И.В. Петков

Задача Дирихле для уравнений Бельтрами в односвязных областях

(Представлено членом-корреспондентом НАН Украины В. Я. Гутлянским)

При определенных условиях на коэффициент дилатации K_{μ} доказано существование регулярных решений задачи Дирихле для вырожденных уравнений Бельтрами в произвольных односвязных областях.

Ключевые слова: уравнение Бельтрами, задача Дирихле, простые концы, регулярные решения, односвязные области.

О постановке задачи. Пусть D — область в комплексной плоскости \mathbb{C} , т. е. связное и открытое подмножество \mathbb{C} , и пусть $\mu \colon D \to \mathbb{C}$ — измеримая функция с $|\mu(z)| < 1$ п. в. (почти всюду) в D. Уравнением Бельтрами называется уравнение вида

$$f_{\overline{z}} = \mu(z)f_z,\tag{1}$$

где $f_{\overline{z}}=\overline{\partial}f=(f_x+if_y)/2,\,f_z=\partial f=(f_x-if_y)/2,\,z=x+iy,\,f_x$ и f_y — частные производные отображения f по x и y соответственно. Функция μ называется комплексным коэффициентом, а величина

$$K_{\mu}(z) := \frac{1 + |\mu(z)|}{1 - |\mu(z)|}$$
 (2)

дилатационным отношением уравнения (1). Уравнение Бельтрами (1) называется вырожденным, если K_{μ} является существенно неограниченной, т.е. $K_{\mu} \notin L^{\infty}(D)$.

Классическая задача Дирихле для уравнения Бельтрами (1) в области D состоит в нахождении непрерывной функции $f \colon D \to \mathbb{C}$, имеющей частные производные первого порядка п. в. и удовлетворяющей уравнению (1) п. в., а также граничному условию

$$\lim_{z \to \zeta} \operatorname{Re} f(z) = \varphi(\zeta) \qquad \forall \zeta \in \partial D \tag{3}$$

для предписанной непрерывной функции $\varphi \colon \partial D \to \mathbb{R}$.

В работах [1,2] была развита теория граничного поведения гомеоморфных решений для широкого круга уравнений Бельтрами класса Соболева $W_{\rm loc}^{1,1}$ и на этой основе при определенных условиях на дилатационное отношение доказано существование регулярных решений задачи Дирихле для вырожденных уравнений Бельтрами в произвольных жордановых областях и псевдорегулярных, а также многозначных решений в произвольных конечносвязных областях, ограниченных попарно непересекающимися жордановыми кривыми.

[©] И.В. Петков, 2015

Для изучения аналогичных вопросов в областях с более сложными границами уже требуется привлечение теории простых концов по Каратеодори (см., например, [3, гл. 9] и [4]).

Основное отличие в этом случае заключается в том, что φ теперь должна быть функцией граничного элемента (простого конца P), а не граничной точки. Кроме того, (3) должно быть заменено на условие

$$\lim_{n \to \infty} \operatorname{Re} f(z_n) = \varphi(P) \tag{4}$$

для любых последовательностей точек $z_n \in D$, сходящихся к P.

Далее $\overline{D'}_P$ обозначает пополнение области D простыми концами, E_D — пространство простых концов с топологией простых концов, описанной в секции 9.4 монографии [3]. Кроме того, непрерывность отображения $f \colon \overline{D}_P \to \overline{D'}_P$ и граничной функции $\varphi \colon E_D \to \mathbb{R}$ следует понимать относительно этой топологии.

2. Основной результат. При ограниченной $\varphi \colon E_D \to \mathbb{R}$, допускающей не более счетного числа разрывов, и $\varphi(P) \not\equiv \text{сопѕt}$ для остальных $P \in E_D$ под регулярным решением задачи Дирихле (4) для уравнения Бельтрами (1) будем понимать непрерывное, дискретное и открытое отображение $f \colon D \to \mathbb{C}$ класса Соболева $W^{1,1}_{\text{loc}}$ с якобианом $J_f(z) = |f_z|^2 - |f_{\overline{z}}|^2 \not\equiv 0$ п. в. и ограниченной вещественной частью, удовлетворяющее условию (4) в точках непрерывности φ и п. в. (1). Если же $\varphi(P) \equiv c \in \mathbb{R}$ вне счетного числа $P \in E_D$, то под регулярным решением этой задачи будем понимать любую постоянную функцию f(z) = c + ic', $c' \in \mathbb{R}$.

В дальнейшем $\mathbb D$ обозначает единичный круг в $\mathbb C$. Кроме того, всюду далее предполагаем, что K_μ продолжена нулем вне области D.

Теорема 1. Пусть $\mu \colon D \to \mathbb{D}$ — измеримая в ограниченной односвязной области $D \subset \mathbb{C}$ функция с $K_{\mu} \in L^1_{\mathrm{loc}}(D)$ такая, что

$$\int_{0}^{\delta(z_0)} \frac{dr}{\|K_{\mu}\|(z_0, r)} = \infty \qquad \forall z_0 \in \overline{D}, \tag{5}$$

где $0 < \delta(z_0) < d(z_0) = \sup_{z \in D} |z - z_0|$ и, для $S(z_0, r) := \{z \in \mathbb{C} \colon |z - z_0| = r\}$,

$$||K_{\mu}||(z_0,r) := \int_{S(z_0,r)} K_{\mu}(z) ds.$$

Тогда уравнение Бельтрами (1) имеет регулярное решение f задачи Дирихле (4) для любой ограниченной функции $\varphi \colon E_D \to \mathbb{R}$, допускающей не более счетного числа точек разрыва.

Для доказательства прежде всего заметим, что E_D не может состоять из одного простого конца в силу ограниченности области D. Действительно, все лучи, выпущенные из какой-либо точки $z_0 \in D$ в бесконечность обязательно пересекают ∂D ввиду ограниченности области D. Таким образом, ∂D состоит более чем из одной точки и по теореме Римана (см., например, [5, II.2.1]), D можно отобразить на единичный круг $\mathbb D$ с помощью конформного отображения R. По теореме Каратеодори элементы E_D находятся во взаимно однозначном соответствии с точками единичной окружности $\partial \mathbb D$ при отображении R (см., например, теорему 9.6 в [3]).

Пусть F — гомеоморфное решение уравнения (1) класса $W_{\rm loc}^{1,1}$ с $J_F \neq 0$ п. в., которое существует в силу условия (5), например, по теореме 7.5 из [6].

Заметим, что область $D^* = F(D)$ односвязна в $\overline{\mathbb{C}}$ (см., например, лемму 5.3 в [7]). Допустим, что ∂D^* в $\overline{\mathbb{C}}$ состоит из единственной точки $\{\infty\}$. Тогда $\overline{\mathbb{C}} \setminus D^*$ также состоит из единственной точки ∞ , т. е. $D^* = \mathbb{C}$, ибо если бы в $\overline{\mathbb{C}} \setminus D^*$ нашлась точка $\zeta_0 \in \mathbb{C}$, то, соединив ее отрезком прямой с любой точкой $\zeta_* \in D^*$, мы обнаружили бы еще одну точку ∂D^* уже в \mathbb{C} . Теперь обозначим через \mathbb{D}^* внешность единичного круга \mathbb{D} в \mathbb{C} , и пусть $\kappa(\zeta) = 1/\zeta$, $\kappa(0) = \infty$, $\kappa(\infty) = 0$. Рассмотрим отображение $F_* = \kappa \circ F \colon \widetilde{D} \to \mathbb{D}_0$, где $\widetilde{D} = F^{-1}(\mathbb{D}^*)$ и $\mathbb{D}_0 = \mathbb{D} \setminus \{0\}$ — проколотый единичный круг. Ясно, что F_* также является регулярным гомеоморфным решением уравнения Бельтрами (1) класса $W_{\mathrm{loc}}^{1,1}$ в ограниченной двухсвязной области \widetilde{D} , поскольку отображение κ конформно. По теореме 3 из [4] элементы E_D должны находиться во взаимно однозначном соответствии с 0. Однако выше было показано, что E_D не может состоять из одного простого конца. Это противоречие опровергает предположение, что ∂D^* состоит из одной точки в $\overline{\mathbb{C}}$.

Таким образом, по теореме Римана D^* можно отобразить на единичный круг $\mathbb D$ с помощью некоторого конформного отображения R_* . Заметим, что функция $g:=R_*\circ F$ вновь является регулярным гомеоморфным решением класса Соболева $W^{1,1}_{\mathrm{loc}}$ уравнения Бельтрами (1), которое отображает D на $\mathbb D$. По теореме 3 из [4] отображение g допускает продолжение до гомеоморфизма $g_*\colon \overline{D}_P \to \overline{\mathbb D}$.

Пусть $u \colon \mathbb{D} \to \mathbb{R}$ — (единственная!) ограниченная гармоническая функция, являющаяся решением задачи Дирихле

$$\lim_{z\to\zeta}u(z)=\Phi(\zeta):=\varphi(g_*^{-1}(\zeta))$$

во всех точках $\zeta \in \partial \mathbb{D}$ непрерывности функции Φ (см. секцию VI.3 в [5]), и пусть h = u + iv, где v — сопряженная с u гармоническая функция в \mathbb{D} . Тогда функция $f = h \circ g$ дает искомое регулярное решение задачи Дирихле (4) для уравнения Бельтрами (1).

3. Следствия и заключительные замечания.

Следствие 1. В частности, заключение теоремы 1 имеет место, если при $\varepsilon \to 0$

$$k_{z_0}(\varepsilon) = O\left(\log \frac{1}{\varepsilon}\right) \quad \forall z_0 \in \overline{D},$$

где $k_{z_0}(\varepsilon)$ — среднее значение функции K_μ на окружности $S(z_0,\varepsilon)$.

Используя лемму 2.2 в [8], непосредственно из теоремы 1 также получаем следующую лемму.

Лемма 1. Пусть $\mu \colon D \to \mathbb{D} - u$ змеримая в ограниченной односвязной области $D \subset \mathbb{C}$ функция с $K_{\mu} \in L^{1}(D)$. Предположим, что для каждого $z_{0} \in \overline{D}$ существует $\varepsilon_{0} < d(z_{0}) := \sup_{z \in D} |z - z_{0}|$ и однопараметрическое семейство измеримых функций $\psi_{z_{0},\varepsilon} \colon (0,\infty) \to (0,\infty)$, $\varepsilon \in (0,\varepsilon_{0})$, таких, что

$$0 < I_{z_0}(\varepsilon) := \int_{\varepsilon}^{\varepsilon_0} \psi_{z_0,\varepsilon}(t) \, dt < \infty \qquad \forall \varepsilon \in (0,\varepsilon_0)$$

 $u npu \varepsilon \rightarrow 0$

$$\int_{D(z_0,\varepsilon,\varepsilon_0)} K_{\mu}(z) \cdot \psi_{z_0,\varepsilon}^2(|z-z_0|) \, dm(z) = o(I_{z_0}^2(\varepsilon)),$$

где $D(z_0, \varepsilon, \varepsilon_0) = \{z \in D : \varepsilon < |z - z_0| < \varepsilon_0\}$. Тогда уравнение Бельтрами (1) имеет регулярное решение f задачи Дирихле (4) для любой ограниченной функции $\varphi \colon E_D \to \mathbb{R}$, допускающей не более счетного числа точек разрыва.

Замечание 1. На самом деле вместо условия $K_{\mu} \in L^{1}(D)$ здесь достаточно требовать локальную интегрируемость K_{μ} в области D и условие, что $||K_{\mu}||(z_{0},r) \neq \infty$ для п. в. $r \in (0, \varepsilon_{0})$ при всех $z_{0} \in \partial D$.

По лемме 1 с выбором $\psi_{z_0,\varepsilon}(t) \equiv 1/t \log(1/t)$ (см. следствие 2.3 о функциях конечного среднего колебания в [7]) получаем следующий результат.

Теорема 2. Пусть $\mu \colon D \to \mathbb{D}$ — измеримая в ограниченной односвязной области $D \subset \mathbb{C}$ функция такая, что

$$K_{\mu}(z) \leqslant Q(z) \in \text{FMO}(\overline{D}).$$

Тогда уравнение Бельтрами (1) имеет регулярное решение f задачи Дирихле (4) для любой ограниченной функции $\varphi \colon E_D \to \mathbb{R}$, допускающей не более счетного числа точек разрыва.

Следствие 2. В частности, заключение теоремы 2 остается в силе, если $K_{\mu}(z) \leqslant Q(z) \in BMO(\overline{D})$.

Наконец, из теоремы 1, используя также теорему 3.1 из работы [9], приходим к следующему результату.

Теорема 3. Пусть $\mu \colon D \to \mathbb{D}$ — измеримая в ограниченной односвязной области $D \subset \mathbb{C}$ функция такая, что

$$\int_{D} \Phi(K_{\mu}(z)) \, dm(z) < \infty,$$

где $\Phi \colon [0,\infty) \to [0,\infty)$ — неубывающая выпуклая функция с условием

$$\int_{\delta}^{\infty} \frac{d\tau}{\tau \Phi^{-1}(\tau)} = \infty$$

для некоторого $\delta > \Phi(0)$. Тогда уравнение Бельтрами (1) имеет регулярное решение f задачи Дирихле (4) для любой ограниченной функции $\varphi \colon E_D \to \mathbb{R}$, допускающей не более счетного числа точек разрыва.

Следствие 3. В частности, заключение теоремы 3 имеет место, если при некотором $\alpha > 0$

$$\int\limits_{D}e^{\alpha K_{\mu}(z)}dm(z)<\infty.$$

Замечание 2. Все приведенные теоремы имеют место, в частности, для функций $\varphi \colon E_D \to \mathbb{R}$ ограниченной вариации. Понятие ограниченной вариации здесь имеет смысл, поскольку по теоремам Римана и Каратеодори простые концы односвязной области могут быть естественным образом циклически упорядочены.

Цитированная литература

- 1. *Ковтонюк Д. А.*, *Петков И. В.*, *Рязанов В. И.* О граничном поведении решений уравнений Бельтрами // Укр. мат. журн. 2011. **63**, № 8. С. 1078–1091.
- Ковтонгок Д. А., Петков И. В., Рязанов В. И. О задаче Дирихле для уравнений Бельтрами в конечносвязных областях // Укр. мат. журн. – 2012. – 64, № 7. – С. 932–944.
- 3. Коллингвуд Э., Ловатер А. Теория предельных множеств. Москва: Мир, 1971. 312 с.
- 4. Петков И.В. О граничном поведении гомеоморфизмов класса $W_{\text{loc}}^{1,1}$ на плоскости по простым концам // Доп. НАН. України. 2015. \mathbb{N} 6. С. 19—24.
- 5. Голузин Г. М. Геометрическая теория функций комплексного переменного. Москва: Наука, 1966. 630 с.
- 6. Gutlyanskii V., Ryazanov V., Srebro U., Yakubov E. The Beltrami equation: a geometric approach. New York etc.: Springer, 2012. 314 p. (Developments in Mathematics, Vol. 26.).
- 7. *Игнатьев А. А.*, *Рязанов В. И.* Конечное среднее колебание в теории отображений // Укр. мат. вестник. 2005. **2**, № 3. С. 395–417.
- 8. *Рязанов В. И.*, *Севостьянов Е. А.* Равностепенно непрерывные классы кольцевых Q-гомеоморфизмов // Сиб. мат. журн. 2007. **48**, № 6. С. 1361–1376.
- 9. Ryazanov V., Srebro U., Yakubov E. On integral conditions in the mapping theory // Укр. мат. вестн. 2010. 7, No 1. С. 73–87.

References

- 1. Kovtonyuk D., Petkov I., Ryazanov V. Ukr. Mat. Zh., 2011, **63**, No 8: 1078–1091 (in Russian).
- 2. Kovtonyuk D., Petkov I., Ryazanov V. Ukr. Mat. Zh., 2012, 64, No. 7: 932-944 (in Russian).
- 3. Collingwood E. F., Lohwater A. J. The Theory of Cluster Sets, Cambridge Tracts in Math. and Math. Physics 56, Cambridge Cambridge Univ. Press, 1966.
- 4. Petkov I. V. Dop. NAN Ukraine, 2015, No 6: 19-24 (in Russian).
- 5. Goluzin G. M. Geometric Theory of Functions of a Complex Variable, Transl. of Math. Monographs, 26, Providence, AMS, 1969.
- Gutlyanskii V., Ryazanov V., Srebro U., Yakubov E. The Beltrami Equation: A Geometric Approach, Developments in Mathematics, Vol. 26, New York etc. Springer, 2012.
- 7. Ignat'ev A., Ryazanov V. Ukr. Mat. Visn., 2005, 2, No 3: 395-417 (in Russian).
- 8. Ryazanov V., Sevost'yanov E. Sibirsk. Math. Zh., 2007, 48, No 6: 1361-1376 (in Russian).
- 9. Ryazanov V., Srebro U., Yakubov E. Ukr. Mat. Visn., 2010, 7, No 1: 73-87 (in Russian).

Институт прикладной математики и механики НАН Украины, Славянск Поступило в редакцию 15.06.2015

І.В. Пєтков

Задача Діріхле для рівнянь Бельтрамі в однозв'язних областях

Інститут прикладної математики і механіки НАН України, Слов'янськ

За певних умов на коефіцієнт дилатації K_{μ} доведено існування регулярних розв'язків задачі Діріхле для вироджених рівнянь Бельтрамі у довільних однозв'язних областях.

Ключові слова: рівняння Бельтрамі, задача Діріхле, прості кінці, регулярні розв'язки, однозв'язні області.

I.V. Petkov

The Dirichlet problem for the Beltrami equations in simply connected domains

Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Sloviansk

Under certain conditions on the dilatation coefficient K_{μ} , the existence of regular solutions of the Dirichlet problem for the Beltrami equations in arbitrary simply connected domains is proved.

 $\textbf{\textit{Keywords:}} \ \text{Beltrami equations, Dirichlet problem, prime ends, regular solutions, simply connected domains.}$