначим $k_{\pm} := \sqrt{\lambda - c_{\pm}}$, где $\sqrt{\cdot}$ — стандартная ветвь квадратного корня, которая отображает комплексную плоскость с разрезом вдоль луча $[c_{\pm}, +\infty)$ на верхнюю полуплоскость. Мы рассматриваем величины k_{\pm} как спектральные параметры уравнения (1) наряду с параметром λ .

Решения Йоста $\phi_{\pm}(\lambda,x)$ уравнения (1) с потенциалом (2) — это решения с асимптотическим поведением $\phi_{\pm}(\lambda,x)\mathrm{e}^{\mp ik_{\pm}x} \to 1$ при $x \to \pm \infty$. Они хорошо изучены для убывающего негладкого потенциала с первым суммируемым моментом [5], и эти результаты без изменений переносятся на потенциалы типа ступеньки классов $\mathcal{L}^0_i(c_+,c_-),\ i=1,2$. Нижеследующие леммы 1 и 2 устанавливают асимптотическое поведение и свойства гладкости решений Йоста по локальным параметрам k_{\pm} , могут быть использованы как при решении прямой и обратной задач в классах $\mathcal{L}^n_m(c_+,c_-)$ при $m\geqslant 2$ и $n\geqslant 1$, так и для более сложных классов потенциалов. Они носят "односторонний" характер в том смысле, что мы не предписываем потенциалу никакого определенного асимтотического поведения на противоположной полуоси.

 $^{^{2}}$ Мы полагаем $f^{(n)} = f$ при n = 0.

Лемма 1. Пусть $q_{\pm} \in L^n_m(\pm)$, $n \geqslant 0$, $m \geqslant 2$. Тогда при всех $\lambda \in \operatorname{clos} \mathbb{C} \setminus [c_{\pm}, +\infty)$ решение Йоста $\phi_{\pm}(\lambda, x)$ уравнения (1) представимо в виде

$$\phi_{\pm}(\lambda, x) = e^{\pm ik \pm x} \left(1 \pm \int_{0}^{\pm \infty} B_{\pm}(x, y) e^{\pm 2ik \pm y} dy \right), \tag{3}$$

где функция $B_{\pm} \colon \mathbb{R} \times \mathbb{R}_{\pm} \mapsto \mathbb{R}$ имеет частные производные до n+1 порядка, удовлетворяющие следующим оценкам:

$$\left| \frac{\partial^{s+l}}{\partial x^l \partial y^s} B_{\pm}(x,y) \pm q_{\pm}^{(s+l-1)}(x+y) \right| \leqslant C_{\pm \infty}(x) \nu_{\pm,l+s}(x) \nu_{\pm,l+s}(x+y), \qquad l+s \leqslant n+1,$$

 $e \partial e$

$$\nu_{\pm,l}(x) = \sum_{i=0}^{l-2} (\sigma_{\pm}^{(i)}(x) + |q_{\pm}^{(i)}(x)|), \qquad l \geqslant 2, \qquad \nu_{\pm,1}(x) := \sigma_{\pm}^{(0)}(x),$$

$$\sigma_{\pm}^{(i)}(x) := \pm \int_{x}^{\pm \infty} |q_{\pm}^{(i)}(\xi)| d\xi, \qquad i = 0, 1, \dots, n, \qquad q_{\pm}(x) = q(x) - c_{\pm},$$

 $u\ C_{\pm\infty}(x)=C_{\pm\infty}(x,n)\in\mathcal{C}(\mathbb{R})$ — некоторая положительная функция, убывающая в направлении $x\to\pm\infty$.

С помощью этой леммы доказывается следующая лемма.

Лемма 2. Пусть потенциал q уравнения (1) удовлетворяет условиям леммы 1. Тогда при больших $k_{\pm} \in \mathbb{R}$ решения Йоста (3) допускают асимптотическое разложение

$$\phi_{\pm}(\lambda, x) = e^{\pm ik_{\pm}x} \left\{ u_0^{\pm}(x) + \frac{u_1^{\pm}(x)}{2ik_{\pm}} + \dots + \frac{u_n^{\pm}(x)}{(2ik_{\pm})^n} + \frac{U_{n+1}^{\pm}(k_{\pm}, x)}{(2ik_{\pm})^{n+1}} \right\},\tag{4}$$

где

$$u_0(x) = 1,$$
 $u_l(x) = \int_{x}^{\pm \infty} \left(\frac{d^2}{d\xi^2} u_{l-1}^{\pm}(\xi) - q_{\pm}(\xi) u_{l-1}^{\pm}(\xi) \right) d\xi,$ $l = 1, \dots, n+1,$ (5)

а функции $U_{n+1}^{\pm}(k_{\pm},x)$ и $\frac{\partial}{\partial x}U_{n+1}^{\pm}(k_{\pm},x)$ при каждом x являются m-1 дифференцируемыми по параметру k_{\pm} и имеют следующее поведение при $k_{\pm} \to \infty$ и $0 \leqslant s \leqslant m-1$:

$$\frac{\partial^s}{\partial k_{\pm}{}^s}U_{n+1}^{\pm}(k_{\pm},x)\in L_2(\infty), \qquad \frac{\partial^s}{\partial k_{\pm}{}^s}\bigg(\frac{1}{k_{\pm}}\frac{\partial}{\partial x}U_{n+1}^{\pm}(k_{\pm},x)\bigg)\in L_2(\infty).$$

Примечание 1. Формула (4) допускает естественное переразложение по степеням исходного спектрального параметра λ . А именно, обозначая $\lambda=k^2$, имеем

$$\phi_{\pm}(\lambda, x) = e^{\pm ik_{\pm}x} \left\{ 1 + \frac{v_1^{\pm}(x)}{2ik} + \dots + \frac{v_n^{\pm}(x)}{(2ik)^n} + \frac{V_{n+1}^{\pm}(k, x)}{(2ik)^{n+1}} \right\},\tag{6}$$

ISSN 1025-6415 — Доповіді Національної академії наук України, 2014, № 9

где функции $v_l^\pm(x)$ не удовлетворяют соотношению (5), но имеют те же существенные свойства, что и функции $u_l^\pm(x)$. А именно, функции $v_l^\pm(x)$ являются полиномами с вещественными коэффициентами от функций q_\pm,\ldots,q_\pm^{l-2} и их интегралов. Тем самым функция $v_n^\pm(x)$ имеет по меньшей мере еще две производных. При этом функция $V_{n+1}^\pm(k,x)$ удовлетворяет тем же свойствам, что и функция $U_{n+1}^\pm(k_\pm,x)$:

$$\frac{\partial^{s}}{\partial k^{s}} V_{n+1}^{\pm}(k, x), \qquad \frac{\partial^{s}}{\partial k^{s}} \left(\frac{1}{k} \frac{\partial}{\partial x} V_{n+1}^{\pm}(k, x) \right) \in L_{2}(\infty), \qquad 0 \leqslant s \leqslant m - 1.$$
 (7)

Лемма (2) а также формулы (6) и (7) позволяют обосновать асимптотическое разложение для функций Вейля

$$\mathfrak{m}_{\pm}(\lambda, x) = \frac{\frac{\partial}{\partial x} \phi_{\pm}(\lambda, x)}{\phi_{\pm}(\lambda, x)} \tag{8}$$

уравнения (1) с потенциалом $q \in \mathcal{L}^n_m(c_+, c_-)$. Заметим, что из формулы (3.1.20) работы [5] следует, что для любого b>0 существует такое $\lambda_0>0$, что при всех $\lambda>\lambda_0$ функция $\phi(\lambda,x)$ не имеет нулей при |x|< b. Тем самым функция $\mathfrak{m}_\pm(\lambda,x)$ корректно определена при больших положительных λ и при x на любом компакте $\mathcal{K}\subset\mathbb{R}$.

Лемма 3. Пусть потенциал q уравнения (1) принадлежит классу $\mathcal{L}_m^n(c_+, c_-)$. Тогда при больших $\lambda = k^2 \in \mathbb{R}_+$ функции (8) допускают представление

$$\mathfrak{m}_{\pm}(\lambda, x) = \pm ik + \sum_{j=1}^{n} \frac{\kappa_j(x)}{(\pm 2ik)^j} + \frac{\kappa_n^{\pm}(k, x)}{(2ik)^n},\tag{9}$$

 $e \partial e$

$$\kappa_1(x) = q(x), \qquad \kappa_{l+1}(x) = -\frac{d}{dx}\kappa_l(x) - \sum_{j=1}^{l-1} \kappa_{l-j}(x)\kappa_j(x), \tag{10}$$

а функции $\kappa_n^{\pm}(k,x)$ являются m-1 раз дифференцируемыми по параметру k, и при этом

$$\frac{\partial^s}{\partial k^s} \kappa_n^{\pm}(\cdot, x) \in L_2(\infty), \qquad s \leqslant m - 1, \qquad \forall \, x \in \mathcal{K}. \tag{11}$$

Отметим, что рекуррентная формула (10) хорошо известна в случае гладких ограниченных потенциалов оператора Шредингера с предельной точкой Вейля на $+\infty$ или $-\infty$. Они возникают непосредственно из уравнения Рикатти для функций Вейля. В самом деле, представив \mathfrak{m}_{\pm} в виде $\mathfrak{m}_{\pm}(\lambda,x)=\pm \mathrm{i} k+\kappa_{\pm}(\lambda,x)$, мы видим из формул (1) и (8), что κ_{\pm} удовлетворяет уравнению

$$\frac{\partial}{\partial x}\kappa_{\pm}(\lambda, x) \pm 2ik\kappa_{\pm}(\lambda, x) + \kappa_{\pm}^{2}(\lambda, x) - q(x) = 0, \qquad \lambda = k^{2}.$$
(12)

Из формул (6), в свою очередь, следует, что $\kappa_{\pm}(\lambda,x) = \sum_{j=1}^{n'} \kappa_j^{\pm}(x) (\pm 2\mathrm{i} k)^{-j} + \text{остаточный}$ член. Подставляя это разложение в (12), мы получаем формулы (10), одинаковые для обеих функций Вейля. При этом априори неясно, какова величина числа n' и каков характер

поведения остаточного члена. Формулой (9) мы уточняем число членов разложения для потенциала данного класса, а также показываем, что при ее дифференцировании m-1 раз по k остаточный член будет оставаться величиной $o(k^{-n})$ (см. (11)).

На основании леммы 3 мы приходим к следующему заключению.

Лемма 4. Пусть $q \in \mathcal{L}_m^n(c_+, c_-)$ при некоторых $n \geqslant 1$ и $m \geqslant 2$. Тогда при $x \in \mathcal{K}$, достаточно больших положительных λ и $k^2 = \lambda$ функция

$$H_n^{\pm}(k,x) := k^n(\overline{\mathfrak{m}_{\pm}(\lambda,x)} - \mathfrak{m}_{\mp}(\lambda,x))$$

является m-1 дифференцируемой по параметру k, причем

$$\frac{\partial^s}{\partial k^s} H_n^{\pm}(k, x) \in L_2(\infty), \qquad 0 \leqslant s \leqslant m - 1.$$

Функция $G^{\pm}(k,x) := \mathfrak{m}_{\pm}(\lambda,x) - \mathfrak{m}_{\mp}(\lambda,x)$ также m-1 раз дифференцируема по параметру k при больших k, причем равномерно на компакте \mathcal{K}

$$G^{\pm}(k,x) = \pm 2\mathrm{i}k\left(1 + O\left(\frac{1}{k}\right)\right), \qquad \frac{\partial^s}{\partial k^s}G^{\pm}(k,x) = O(1), \qquad 0 \leqslant s \leqslant m-1.$$

Обозначим через $W(\phi,\psi)(\lambda) = \frac{\partial}{\partial x}\psi(\lambda,x)\phi(\lambda,x) - \frac{\partial}{\partial x}\phi(\lambda,x)\psi(\lambda,x)$ вронскиан двух решений уравнения (1). Как известно [6], правый (R_+) и левый (R_-) коэффициенты отражения задачи рассеяния (1), (2) определяются по формулам

$$R_{\pm}(\lambda) = -\frac{W(\phi_{\mp}, \overline{\phi_{\pm}})(\lambda)}{W(\phi_{\mp}, \overline{\phi_{\pm}})(\lambda)}.$$

Тем самым при больших положительных λ , где $\phi_{-}(\lambda,0)\phi_{+}(\lambda,0)\neq 0$ [5], эти коэффициенты определяются по формулам

$$R_{\pm}(\lambda) = -\frac{\overline{\phi_{\pm}(\lambda,0)}}{\phi_{\pm}(\lambda,0)} \frac{\overline{\mathfrak{m}_{\pm}(\lambda,0)} - \mathfrak{m}_{\mp}(\lambda,0)}{\mathfrak{m}_{\pm}(\lambda,0) - \mathfrak{m}_{\mp}(\lambda,0)} = -\frac{\overline{\phi_{\pm}(\lambda,0)}}{\phi_{\pm}(\lambda,0)} \frac{H_n^{\pm}(k,0)}{G^{\pm}(k,0)} \frac{1}{k^n},$$

где функции $H_n^{\pm}(k,x)$ и $G^{\pm}(k,x)$ определены в лемме 4. На основании этой леммы, а также формул (6) и (7), взятых при x=0, мы приходим к следующему результату.

Теорема 1. Пусть $R_{\pm}(\lambda)$ — коэффициенты отражения задачи рассеяния для оператора Шредингера (1) с потенциалом (2), удовлетворяющим при некоторых $n \geqslant 1$ и $m \geqslant 2$ условию $q \in \mathcal{L}_m^n(c_+, c_-)$. Тогда при достаточно больших положительных λ для этих коэффициентов и их производных по параметру $\sqrt{\lambda}$ имеет место асимптотическое представление

$$\frac{\partial^s R_{\pm}(\lambda)}{\partial \sqrt{\lambda}^s} = \frac{Q_{\pm,s}(\lambda^{1/2})}{\lambda^{\frac{n+1}{2}}}, \qquad s = 0, \dots, m-1,$$

 $r\partial e \ Q_{\pm,s}(\cdot) \in L_2(\infty).$

Автор выражает благодарность своему научному руководителю И. E. Eгорову за поддержку u интерес κ работе.

- 1. Marchenko V. A. The inverse scattering problem and its applications to NLPDE // Scattering and Inverse Scattering in Pure and Applied Science / Ed. by R. Pike, P. Sabatier. San Diego: Academic Press, 2002. P. 1695–1706.
- 2. Egorova I., Grunert K., Teschl G. On the Cauchy problem for the Korteweg–de Vries equation with steplike finite-gap initial data I. Schwartz-type perturbations // Nonlinearity. -2009. -22. -P. 1431–1457.
- 3. Cohen A., Kappeler T. Scattering and inverse scattering for steplike potentials in the Schrödinger equation // Indiana Univ. Math. J. 1985. 34, No 1. P. 127–180.
- 4. *Базарган Джс.* Прямая и обратная задача рассеяния на всей оси для одномерного оператора Шредингера с потенциалом типа ступеньки // Доп. НАН України. 2008. No 4. C. 7–11.
- 5. Marchenko V. A. Sturm-Liouville operators and applications. Basel: Birkhäuser, 1986. 395 p.
- 6. *Буслаев В. С., Фомин В. Н.* К обратной задаче рассеяния для одномерного уравнения Шредингера на всей оси // Вестн. Ленингр. ун-та. 1962. 17, No 1. P. 56–64.

Физико-технический институт низких температур им. Б. И. Веркина НАН Украины, Харьков Поступило в редакцию 24.03.2014

З. М. Гладка

Про коефіцієнт відбиття оператора Шредінгера з гладким потенціалом

Вивчено характер зменшення коефіцієнтів відбиття оператора Шредінгера з гладким потенціалом типу сходинки залежно від числа похідних потенціалу та швидкості його прямування до своїх фонових асимптот.

Z. M. Gladka

On a reflection coefficient for the Schrödinger operator with a smooth potential

The decaying properties of the reflection coefficients are studied for the Schrödinger operator with a smooth steplike potential depending on the number of derivatives of the potential and its speed of tending to its background asymptotics.