http://dx.doi.org/10.15407/dopovidi2016.07.100 УДК 678.746.4:547.539.1:547.642

И. М. Ткаченко¹, Я. Л. Кобзарь¹, В. В. Кравченко², О. В. Шекера¹, член-корреспондент НАН Украины В. В. Шевченко¹

 1 Институт химии высокомолекулярных соединений НАН Украины, Киев 2 Институт физико-органической химии и углехимии им. Л. М. Литвиненко НАН Украины, Киев

 $E\mbox{-mail:}$ valshevchenko@yandex.ru

Синтез 4,4'-бис(нонафторбифенил-4-оксифенил)-1,4-окситетрафторбензола и на его основе лестничного спиробисиндансодержащего полиэфира

Разработан способ синтеза 4,4'-бис(нонафторбифенил-4-оксифенил)содержащего мономера с тетрафторбензольным центральным ядром на основе декафторбифенила и 4-[2,3,5,6-тетрафтор-4-(4-гидроксифенокси)фенокси]фенола. Его взаимодействием со спиробискатехолом 5,5',6,6'-тетрагидрокси-3,3,3',3'-тетраметил-1,1'-спиробисинданом синтезирован фторированный в ядро ароматический полиэфир лестничного строения. Сочетание в его составе жестких дибензодиоксиновых звеньев со спиробисиндановыми фрагментами (узлы изогнутости) приводит к понижению плотности упаковки макромолекулярных цепей, что представляется перспективным для регулирования транспортных характеристик полимерных систем.

Ключевые слова: фторированные ароматические полиэфиры, перфторароматические фрагменты, лестничные полимеры, PIM полимеры, спиробисиндан.

Фторированные ароматические полиэфиры (ФАП) благодаря ряду уникальных свойств (высокие термическая и химическая стабильность, гидрофобность, низкие значения диэлектрической проницаемости, оптических потерь и коэффициента преломления) в сочетании с простотой их синтеза являются перспективным материалом для применения во многих отраслях: микроэлектронике, оптике, электрооптике и др. [1-4].

Основными способами введения атомов фтора в состав ФАП является использование при их синтезе CF₃-содержащих и фторированных в ядро ароматических мономеров. В первом случае преимущественно используется 4,4'-(гексафторизопропилиден)дифенол (бисфенол АФ), а во втором — декафторбифенил (ДФБ) или производные гексафторбензола [1, 2].

Среди ароматических полиэфиров особый интерес представляют жесткоцепные полимеры лестничного строения с так называемой внутренней микропористостью (polymers of intrinsic microporosity (PIM)). Известно, что такие полимеры обладают весьма высокой внутренней удельной поверхностью (вплоть до $800 \text{ m}^2/\text{r}$) [5, 6] и поэтому перспективны в качестве газоразделительных мембран [5, 7]. Особенностью строения PIM полимеров является наличие жестких лестничных (дибензодиоксиновых) фрагментов и так называемых узлов изогнутости ('sites of contortion') для создания изогнутости основной цепи макромолекул [5, 8].

Характерная для фторированных полимеров низкая энергия когезии макромолекул, придающая улучшенную газопроницаемость и селективность фторированным мембранам

[©] И.М. Ткаченко, Я.Л. Кобзарь, В.В. Кравченко, О.В. Шекера, В.В. Шевченко, 2016

[9–11], дает возможность создавать структуры лестничного типа. На данный момент известно только несколько фторированных полимеров типа PIM, а именно: один CF₃-содержащий PIM [11], а также фторированные в ядро PIM [6, 12]. Последние содержат либо перфторированные монофениленовые ядра и получены на основе декафторбензофенона [6] и 2,3,6,7-тетраметокси-9,10-бис(пентафторфенил)-9,10-дигидроантрацена [12], либо перфторированные бифениленовые ядра и получены на основе ДФБ [6]. Данные о PIM полимерах, сочетающих в полимерной цепи одновременно моно- и бифениленовые перфторароматические фрагменты, отсутствуют.

Цель данного исследования заключалась в разработке способа синтеза бис(перфторбифенилен)содержащего мономера с центральным тетрафторбензольным ядром и получении на его основе ФАП лестничного строения, сочетающего наряду с фторированными также и жесткие дибензодиоксиновые и спиробисиндановые фрагменты для снижения плотности упаковки и создания изогнутости основной цепи макромолекул.

Экспериментальная часть. *Материалы*. ДФБ (1, "Sigma-Aldrich") применяли без дополнительной очистки. Исходный 4-[2,3,5,6-тетрафтор-4-(4-гидроксифенокси)фенокси]фенол (2) получали согласно [13], а 5,5',6,6'-тетрагидрокси-3,3,3',3'-тетраметил-1,1'-спиробисиндан (4) синтезировали по методу W. Baker (1934). Использованные в работе растворители были очищены общепринятыми методами.

Синтез 1,2,3,4,5-пентафтор-6-{2,3,5,6-тетрафтор-4-[4-(2,3,5,6-тетрафтор-4-{4-[2,3, 5, 6-тетрафтор-4-(2,3,4,5,6-пентафторфенил)фенокси/фенокси/фенокси)фенокси]фенил} бензола (3). К раствору 1,00 г (2,73 ммоль) мономера 2 в 50 мл диметилформамида (ДМФА) добавляли 0,83 г (6,00 ммоль) К₂CO₃, а затем при перемешивании вносили 7,30 г (21,84 ммоль) ДФБ. Реакционную смесь перемешивали при 120 °C в течение 8 ч. После охлаждения смесь фильтровали для удаления неорганических солей, а ДМФА и избыток ДФБ отгоняли под вакуумом. Полученный таким образом мономер перекристаллизовывали из изопропилового спирта.

Выход 2,18 г (80%). Т. пл. 188–190 °С.

¹Н ЯМР (CDCl₃, 400 МГц), *б*, м. д.: 6,99–7,06 (м, 8H, Ph).

¹³ C \Re MP (CDCl₃, 125,73 MFµ), δ , M. \exists .: 96,75 (Ar_F-C-C-Ar_F-), 96,92 (Ar_F-C-C--Ar_F-), 111,91, 112,27 (Ar-C-H), 125,64 (-C-Ar_F-C-), 130,60 (Ar_F-Ar_F-C-O), 131,69, 133,71, 135,37, 135,92, 136,23, 137,39, 137,94, 138,45, 140,46 (Ar-C-F), 147,78, 148,37 (Ar-C-O).

¹⁹F ЯМР (CDCl₃, 188,14 МГц), δ , м. д.: -161,03 (т, 4F, J = 20,2 Гц, Ph), -154,70 (с, 4F, Ph), -153,57 (дд, 4F, $J_1 = 20,2$ Гц, $J_2 = 8,1$ Гц, Ph), -150,66 (т, 2F, J = 20,2 Гц, Ph), -138,57 (дд, 4F, $J_1 = 20,2$ Гц, $J_2 = 8,1$ Гц, Ph), -138,03 (дд, 4F, $J_1 = 24,3$ Гц, $J_2 = 8,1$ Гц, Ph).

ИК спектр, см⁻¹: 980 (С-F), 1198 (С-О), 1220 (Рh–О–Рh), 1502 (С=С_{агот}).

Синтез ФАП на основе мономеров **3** и **4** (ФАП-1). Смесь 0,300 г (0,302 ммоль) синтезированного мономера **3**, 0,103 г (0,302 ммоль) бис(катехола) **4** растворяли в 1,0 мл диметилацетамида (ДМАА) и добавляли 0,092 г (0,664 ммоль) K_2CO_3 . Реакционную смесь интенсивно перемешивали в токе азота при 155 °C в течение 2 мин и затем в смесь добавляли 0,3 мл толуола. Реакцию продолжали еще 2 мин и дополнительное количество толуола (0,3 мл) было добавлено в реакционную смесь, которую перемешивали еще 6 мин. Азеотропную смесь вода-толуол собирали в насадку Дина-Старка. Полученный полимер отфильтровывали, переосаждали из хлороформа в метанол, тщательно промывали горячей водой и сушили в вакууме при 80 °C в течение 8 ч.

Выход 0,334 г (88%).

ISSN 1025-6415 Доп. НАН України, 2016, №7

Рис. 1. Схема синтеза мономера 3 и полиэфира ФАП-1

¹H SIMP (CDCl₃, 300 MΓμ), δ , м. д.: 1,32–1,36 (м, 12H, –CH₃), 2,18 (д, 2H, J = 12,5 Γμ, –CH₂–), 2,34 (д, 2H, J = 12,5 Γμ, –CH₂–), 6,47 (д, 2H, J = 6,5 Γμ, Ph), 6,81 (уш. c, 2H, Ph), 7,01 (уш. c, 8H, Ph).

¹⁹F ЯМР (CDCl₃, 188,14 МΓц), δ , м. д.: -162,69 (уш. с, 2F, Ph), -154,48 (уш. с, 4F, Ph), -154,03 (уш. с, 4F, Ph), -141,61 (уш. с, 2F, Ph), -138,95 (уш. с, 2F, Ph), -138,37 (уш. с, 4F, Ph).

ИК спектр (см⁻¹): 989, 1007 (С-F), 1315 (С-О), 1485 (Рh).

Методы исследования. ¹H, ¹³C и ¹⁹F ЯМР спектры сняты на спектрометрах Varian Gemini 200 и Bruker Avance 400 при 25 °C в CDCl₃. Химические сдвиги для ¹H и ¹³C ЯМР спектров приведены относительно остаточного сигнала хлороформа в CDCl₃ ($\delta = 7,25$ для ¹H ЯМР и $\delta = 77,0$ для ¹³C ЯМР). Химические сдвиги ¹⁹F ЯМР спектров приведены относительно CFCl₃. ИК спектры синтезированных соединений регистрировали с помощью ИК спектрометра с фурье-преобразованием "TENSOR 37" в области поглощения 600–4000 см⁻¹ в таблетках КВг. Молекулярную массу (ММ) полимера определяли методом гель-проникающей хроматографии с помощью хроматографа Shimadzu LC-10AD, оснащенного колонками Waters Styragel HT 6E 7,8 × 300 мм и PL gel Mixed-D 7,5 × 300 мм. В качестве элюента использовали тетрагидрофуран. Скорость потока элюента составляла 0,5 мл/мин. Калибровочная кривая была построена на основе полистирольных стандартов с узким молекулярно-массовым распределением и ММ в диапазоне от 3250 до 2050000 г/моль.

Результаты и их обсуждение. Лестничные РІМ полимеры получают в результате двойного ароматического нуклеофильного замещения активированных атомов галогена гидроксильными группами тетраолов различного строения. В результате такой реакции образуются жесткие дибензодиоксиновые фрагменты [5]. В качестве узлов изогнутости ('sites of contortion') в PIM полимерах используются, как правило, спиробисиндановые фрагменты, основным способом введения которых является применение бис(катехола) — 5,5',6,6'-тетрагидрокси-3,3,3',3'-тетраметил-1,1'-спиробисиндана [5]. Наличие указанных фрагментов препятствует плотной упаковке полимерных цепей, приводящее к повышению свободного объема PIM полимеров [5–7].

С целью получения фторированного в ядро полиэфира PIM типа, содержащего дибензодиоксиновые и спиробисиндановые фрагменты, разработан способ синтеза нового бис(нонафторбифенил)содержащего мономера с тетрафторбензольным центральным ядром (рис. 1). Активность к нуклеофильному замещению атомов фтора в *пара-* и *орто-*положениях но-

Рис. 2. $^{13}\mathrm{C}$ ЯМР (спектр 1) и $^{19}\mathrm{F}$ ЯМР (спектр 2) спектры мономера 3

нафторбифениленовых фрагментов такого мономера позволяет ввести в состав полимеров дибензодиоксиновые фрагменты при сохранении перфторированных ароматических ядер.

Указанный мономер синтезировали взаимодействием избытка ДФБ (соединение 1) с бисфенолом 2 в среде ДМАА и присутствии K₂CO₃ как основания.

Для предотвращения образования олигомерных продуктов при синтезе мономера **3** использован избыток ДФБ, который можно легко извлечь вакуумной отгонкой. Бис(нонафторбифенил)содержащий мономер **3** представляет собой белый порошок, который растворим в ДМФА, тетрагидрофуране, хлороформе и нерастворим в спиртах, гексане, декане.

Об образовании мономера **3** свидетельствует исчезновение синглета в его ¹Н ЯМР спектре, отвечающего протонам ОН-групп исходного бисфенола **2**. В ¹³С ЯМР спектре выполнено отнесение всех сигналов соответствующим С-атомам, присутствующим в синтезированном мономере **3** (рис. 2). В спектре ¹⁹F ЯМР мономера **3** содержится как синглет от четырех эквивалентных атомов фтора тетрафторбензольного ядра, так и соответствующие химические сдвиги, характерные для нонафторбифениленовых фрагментов (см. рис. 2). В ИК спектре мономера **3** отсутствует широкая полоса поглощения при 3200–3600 см⁻¹, соответствующая гидроксильным группам исходного бисфенола **2**. Также в ИК спектре мономера **3** содержатся характерные полосы поглощения при 989, 1315 и 1485 см⁻¹, которые указывают на колебания связей С–F, С–O и –C=C– ароматических ядер соответственно.

Известно два основных способа синтеза PIM полимеров: низкотемпературный (55–65 °C) и высокотемпературный (155–160 °C) [5]. Для синтеза ФАП-1 с чередующимися вдоль цепи моно- и бифениленовыми перфторированными ядрами, а также дибензодиоксиновыми и спиробисиндановыми фрагментами (см. рис. 1) нами выбран второй способ, который по-

Рис. 3. 1 Н ЯМР (спектр 1) и 19 F ЯМР (спектр 2) спектры полимера Φ АП-1

зволяет значительно сократить время реакции вплоть до нескольких минут. Синтез полимера проводили в среде ДМАА и присутствии K_2CO_3 как основания. Полученный лестничный полиэфир хорошо растворим в хлороформе, тетрагидрофуране, но ограничено в ДМФА, что характерно для PIM полимеров [14]. Отметим, что ФАП-1 имеет лучшие молекулярно-массовые характеристики в сравнении с PIM полимером, полученным на основе индивидуального ДФБ и бис(катехола) 4. Так, значение среднечисленной MM (M_n) для указанного PIM составило 8400, а величина полидисперсности (M_w/M_n) — 4,3 [6], тогда как эти же значения для ФАП-1 равны 13000 и 2,4 соответственно.

Отсутствие характеристической полосы в ИК спектре полученного ФАП-1, отвечающей ОН-группам бис(катехола) **4**, указывает на вступление этих групп в реакцию поликонденсации. В ¹Н ЯМР спектре ФАП-1 присутствует как уширенный синглет при 7,01 м. д., характерный для протонов ароматических ядер мономера **3**, так и химические сдвиги, отвечающие за наличие в составе полимера спиробисинданового фрагмента (рис. 3).

Аналогично ¹⁹F ЯМР спектру мономера **3**, в ¹⁹F ЯМР спектре синтезированного ФАП-1 содержится один синглет при -154,48 м. д., который отвечает атомам фтора тетрафторбензольного ядра (см. рис. 3). В то же время в ¹⁹F ЯМР спектре происходит перераспределение химических сдвигов, отвечающих ароматическим атомам фтора в сравнении с ¹⁹F ЯМР спектром мономера **3**. Эти данные указывают на присутствие в полимере перфторированных бифениленовых фрагментов с учетом двойного замещения атомов фтора в *пара*и *орто*-положениях нонафторбифениленовых фрагментов (см. рис. 3).

Таким образом, предложен способ синтеза мономера, сочетающего перфторароматические моно- и бифениленовые фрагменты, и на его основе — лестничного полиэфира PIM типа. Благодаря наличию в составе синтезированного полимера жестких дибензодиоксиновых и спиробисиндановых звеньев, а также указанных фторированных фрагментов, следует ожидать, что такой полимер будет обладать высокой удельной площадью поверхности (аналогично всем PIM полимерам) и улучшенными газотранспортными характеристиками. Полученный мономер также перспективен для синтеза простых линейных фторированных полиэфиров с низкими значениями диэлектрической проницаемости, оптических потерь и коэффициента преломления.

Цитированная литература

- Shevchenko V. V., Tkachenko I. M., Shekera O. V. Nucleus-fluorinated aromatic polyethers // Polym. Sci. Ser. B. - 2010. - 52, No 7-8. - P. 408-430.
- Dhara M. G., Banerjee S. Fluorinated high-performance polymers: poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups // Prog. Polym. Sci. – 2010. – 35, No 8. – P. 1022–1077.
- Ghosh A., Banerjee S. Sulfonated fluorinated-aromatic polymers as proton exchange membranes // e-Polymers. – 2014. – 14, No 4. – P. 227–257.
- Maier G. Low dielectric constant polymers for microelectronics // Prog. Polym. Sci. 2001. 26, No 1. P. 3–65.
- 5. McKeown N. B. Polymers of Intrinsic Microporosity // ISRN Mater. Sci. 2012. 2012. 513986, 16 p.
- Budd P. M., Bader S. G., Makhseed S., McKeown N. B., Msayib K. J., Tattershall C. E. Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials // Chem. Commun. – 2004. – No 2. – P. 230–231.
- Budd P. M., Makhseed S. M., Ghanem B. S., Msayib K. J., Tattershall C. E., McKeown N. B. Microporous polymeric materials // Mater. Today. – 2004. – 7, No 4. – P. 40–46.
- Carta M., Msayib K. J., Budd P. M., McKeown N. B. Novel spirobisindanes for use as precursors to polymers of intrinsic microporosity // Org. Lett. – 2008. – 10, No 13. – P. 2641–2643.
- Cui Z., Drioli E., Lee Y. M. Recent progress in fluoropolymers for membranes // Prog. Polym. Sci. 2014. – 39, No 1. – P. 164–198.
- 10. Yampolskii Y. Polymeric gas separation membranes // Macromolecules. 2012. 45, No 8. P. 3298–3311.
- Du N., Robertson G. P., Song J., Pinnau I., Thomas S., Guiver M. D. Polymers of intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation // Macromolecules. – 2008. – 41, No 24. – P. 9656–9662.
- Makhseed S., Samuel J., Bumajdad A., Hassan M. Synthesis and characterization of fluoropolymers with intrinsic microporosity and their hydrogen adsorption studies // J. Appl. Polym. Sci. – 2008. – 109, No 4. – P. 2591–2597.
- Каменева Т. М., Маличенко Б. Ф., Шелудько Е. В., Погорелый В. К., Шерстюк А. И., Роженко А. Б. Бисфенолы на основе гексафторбензола и декафторбифенила // Журн. орг. хим. – 1989. – 25, № 3. – С. 576–582.
- Song J., Du N., Dai Y., Robertson G. P., Guiver M. D., Thomas S., Pinnau I. Linear high molecular weight ladder polymers by optimized polycondensation of tetrahydroxytetramethylspirobisindane and 1,4-dicyanotetrafluorobenzene // Macromolecules. – 2008. – 41, No 20. – P. 7411–7417.

References

- 1. Shevchenko V. V., Tkachenko I. M., Shekera O. V. Polym. Sci. Ser. B., 2010, 52, No 7–8: 408–430.
- 2. Dhara M. G., Banerjee S. Prog. Polym. Sci., 2010, 35, No 8: 1022–1077.
- 3. Ghosh A., Banerjee S. e-Polymers, 2014, 14, No 4: 227-257.
- 4. Maier G. Prog. Polym. Sci., 2001, 26, No 1: P. 3-65.
- 5. McKeown N. B. ISRN Mater. Sci., 2012, 2012: 513986.
- Budd P. M., Bader S. G., Makhseed S., McKeown N. B., Msayib K. J., Tattershall C. E. Chem. Commun, 2004, No 2: 230–231.
- Budd P. M., Makhseed S. M., Ghanem B. S., Msayib K. J., Tattershall C. E., McKeown N. B. Mater. Today, 2004, 7, No 4: 40–46.
- 8. Carta M., Msayib K. J., Budd P. M., McKeown N. B. Org. Lett., 2008, 10, No 13: 2641–2643.
- 9. Cui Z., Drioli E., Lee Y. M. Prog. Polym. Sci., 2014, 39, No 1: 164–198.
- 10. Yampolskii Y. Macromolecules, 2012, 45, No 8: 3298-3311.

ISSN 1025-6415 Доп. НАН України, 2016, №7

- 11. Du N., Robertson G. P., Song J., Pinnau I., Thomas S., Guiver M. D. Macromolecules, 2008, 41, No 24: 9656–9662.
- 12. Makhseed S., Samuel J., Bumajdad A., Hassan M. J. Appl. Polym. Sci., 2008, 109, No 4: 2591-2597.
- 13. Kameneva T. M., Malichenko B. F., Sheludko E. V., Pogorelyiy V. K., Sherstyuk A. I., Rozhenko A. B. Zh. organ. khim. 1989, 25, No 3: 576–582.
- 14. Song J., Du N., Dai Y., Robertson G. P., Guiver M. D., Thomas S., Pinnau I. Macromolecules, 2008, 41, No 20: 7411–7417.

Поступило в редакцию 26.11.2015

І.М. Ткаченко¹, Я.Л. Кобзар¹, В.В. Кравченко², О.В. Шекера¹, член-кореспондент НАН України **В.В. Шевченко¹**

¹Інститут хімії високомолекулярних сполук НАН України, Київ ²Інститут фізико-органічної хімії і вуглехімії ім. Л. М. Литвиненка НАН України, Київ *E-mail:* valshevchenko@yandex.ru

Синтез 4,4'-біс(нонафторбіфеніл-4-оксифеніл)-1,4окситетрафторбензолу та на його основі драбинчастого спіробісінданвмісного поліетеру

Розроблено спосіб синтезу 4,4'-біс(нонафторбіфеніл-4-оксифеніл)вмісного мономера з тетрафторбензольним центральним ядром на основі декафторбіфенілу та 4-[2,3,5,6-тетрафтор-4-(4-гідроксифенокси)фенокси]фенолу. Його взаємодією зі спіробіскатехолом 5,5',6,6'тетрагідрокси-3,3,3',3'-тетраметил-1,1'-спіробісінданом синтезовано фторований в ядро ароматичний поліетер драбинчастої будови. Поеднання в його складі жорстких дибензодіоксинових ланок разом із спіробісіндановими фрагментами (вузли зігнутості) приводить до пониження щільності упаковки макромолекулярних ланцюгів, що уявляється перспективним для регулювання транспортних характеристик полімерних систем.

Ключові слова: фторовані ароматичні поліетери, перфторароматичні фрагменти, драбинчасті полімери, РІМ полімери, спіробісіндан.

I. M. Tkachenko¹, Ya. L. Kobzar¹, V. V. Kravchenko², O. V. Shekera¹, Corresponding Member of the NAS of Ukraine V. V. Shevchenko¹

¹Institute of Macromolecular Chemistry of the NAS of Ukraine, Kiev ²L. M. Litvinenko Institute of Physical-Organic and Coal Chemistry of the NAS of Ukraine, Kiev *E-mail:* valshevchenko@yandex.ru

Synthesis of 4,4'-bis(nonafluorobiphenyl-4-oxyphenyl)-1,4-oxytetrafluorobenzene and ladder spirobisindane-containing polyether on its base

A method of synthesis of 4,4'-bis(nonafluorobiphenyl-4-oxyphenyl)-containing monomer with tetrafluorobenzene central unit based on decafluorobiphenyl and 4-[2,3,5,6-tetrafluoro-4-(4-hydroxyphenoxy)phenoxy]phenol is developed. Ladder type aromatic polyether is synthesized by the interaction of the obtained monomer with spiro-bis-catechol 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethyl-1,1'-spirobisindane. The presence of both rigid dibenzodioxin and spirobisindane fragments (site of contortion) in its structure leads to decreasing the packing density of macromolecular chains that is promising for the regulation of transport properties of polymeric systems.

Keywords: fluorinated poly(arylene ether)s, perfluorinated fragments, ladder polymers, PIM polymers, spirobisindane.