И.М. Ткаченко, Я.Л. Кобзарь, О.В. Шекера, член-корреспондент НАН Украины В.В. Шевченко

Синтез 4,4'-бис(нонафторобифенил-4-оксифенил)бис(трифторометил)метана и на его основе лестничного полиэфира, содержащего спиробисиндановые фрагменты

Разработан метод синтеза 4,4'-бис(нонафторобифенил-4-оксифенил)содержащего мономера с 1,1,1,3,3,3-гексафторопропановым фрагментом на основе декафторобифенила и 4,4'-(гексафтороизопропилиден)дифенола. Взаимодействием полученного мономера с 5,5',6,6'-тетрагидрокси-3,3,3',3'-тетраметил-1,1'-спиробисинданом синтезирован фторированный ароматический полиэфир лестничного строения, одновременно содержащий перфторированные ароматические ядра и CF₃-группы, а также жесткие дибензодиоксиновые и спиробисиндановые фрагменты. Строение полученных мономера и полимера подтверждено методами ¹H, ¹⁹F ЯМР и ИК спектроскопией. Показано, что синтезированный полиэфир имеет высокое значение температуры стеклования и характеризуется хорошей термоокислительной стабильностью.

Ключевые слова: фторированные ароматические полиэфиры, лестничные полимеры, PIM полимеры, фторированные мономеры, трифторометильные группы.

Ряд уникальных свойств фторированных ароматических полиэфиров ($\Phi A\Pi$) (высокие термическая и химическая стабильность, гидрофобность, низкие значения диэлектрической проницаемости, оптических потерь и коэффициента преломления) в сочетании с простотой их синтеза делают эти полимеры перспективными для применения в микроэлектронике, оптике, электрооптике и др. [1–4].

Основными способами введения атомов фтора в состав **ФАП** является использование при их синтезе CF₃-содержащих и фторированных в ядро ароматических мономеров. В первом случае преимущественно используется 4,4'-(гексафтороизопропилиден)дифенол (бисфенол АФ), а во втором — декафторобифенил (ДФБ) или производные гексафторобензола [1, 2].

Среди **ФАП** особый интерес представляют таковые лестничного строения, позволяющие синтезировать жесткоцепные полимеры с так называемой внутренней микропористостью (polymers of intrinsic microporosity, PIM). Известно, что такие полимеры обладают весьма высокой внутренней удельной поверхностью (вплоть до 800 м²/г) [5, 6] и поэтому перспективны в качестве газоразделительных мембран [5, 7]. Особенностью строения PIM полимеров является наличие жестких лестничных (дибензодиоксиновых) фрагментов и так называемых узлов изогнутости ("sites of contortion") для искривления основной цепи макромолекул [5, 8].

Характерная для фторированных полимеров низкая энергия когезии макромолекул, придающая улучшенную газопроницаемость и селективность фторированным мембранам [9–11], представляет несомненный интерес для создания структур лестничного типа. На данный момент известно только несколько фторированных полимеров типа PIM, синте-

[©] И.М. Ткаченко, Я.Л. Кобзарь, О.В. Шекера, В.В. Шевченко, 2015

зированных на основе фторированных в ядро мономеров, а именно, ДФБ [6], декафторобензофенона [6] и 2,3,6,7-тетраметокси-9,10-бис(пентафторофенил)-9,10-дигидроантрацена [12], а также один CF₃-содержащий PIM [11]. Насколько нам известно, данные о PIM полимерах, содержащих одновременно фторированные в ядро фрагменты и CF₃-группы, а также о мономерах, сочетающих перфторированные бифениленовые и алифатические CF₃-группы, отсутствуют. Следует подчеркнуть, что CF₃-группы в составе полимерной цепи, помимо придания улучшенных газопроницаемости и селективности полимерам, повышают их растворимость без ухудшения термостабильности ("эффект фтора"), увеличивают свободный объем полимеров, а также наряду с понижением кристалличности полимеров повышают их значения температуры стеклования [11].

Цель данной работы — разработка способа синтеза бис(перфторобифенилен)содержащего мономера с алифатическими трифторометильными группами и получение на его основе **ФАП** лестничного строения, сочетающего наряду с фторированными также и жесткие дибензодиоксиновые и спиробисиндановые фрагменты.

Экспериментальная часть. *Материалы.* ДФБ (1, "Sigma-Aldrich") и бисфенол АФ (2, "Acros Organics") применяли без дополнительной очистки. Исходный 5,5′,6,6′-тетрагидрокси-3,3,3′,3′-тетраметил-1,1′-спиробисиндан (4) получали, согласно методу W. Baker (1934). Использованные в работе растворители очищали известными методами.

Синтез 1,2,4,5-тетрафтор-3-[4-(1,1,1,3,3,3-гексафтор-2-{4-[2,3,5,6-тетрафтор-4-(пентафторофенил) ϕ енокси] ϕ енил}пропан-2-ил) ϕ енокси]-6-(пентафторофенил) δ ензола (**3**).

К раствору 1 г (2,97 ммоль) бисфенола АФ в 50 мл диметилформамида (ДМФА) добавляли 0,82 г (5,94 ммоль) К₂CO₃, а затем при перемешивании вносили 7,9 г (23,76 ммоль) ДФБ. Реакционную смесь перемешивали при температуре 120 °C в течение 8 ч. После охлаждения смесь фильтровали для удаления неорганических солей, а ДМФА и избыток ДФБ отгоняли под вакуумом. Полученный таким образом мономер перекристаллизовывали из изопропилового спирта.

Выход 85%. Т. пл. 189–192 °С.

¹H ЯМР (CDCl₃), δ , м. д.: 7,04 (д, 4H, J = 8,0 Гц, Ph), 7,40 (д, 4H, J = 8,0 Гц, Ph). ¹⁹F ЯМР (CDCl₃), δ , м. д.: -159,91 (т, 4F, J = 20,2 Гц, Ph), -151,99 (дд, 4F, $J_1 = 24,3$ Гц, $J_2 = 8,09$ Гц, Ph), -149,45 (т, 2F, J = 24,3 Гц, Ph), -137,29... 136,88 (м, 8F, Ph), -63,74 (с, 6F, -CF₃). ИК-спектр, см⁻¹: 984, 1003 (C-F), 1232 (Ph–O–Ph), 1498, 1610 (Ph).

Синтез ФАП на основе мономеров 3 и 4 (ФАП-1). Смесь 0,3 г (0,311 ммоль) синтезированного мономера 3, 0,1 г (0,311 ммоль) бис(катехола) 4 растворяли в 1 мл диметилацетамида (ДМАА) и добавляли 90 мг (0,684 ммоль) K_2CO_3 . Реакционную смесь интенсивно перемешивали в токе азота при 155 °C в течение 2 мин и затем в смесь добавляли 0,3 мл толуола. Реакцию продолжали еще 2 мин и дополнительное количество толуола (0,3 мл) было добавлено в реакционную смесь, которую перемешивали еще 4 мин. Азеотропную смесь вода-толуол собирали в насадку Дина-Старка. Полученный полимер отфильтровывали, переосаждали из хлороформа в метанол, тщательно промывали горячей водой и сушили в вакууме при 80 °C в течение 8 ч.

Выход 90%.

¹H SMP (CDCl₃), δ , M. d.: 1,33 (c, 6H, -CH₃), 1,38 (c, 6H, -CH₃), 2,20 (d, 2H, J = 10,5 Гц, -CH₂-), 2,35 (d, 2H, J = 10,5 Гц, -CH₂-), 6,48 (d, 2H, J = 8,8 Гц, Ph), 6,82 (уш. c, 2H, Ph), 7,04 (уш. c, 4H, Ph), 7,40 (уш. c, 4H, Ph). ¹⁹F SMP (CDCl₃), δ , M. d.: -161,78 (уш. c, 2F, Ph), -152,65 (d, 4F, J = 24,3 Гц Ph), -140,83 (уш. c, 2F, Ph), -138,13 (уш. c, 2F, Ph), -137,24 (уш. c, 2F, Ph). ИК-спектр, см⁻¹: 989, 1009 (C-F), 1227 (Ph-O-Ph), 1481, 1608 (Ph).

ISSN 1025-6415 Доповіді НАН України, 2015, №7

Рис. 1. Схема синтеза мономера 3 и полиэфира ФАП-1

Методы исследования. ¹Н и ¹⁹F ЯМР спектры снимали на спектрометре Bruker Avance DRX 500 при частоте 500 и 188,14 МГц соответственно при 25 °C в CDCl₃. Химические сдвиги для ¹Н ЯМР спектров приведены относительно остаточного сигнала хлороформа в CDCl₃ ($\delta = 7,25$). Химические сдвиги ¹⁹F ЯМР спектров приведены относительно CFCl₃. ИК-спектры синтезированных соединений регистрировали с помощью ИК-спектрометра с преобразованием Фурье "TENSOR 37" в области поглощения 600–4000 см⁻¹ в таблетках KBr. Характеристическую вязкость ([η]) **ФАП** определяли с помощью вискозиметра Убеллоде в хлороформе при 25 °C, температуру стеклования (T_c) — методом дифференциальной сканирующей калориметрии (ДСК) на приборе Q-2000 TA Instruments (США). Нагрев проводили в атмосфере воздуха со скоростью нагрева 20 град/мин в области температур 25–250 °C, погрешность измерений не превышала 3%. Термостабильность полимера исследовали с помощью термогравиметрического анализа (ТГА) на приборе Q-50 TA Instruments (США) на воздухе при скорости нагревания 20 град/мин в области температур 25–700 °C.

Результаты и их обсуждение. Лестничные PIM полимеры получают в результате двойного ароматического нуклеофильного замещения активированных атомов галогена гидроксильными группами тетраолов различного строения. В результате такой реакции образуются жесткие дибензодиоксиновые фрагменты [5]. В качестве узлов изогнутости в PIM полимерах используются, как правило, спиробисиндановые фрагменты, основным способом введения которых является применение бис(катехола) — 5,5',6,6'-тетрагидрокси-3,3,3',3'-тетраметил-1,1'-спиробисиндана [5]. Наличие указанных фрагментов препятствует плотной упаковке полимерных цепей, приводящее к повышению свободного объема PIM полимеров [5–7].

С целью получения лестничного PIM полимера типа с одновременным содержанием перфторированных ароматических ядер и CF₃-групп, наряду с дибензодиоксиновыми и спиробисиндановыми фрагментами, разработан способ синтеза нового бис(нонафторобифенил)содержащего мономера с гексафторопропановым фрагментом (рис. 1). Активность к нуклеофильному замещению атомов фтора в *пара-* и *орто-*положениях нонафторобифениленовых фрагментов такого мономера позволяет ввести в состав полимеров дибензодиоксиновые фрагменты при сохранении перфторированных ароматических ядер.

Указанный мономер синтезировали взаимодействием избытка ДФБ (соединение 1) с бисфенолом АФ (соединение 2) в среде ДМФА и присутствии K₂CO₃ как основания.

Для предотвращения образования олигомерных продуктов при синтезе мономера **3** использовали избыток ДФБ, который можно легко извлечь вакуумной отгонкой. Бис(катехол)

Рис. 2. ¹Н ЯМР спектры мономера **3** (спектр 1) и полимера $\Phi A\Pi$ -1 (спектр 2)

3 представляет собой белый порошок, растворимый в ДМФА, тетрагидрофуране, хлороформе, бензоле и нерастворимый в спиртах, гексане, декане.

В ИК-спектре мономера **3** отсутствует широкая полоса поглощения при 3200–3600 см⁻¹, соответствующая гидроксильным группам исходного бисфенола АФ. Также в ИК-спектре мономера **3** содержатся характерные полосы поглощения при 984, 1232 и 1498 см⁻¹, которые указывают на колебания связей С–F, Ar–O–Ar и –C=C– ароматических ядер соответственно.

Строение фторированного мономера **3** подтверждено также с помощью ¹H и ¹⁹F ЯМР спектроскопии (рис. 2). Об образовании мономера **3** свидетельствует исчезновение синглета, отвечающего протонам ОН-групп исходного бисфенола АФ. При этом в области ароматических протонов сохраняются два эквивалентных дублета, характерных для ароматических ядер бисфенола АФ. В спектре ¹⁹F ЯМР мономера **3** содержится как синглет от шести эквивалентных атомов фтора гексафторопропанового фрагмента, так и соответствующие химические сдвиги, характерные для нонафторобифениленовых фрагментов (рис. 3).

В научной литературе известно два способа синтеза PIM полимеров: низко- и высокотемпературный соответственно при 55–65 и 155–160 °С [5]. Для синтеза **ФАП-1** с чередующимися вдоль цепи фторированными в ядро фрагментами и СF₃-группами, а также дибензодиоксиновыми и спиробисиндановыми фрагментами (см. рис. 1) нами выбран второй способ, который позволяет значительно сократить время реакции вплоть до нескольких минут. Синтез полимера проводили в среде ДМАА и присутствии K₂CO₃ как основания. Полученный лестничный полиэфир хорошо растворим в хлороформе, тетрагидрофуране, но ограничено в ДМФА, что характерно для PIM полимеров [13]. Значение характеристической вязкости для **ФАП-1** составило 0,28 дл/г.

Отсутствие характеристической полосы в ИК-спектре полученного **ФАП-1**, отвечающей ОН-группам бис(катехола) **4**, указывает на вступление этих групп в реакцию поликонденсации. Два синглета при 6,09 и 6,52 м. д., отличительные для протонов гидроксильных групп мономера **4**, также отсутствуют и в ¹Н ЯМР спектре **ФАП-1**. Остальные химичес-

Рис. 3. ¹⁹F ЯМР спектры мономера **3** (спектр 1) и полимера Φ АП-1 (спектр 2)

кие сдвиги в ¹Н ЯМР спектре $\Phi A\Pi$ (см. рис. 2) соответствуют предложенной структуре полимера (см. рис. 1).

Аналогично¹⁹ F ЯМР спектру мономера **3**, в ¹⁹ F ЯМР спектре синтезированного **ФАП-1** содержится один синглет при 63,7 м. д., характерный для CF₃-групп (см. рис. 3). В то же время в ¹⁹ F ЯМР спектре происходит перераспределение химических сдвигов, отвечающих ароматическим атомам фтора в сравнение с ¹⁹ F ЯМР спектром мономера **3**. Эти данные указывают на присутствие в полимере перфторированных бифениленовых фрагментов с учетом двойного замещения атомов фтора в *пара-* и *орто-*положениях нонафторобифениленовых фрагментов (рис. 3).

Из литературных данных известно, что высокая жесткость макромолекул PIM полимеров приводит к увеличению их значений T_c , которые превышают температуру разложения данных соединений [5]. Для синтезированного **ФАП-1** значение T_c равно 299 °C.

По данным ТГА, полученный **ФАП-1** характеризуется высокой термоокислительной стабильностью. Так, температура 5%-й потери массы **ФАП-1** равна 440 °C. Это же значение для описанных в литературе PIM полимеров находится в интервале температур от 370 до 500 °C [5–7, 11].

Таким образом, предложен способ синтеза мономера, сочетающего перфторобифениленовые и алифатические трифторометильные группы, и на его основе лестничного полиэфира PIM типа. Благодаря наличию в составе синтезированного полимера жестких дибензодиоксиновых и спиробисиндановых звеньев, а также указанных фторированных фрагментов, следует ожидать, что такой полимер будет обладать высокой удельной площадью поверхности (аналогично всем PIM полимерам) и улучшенными газотранспортными характеристиками. Полученный мономер также перспективен для синтеза простых линейных фторированных полиэфиров с низкими значениями диэлектрической проницаемости, оптических потерь и коэффициента преломления.

Цитированная литература

 Shevchenko V. V., Tkachenko I. M., Shekera O. V. Nucleus-fluorinated aromatic polyethers // Polym. Sci., Ser. B. - 2010. - 52, No 7-8. - P. 408-430.

- Dhara M. G., Banerjee S. Fluorinated high-performance polymers: poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups // Prog. Polym. Sci. - 2010. - 35, No 8. - P. 1022 - 1077.
- Ghosh A., Banerjee S. Sulfonated fluorinated-aromatic polymers as proton exchange membranes // e-Polymers. – 2014. – 14, No 4. – P. 227–257.
- Maier G. Low dielectric constant polymers for microelectronics // Prog. Polym. Sci. 2001. 26, No 1. P. 3–65.
- McKeown N. B. Polymers of Intrinsic Microporosity // ISRN Mater. Sci. 2012. 2012. Article ID 513986, P. 1–16.
- Budd P. M., Bader S. G., Makhseed S., McKeown N. B., Msayib K. J., Tattershall C. E. Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials // Chem. Commun. – 2004. – No 2. – P. 230–231.
- Budd P. M., Makhseed S. M., Ghanem B. S., Msayib K. J., Tattershall C. E., McKeown N. B. Microporous polymeric materials // Mater. Today. - 2004. - 7, No 4. - P. 40-46.
- Carta M., Msayib K. J., Budd P. M., McKeown N. B. Novel spirobisindanes for use as precursors to polymers of intrinsic microporosity // Org. Lett. – 2008. – 10, No 13. – P. 2641–2643.
- Cui Z., Drioli E., Lee Y. M. Recent progress in fluoropolymers for membranes // Prog. Polym. Sci. 2014. – 39, No 1. – P. 164–198.
- 10. Yampolskii Y. Polymeric gas separation membranes // Macromolecules. 2012. 45, No 8. P. 3298-3311.
- Du N., Robertson G. P., Song J., Pinnau I., Thomas S., Guiver M. D. Polymers of intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation // Macromolecules. – 2008. – 41, No 24. – P. 9656–9662.
- Makhseed S., Samuel J., Bumajdad A., Hassan M. Synthesis and characterization of fluoropolymers with intrinsic microporosity and their hydrogen adsorption studies // J. Appl. Polym. Sci. – 2008. – 109, No 4. – P. 2591–2597.
- Song J., Du N., Dai Y., Robertson G. P., Guiver M. D., Thomas S., Pinnau I. Linear high molecular weight ladder polymers by optimized polycondensation of tetrahydroxytetramethylspirobisindane and 1, 4-dicyanotetrafluorobenzene // Macromolecules. – 2008. – 41, No 20. – P. 7411–7417.

References

- 1. Shevchenko V. V., Tkachenko I. M., Shekera O. V. Polym. Sci., Ser. B., 2010, 52, No 7–8: 408–430.
- 2. Dhara M. G., Banerjee S. Prog. Polym. Sci., 2010, 35, No 8: 1022-1077.
- 3. Ghosh A., Banerjee S. e-Polymers., 2014, 14, No 4: 227-257.
- 4. Maier G. Prog. Polym. Sci., 2001, 26, No 1: 3-65.
- 5. McKeown N. B. ISRN Mater. Sci., 2012, 2012, Article ID 513986: 1-16.
- Budd P. M., Bader S. G., Makhseed S., McKeown N. B., Msayib K. J., Tattershall C. E. Chem. Commun., 2004, No 2: 230–231.
- Budd P. M., Makhseed S. M., Ghanem B. S., Msayib K. J., Tattershall C. E., McKeown N. B. Mater. Today, 2004, 7, No 4: 40–46.
- 8. Carta M., Msayib K. J., Budd P. M., McKeown N. B. Org. Lett., 2008, 10, No 13: 2641–2643.
- 9. Cui Z., Drioli E., Lee Y. M. Prog. Polym. Sci., 2014, 39, No 1: 164-198.
- 10. Yampolskii Y. Macromolecules, 2012, 45, No 8: 3298-3311.
- Du N., Robertson G. P., Song J., Pinnau I., Thomas S., Guiver M. D. Macromolecules, 2008, 41, No 24: 9656–9662.
- 12. Makhseed S., Samuel J., Bumajdad A., Hassan M. J. Appl. Polym. Sci., 2008, 109, No 4: 2591–2597.
- Song J., Du N., Dai Y., Robertson G. P., Guiver M. D., Thomas S., Pinnau I. Macromolecules, 2008, 41, No 20: 7411–7417.

Институт химии высокомолекулярных соединений НАН Украины, Киев Поступило в редакцию 17.03.2015

ISSN 1025-6415 Доповіді НАН України, 2015, №7

121

І.М. Ткаченко, Я.Л. Кобзар, О.В. Шекера, член-кореспондент НАН України **В.В. Шевченко**

Синтез 4,4'-біс(нонафторобіфеніл-4-оксифеніл)біс(трифторометил)метану та на його основі драбинчастого поліетеру, що містить спіробісінданові фрагменти

Інститут хімії високомолекулярних сполук НАН України, Київ

Розроблено метод синтезу 4,4'-біс (нонафторобіфеніл-4-оксифеніл) вмісного мономеру з 1,1,1,3,3,3-гексафторопропановим фрагментом на основі декафторобіфенілу та 4,4'-(гексафтороізопропіліден) дифенілу. Взаємодією отриманого мономеру з 5,5',6,6'-тетрагідрокси-3,3,3',3'-тетраметил-1,1'-спіробісінданом синтезовано фторований ароматичний поліетер драбинчастої будови, який одночасно містить перфторовані ароматичні ядра та CF₃-групи, а також жорсткі дібензодіоксинові та спіробісінданові фрагменти. Будову отриманих мономеру й полімеру підтверджено методами ¹H, ¹⁹F *ЯМР і ІЧ* спектроскопії. Показано, що синтезований поліетер має високі значення температури склування та характеризується гарною термоокиснювальною стабільністю.

Ключові слова: фторовані ароматичні поліетери, драбинчасті полімери, РІМ полімери, фторовані мономери, трифторометильні групи.

I. M. Tkachenko, Ya. L. Kobzar, O. V. Shekera, Corresponding Member of the NAS of Ukraine V. V. Shevchenko

Synthesis of 4,4'-bis(nonafluorobiphenyl-4-oxyphenyl)bis(trifluoromethyl)methane and a ladder polyether with spirobisindane fragments on its base

Institute of Macromolecular Chemistry of the NAS of Ukraine, Kiev

A method of synthesis of 4,4'-bis(nonafluorobiphenyl-4-oxyphenyl)-containing monomer with 1,1,1,3,3,3-hexafluoropropane fragment based on decafluorobiphenyl and 4,4'-(hexafluoroisopropylidene)diphenol is developed. Ladder-type fluorinated aromatic polyether having both perfluorinated aromatic units and CF₃-groups, as well as both rigid dibenzodioxin and spirobisindane fragments, is synthesized by the interaction of the obtained monomer with 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethyl-1,1'-spirobisindane. The structures of the prepared monomer and the polymer were determined using ¹H, ¹⁹F NMR and IR spectroscopy techniques. It is shown that the synthesized polyether has high glass transition temperature and good thermo-oxidative stability.

Keywords: fluorinated poly(arylene ether)s, ladder polymers, PIM polymers, fluorinated monomers, trifluoromethyl groups.