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The damped sloshing in an upright
circular tank due to an orbital forcing
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The nonlinear Narimanov—Moiseev-type modal system with linear damping terms is employed to study the damped
steady-state resonant sloshing in an upright circular tank due to a prescribed horizontal orbital (elliptic) tank motion
with the forcing frequency close to the lowest natural sloshing frequency. Whereas the undamped sloshing implies
coexisting the co-directed (with forcing) and counter-directed angular progressive waves (swirling), the damping
makes the counter-directed swirling impossible as the forcing orbit tends to a circle.
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An upright circular cylindrical rigid tank performs a small-magnitude prescribed periodic ho-
rizontal motion, which is described by the two generalized coordinates rm;(¢) and 7mn,(¢)
(7 is the tank radius) as shown in fig. 1. Those tank motions are relevant for bioreactors [1]. In
contrast to industrial containers whose dimensions are relatively large, the bioreactors have
1y =5—10 [cm] that requires accounting for the damping associated with a laminar boundary
layer and the bulk viscosity.

The problem is studied in the nondimensional statement provided by the characteristic size
7 and time 1/, where o is the forcing frequency close to the lowest natural sloshing frequen-
¢y 6¢4. The nondimensional forcing magnitude is small, i.e. n;(¢)=0(¢),i=1,2. Fig. 1 illustrates
the adopted nomenclature. The unknowns, ¢ and @ (the velocity potential), are defined in the
tank-fixed coordinate system and can be found from either the corresponding free-surface
problem or its equivalent variational formulation. Using the Fourier-type representation (in
the cylindrical coordinates)

C_,(T, 0, t) = i JM(kMir)COS(Me) pMi(t)—i_ i]m(kmiT)Sin(me)rmi(t) (1)
M,i m,i

makes it possible to derive an approximate system of ordinary differential equations (non-
linear modal equations [2]) with respect to the free-surface generalized coordinates py;(¢)
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Fig. 1. The domain Q(¢) is confined by the free surface 2(¢) (z =¢(r, 9, t)) z
and the wetted tank surface S(¢). Sloshing is considered in the tank-
fixed coordinate system Oxyz whose coordinate plane Oxy coincides with
the mean (hydrostatic) free surface X; Oz is the symmetry axis. Small-
magnitude periodic tank excitations are governed by generalized coor-
dinates 1 (¢) (surge) and n,(¢) (sway)
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and 7,,(t); here, Jj/(-)is the Bessel functions of the first
kind, k; are the radial wave numbers (Jj,(ky;)=0), and Q)

6 =k tanh(ky;h)g /7y are the dimensional natural slo-
shing frequencies (g is the gravity acceleration).

Furthermore, the nonlinear Narimanov—Moiseev-type mo-
dal system [2] (the infinite-dimensional system of ordinary dif-
ferential equations with respect to p,;(¢) and r,,(¢)) is equipped with the linear damping terms
28,40 yiPyi and 28,4647y, Where the damping coefficients &, are taken according to the
formula by Miles [3], which provides a rather accurate theoretical prediction of the logarithmic
decrements of the natural sloshing modes due to the boundary layer and the bulk viscosity. The
2n-periodic solutions of the modified modal system describe the resonant steady-state sloshing.
To find the asymptotic steady-state solutions, we use the Bubnov—Galerkin procedure [2, 4] by
posing the lowest-order components of the primary resonantly excited modes as

WANA

N

|

p(t)=acost+asint+0(e), r4(t) = l;cost+bsint+0(e), (2)
where the nondimensional amplitudes a, @, b,and b are of 0(81/ 3). Having known these
amplitudes approximates the steady-state free-surface elevations as the superposition of the two
out-of-phase angular modes

c(r,0,t)= J{(kyyr)[(acosO+ b sin®)cost + (@ cosO+bsinB)sint]+0(e'/?), 3)

which implies the so-called swirling (angular progressive wave) unless (acosO+bsin®) and
(acos®+bsin®) are congruent patterns (< ab=ab). The latter means that (3) determines
a standing wave. Occurrence of swirling and standing waves was in many details discussed in
[2,4—6].

The Bubnov—Galerkin procedure leads to a necessary solvability condition with respect of
a, a, b,and b appearing as a system of nonlinear algebraic equations [2, 4, 5]. To describe the
steady-state sloshing, we should solve the system for any 6{{ =0y /0 close to 1. The first
Lyapunov method can be used to study the stability. The algebraic system is rederived in terms of
the integral amplitudes A, B (the main wave elevation components in the Ox and Oy directions,

respectively) and the phase-lags v, ¢:

A=va?>+a* and B=+b*+b° (4a)

a=Acosy, a=Asiny, b=Bcos¢, b=Bsing, (4b)
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Fig. 2. Response curves in the (6/0,,, A, B) -space for the longitudinal (¢ = 0 ) harmonic forcing in the Oxz-plane,
h/r, = 1.5, the nondimensional forcing amplitude n,,,= 0.01 (n,, = 0). The undamped sloshing (¢ = 0) is presented
in (a) and the damped case (¢ = 0.02) is shown in (b). There is no stable steady-state sloshing between E, and E,,
where irregular (chaotic) waves are expected. Curves on (close to) the (5/c,,, A)-plane correspond to the
(almost) planar wave regime

A[G? —1+mA® +(my—F)B*|=¢, cosy; A[DB*+&]=¢, siny;

B[Gf1 -1+ m132 +(mg —F)A%)= €, Sing; B[DA%-¢]= €, COSQ; (52)
F = (mg~my)cos (o) = (mg —my) / (1+C?), (5b)
D = (mg —my)sin(or)cos(or) = (mg —m; )C / (1+C?),

where a=¢-y, C=tana, 0<e, <eg, #0, F(a) and D(a) are m-periodic functions of the
phase-lags difference o, and €,,€, are linear functions of the forcing amplitudes My,, My,
The coefficients m; and m, are known functions of the liquid depth (see, [2, 4]) but &=2&,
(damping rate of the two lowest natural sloshing modes). A special numerical scheme [7] was
developed to solve (5), i.e. to describe how the main wave amplitude components A and B
change versus 6 /6.

The undamped resonant steady-state sloshing due to longitudinal excitations along the OX
axis (e, >0,e,=0,E=0) was analyzed in [2, 4]. A planar standing wave and the swirling are
identified. In terms of (4) and (5) with &=0 these imply B=0,siny=0,C=0, and
AB#0,siny =cos@=0, (C===), respectively. The swirling consists of two identical angular
progressive waves occurring in either counter- or clockwise directions, they correspond to C =+
and —oo respectively. Fig. 2, a presents the corresponding response curves. Case (b) shows the
linear damping effect with £=0.02 The branches belonging (close) to the plane 6 /6,{, A are
responsible for the (almost) planar standing wave regime. The regime is stable to the left of E
and to the right of E,. It becomes unstable in a neighborhood of the primary resonance 6 /6, =1,
where the stable swirling (to the right of H(H,) ) and irregular waves (the steady-state sloshing
is unstable) between E; and H(H,) are predicted. The damping removes infinite points on the
response curves of (a), so that the steady-state swirling branching in () constitutes an arc pinned
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Fig. 3. Response curves for 8 =¢, /¢, > 0 in the (5/c,, A, B)-space. The steady-state resonant sloshing is due

to an elliptic counterclockwise forcing with n,, = 0.01, n,, = dn,,; & = 0.02. All the points on the response
curves correspond to the swirling. The bold lines mark the stability

at E, and P, which can be treated as bifurcation points, where the swirling emerges from the
(almost) planar steady-state wave regime.

In [5], we showed that any orbital small-magnitude periodic tank motions are equivalent, to
within the higher-order terms, to an artificial elliptic-type horizontal excitation with g, = I
0 <3< 1. How the response curves of the damped steady-state sloshing change with increasing &
is shown in Fig. 3. When 80, all the steady-state sloshing regimes are of the swirling type.
Specifically, there are no identical swirling waves with opposite directions, as it has been in the
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longitudinal case (each point on PH;H,E, in Fig. 2, b implies the pair of these waves). The con-
nected branching in Fig. 2, b splits into the response curve E;HH,E, existing for any 6 /6y,
and 0<d<1 and corresponding to the co-directed (with the counterclockwise elliptic forcing)
angular progressive waves and the loop-like branch with R, and R, whose points imply the coun-
ter-directed swirling. Fig. 3 shows that the latter branch disappears, as 8 increases. This is a very
interesting fact, which contradicts the steady-state analysis of the undamped sloshing in [2],
where both the co- and counter-directed angular progressive waves exist and can be stable in cer-
tain frequency ranges for any 0 <8 <1.

In summary, the linear viscous damping matters for the orbitally-excited sloshing in bio-
reactors of an upright circular cylindrical shape. It affects qualitatively and quantitatively the
steady-state sloshing and the corresponding response curves. The most interesting fact is that
the damping, even being relatively small, makes the counter-directed angular progressive waves
(swirling) impossible, as the forcing orbit tends to a circle. This fact contradicts the the undamped
steady-state analysis, but it is qualitatively consistent with model tests by M. Reclari in [1].

The first author acknowledges the financial support of the Centre of Autonomous Marine
Operations and Systems (AMOS) whose main sponsor is the Norwegian Research Council (Project
No. 223254--AMOS).
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XJTIOITAHHA 13 ZTEMITOYBAHHAM
Y BEPTUKAJIbHOMY IUJITHAPYHOMY BAKY
ITP1 OPBITAJIBHUMX 3BYPEHHAX

3 BUKOPHUCTAaHHAM HeJliHifTHOI MoganbHoi crictemu HapimanoBa—MoticeeBa 3 MTiHIHHNM AeMIIGyBaHHIM BUBYA-
€TbCsI 3aTyXaloue ycrajeHe XJIOMAHHA PIMHN Y BEPTUKAILHOMY KPYroBoMY 6aKy [P 3aJlaHOMY TOPU30HTaIIb-
HoMy opbiTasbHOMY (eiNTHYHOMY) PyCi HOCYAUHU 3 BUMYIIEHOIO 4acTOTOI0, OJM3BKOIO 0 BIACHOI YacTOTH
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KosmBaHb. To/i SIK BUMIAZIOK 6e3 aeMIyBaHHS BKIIOUAE SIK CITIBHATPsIMIIEH] (i3 HATTPSIMKOM 0pOiTaIbHOTO Py -
Xy), TaK i IPOTHJIEKHO HANPSAMJIEHI KyTOBI IPOrpecuBHI XBUI, AeMII(pyBaHHS POOUTh HEMOKJIUBUM iCHYBaHHS
MPOTUIEKHO HATTPABJIEHOT XBUJTI TIPH 30YPEHHSX, OIM3bKUX 10 KPYTOBUX.

Kniouosi crosa: xmonanns piounu, demnpyeanmsi, ycmaieni Xeuu.
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[VMIECKAHUE C AEMIIOVPOBAHUEM
B BEPTUKAJIBHOM IIMJIMHAPNYECKOM BAKE
TP OPBUTAJIBHBIX BO3BYXKAEHMAX

C ucnoJsib30BaHUEM HEJIMHEIHOI MOIa/IbHOI cucTeMbl HapumanoBa—MowceeBa ¢ IMHEWHBIM JeMITI(UPOBAHUEM
M3yYaeTcsT 3aTyXalolee yCTaHOBUBINEECs TLIECKAHUE JKUAKOCTH B BEPTUKATBHOM KPYTOBOM OaKe Mpu 3aJaHHOM
FOPU3OHTATIBHOM OPOUTATBHOM (AJTUIITHYECKOM ) IBUKEHIH COCY/IA C BBIHYKAEHHON 4acTOTOM, 61M3KOH K cO6-
CTBEHHOM 4acToTe KoJebanuii sKMAKOCTH. B TO Bpemst Kak ciydaii 6e3 geMndupoBaHms BKIIOYAET KaK COHATIPAB-
JieHHbIe (C HAITPaBJIEHIEM OPOUTAIBHOTO IBVKEHUS ), TAK U TIPOTHBOTIONOKHO HAMIPABJIEHHbIE YIJIOBBIE TTPOTPEC-
CUBHBIE BOJIHBI, JIeMII(hUPOBAHNE /leTaeT HEBO3MOKHBIM CYTIIECTBOBAHNE TIPOTUBOTIOI0KHO HATIPABIEHHOM BOJI-
HBI [IPU BO3OYKICHUAX, OIU3KIX K KPYTOBBIM.

Kmoueswte cnosa: nieckanue ofcuaxocmu, aeanbupoeaHue, ycmanosusuuecst 60J1HbsL.
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