doi: https://doi.org/10.15407/dopovidi2017.04.070

УДК 548.312.3

Ю.О. Тітов, Н.М. Білявина, М.С. Слободяник, А.А. Бабарик, М.В. Тимошенко

Київський національний університет ім. Тараса Шевченка E-mail: tit@univ.kiev.ua

Вплив складу на будову шаруватої перовськітоподібної структури індатів А^{II}LaInO₄

Представлено членом-кореспондентом НАН України М.С. Слободяником

Термообробкою спільно закристалізованих нітратів синтезовано фазу $Sr_{0,7}Ca_{0,3}LaInO_4$ і методом рентгенівської дифракції порошку визначено її шарувату перовськітоподібну структуру (ШПС). Установлено ізоструктурність $Sr_{0,7}Ca_{0,3}LaInO_4$ і SrLaInO₄ (пр.гр. Pbca). Виявлено вплив складу на будову ШПС одношарових індатів $A^{II}LnInO_4$. Показано, що заміщення атомів A-позиції в структурі $A^{II}LnInO_4$ на менші атоми збільшує ступінь деформації міжблочних поліедрів (A^{II} , $Ln)O_9$, що призводить до дестабілізації їх ШПС.

Ключові слова: індати A^{II}LnInO₄, шарувата перовськітоподібна структура, порошкова рентгенівська дифракція.

Сполуки загального складу $A_{n+1}B_nO_{3n+1}$ із шаруватою перовськітоподібною структурою (ШПС) мають комплекс практично важливих фізико-хімічних властивостей, таких як фотокаталіз, іонообмінні властивості, надпровідність та ін. [1, 2]. Підвищений інтерес до одношарових індатів $A^{II}LaInO_4$ обумовлений наявністю у них іонопровідних властивостей [3, 4] та перспективою їх застосування як твердих електролітів. Проте до цього часу для індатів $A^{II}LaInO_4$ залишаються нез'ясованими взаємозв'язки склад – будова ШПС, без знання яких неможливий синтез нових матеріалів на їх основі.

Одним із основних факторів, які визначають можливість існування шаруватих сполук $A^{II}LnB^{III}O_4 \in$ геометричний фактор, зокрема відповідність розмірів катіонів A^{2+} та Ln^{3+} величині пустот в ШПС. Так, існують алюмінати $A^{II}LnAlO_4$ ($A^{II} = Ca, Sr$) [5] і галати $A^{II}LnGaO_4$ ($A^{II} = Ca, Sr$) [6], а відсутність $BaLnB^{III}O_4$ ($B^{III} = Al$, Ga) обумовлена малими розмірами як октаедрів $Al(Ga)O_6$, так і пустот між ними, що унеможливлює розміщення в них великих катіонів Ba^{2+} .

Проте дією цього фактору неможливо пояснити утворення $A^{II}LnInO_4$ ($A^{II} = Ba$, Sr) [7] та відсутність $CaLnInO_4$, оскільки розміри пустот в ШПС $A^{II}LnInO_4$ перевищують розміри катіона Ca^{2+} . Можна припустити, що в даному випадку на стабільність індатів $A^{II}LnInO_4$ впливають інші фактори, зокрема особливості будови їх ШПС.

© Ю.О. Тітов, Н.М. Білявина, М.С. Слободяник, А.А. Бабарик, М.В. Тимошенко, 2017

Мета даної роботи – визначення характеру впливу типу лужноземельного металу на будову шаруватої перовськітоподібної структури індатів А^{II}LaInO₄.

Для вирішення поставленої задачі нами було проведено визначення ШПС фази $Sr_{0,7}Ca_{0,3}LaInO_4$ з ізовалентним заміщенням атомів стронцію на атоми кальцію та ступенем заміщення (*x* = 0,3), близьким до максимально можливого в даній системі (*x* ≈ 0,4 [8]).

Синтез зразків $Sr_{0,7}Ca_{0,3}LaInO_4$ проведено термообробкою шихти спільно закристалізованих нітратів за методикою, описаною в [7, 8]. Як вихідні використані водні розчини $Sr(NO_3)_2$, $Ca(NO_3)_2$, $La(NO_3)_3$ та $In(NO_3)_3$ марок "хч".

Кристалічна структура $Sr_{0,7}Ca_{0,3}LaInO_4$ визначена методом Рітвельда. Рентгенівські дифракційні спектри полікристалічних зразків записано на дифрактометрі Shimadzu XRD-6000 у дискретному режимі (крок сканування 0,02°, експозиція в точці 5 с, кути 2θ = 20÷85°) на мідному фільтрованому (дуговий графітовий монохроматор перед лічильником) Cu K_{α} випромінюванні. Початкова обробка дифрактограм, а також структурні розрахунки про-

Рис. 2. Залежність ступеня деформації (Δ) поліедрів (A^{II} , La)O₉ в ШПС A^{II} LaInO₄ від середнього кристалічного іонного радіуса атомів А-позиції ШПС $R(A^{II}, Ln)_{IX}$. У роботі використана система кристалічних іонних радіусів [10]

Позиція	Атом	Заповнення	X	Y	Z				
8c	Sr	0,35	0,1470(2)	0,9893(3)	0,9641(3)				
8c	Ca	0,15	0,1470(2)	0,9893(3)	0,9641(3)				
8c	La	0,5	0,1470(2)	0,9893(3)	0,9641(3)				
4b	In	1	0,5	0	0				
8c	O1	1	0,014(2)	0,197(3)	0,205(3)				
8c	O2	1	0,332(3)	0,093(2)	0,016(2)				
Просторова гру	па	-	<i>Pbca</i> (№ 61)						
Періоди елемен	тарної комірки, н	IM	a = 1,2514(2); b = 0,5861(2); c = 0,5856(1)						
Незалежні відби	ИТТЯ		134						
Загальний ізотр	опний В фактор,	нм ²	$0,56(3) \cdot 10^{-2}$						
Фактор недосто	вірності		$R_I = 0,045$						

Таблиця 1. Структурні дані Sr_{0.7}Ca_{0.3}LaInO₄

ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2017. № 4

$BaLaInO_4$	BaLaInO ₄	0,214(1)	0,214(2)	0,214(2)	0,214(1)	0,219(1)	0,219(2)				0,216		$1\cdot 10^{-4}$	
SrLaInO ₄	$d,_{ m HM}$	0,208(1)	0,208(1)	0,216(2)	0,216(2)	0,223(2)	0,223(2)				0,216		$8 \cdot 10^{-4}$	
$Sr_{0,7}Ca_{0,3}LaInO_4$		0,208(1)	0,208(1)	0,215(2)	0,215(2)	0,217(2)	0,217(2)				0,213		3.10^{-4}	
Відстані		In - O1	- 01	- 01	- 01	- 02	- 02				Середня	відстань In – О	ΔInO_6	
LaInO ₄ [7] BaLaInO ₄	$d_{ m ,HM}$	0,232(2)	$0,243(1)^{*}$	0,269(2)	0,285(1)	0,294(2)	0,300(2)	0,301(2)	0,310(3)	0,326(3)	0,284		$106\cdot10^{-4}$	
	Відстані	(Ba,La) – O1	- O2	- 01	- O2	- O2	- 01	- 02	- O2	- 01	Середня	відстань (Ва,Lа) – О	Δ(Ba,La)O ₉	
Ca _{0,3} LaInO ₄ , SrLaInO ₄ ra Ba SrLaInO ₄	d, HM	$0,238(2)^{*}$	0,252(1)	0,252(2)	0,254(2)	0,262(1)	0,282(1)	0,320(3)	0,339(2)	0,347(3)	0,283		$192\cdot 10^{-4}$	
	Відстані	(Sr,La) – O2	– O2	– O2	- O1	- O1	- 01	- O1	– O2	- O2	Середня	відстань (Sr,La) – О	$\Delta(Sr,La)O_9$	-
в кристалічних структурах Sr _{0,7} Sr _{0,7} Ca _{0,3} LaInO ₄	d, HM	0,236(2)	$0,241(2)^{*}$	0,250(1)	0,250(1)	0,268(1)	0,291(3)	0,328(2)	0,328(2)	0,356(3)	0,283		$219\cdot 10^{-4}$	
	Відстані	(Sr,Ca,La) – O2	- 02	- 02	- 01	- 01	- 01	- 01	- O2	- 02	Середня	відстань (Sr,Ca,La) – О	$\Delta(Sr,Ca,La)O_9$	
	$Sr_{0,7}Ca_{0,3}LaInO_4 \qquad SrLaInO_4 \qquad BaLaInO_4 \qquad BaLaInO_4 \qquad BaLaInO_4 \qquad Sr_{0,7}Ca_{0,3}LaInO_4 \qquad SrLaInO_4 \qquad BaLaInO_4 \qquad $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$Sr_{0,7}C_{0,3}$ LalhO_4 SrLalhO_4 BalalhO_4 BalalhO_4 SrLalhO_4 SrLalhO_4 SrLalhO_4 BalalhO_4 Biacrani d_1 M Biacrani d_1 M <t< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></t<>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Примітка. Розрахунок ступеня деформації октаедрів МеО" у кристалічній структурі проведено за формулою Δ = 1/n∑[($R_i - R$)/R]² ($R_i -$ відстані — міжблочна відстань. координаційне число) [10]; * — середня відстань M
е — О, n — R Ö Me

ведено з використанням апаратнопрограмного комплексу [9].

Індексування дифрактограми $Sr_{0,7}Ca_{0,3}LaInO_4$ показало належність його ШПС до ромбічної сингонії. На дифрактограмі присутні відбиття з такими типами індексів: *hkl* – будь-які, *0kl* з *k* = 2*n*, *h0l* з *l* = 2*n*, *hk*0 з *h* = 2*n*, *h00*, *0k0*, *00l* з *h*, *k*, *l* = 2*n*, які відповідають центросиметричній просторовій групі *Pbca*.

Початкову оцінку координат атомів для вихідної моделі структури $Sr_{0,7}Ca_{0,3}LaInO_4$ проведено за відомими структурними даними для SrLaInO₄ (пр.гр. *Pbca*) [7]. Результати уточнення моделі наведено у табл. 1 та на рис. 1. Визначений при розрахунку структури склад фази в межах похибки визначення відповідає експериментально заданому.

Основними структурними одиницями ШПС $Sr_{0,7}Ca_{0,3}LaInO_4 \in$ двовимірні (нескінченні в напрямках осей *Y* і *Z*) перовськітоподібні блоки завтовшки в один шар з'єднаних вершинами октаедрів InO₆ (див. рис. 1). Сусідні блоки зсунуті один відносно одного на половину ребра перовськітового куба, розділені міжблочним шаром з полієдрів (Sr,Ca,La)O₉ і утримуються разом за допомогою зв'язків -O-(Sr,Ca,La)-O-.

В одношаровій ШПС $Sr_{0,7}Ca_{0,3}LaInO_4$ катіони Sr, Ca та La статистично розподілені в позиції 8с на границі перовськітоподібного блока. З дев'яти атомів оксигену поліедра (Sr,Ca,La)O₉ вісім атомів (чотири O(1) та чотири O(2)) належать до того ж блока, що і атоми (Sr,Ca,La), а дев'ятий атом оксигену

Таблиця 2. Міжатомні відстані (нм) та ступінь деформації (∆) полієдрів (A^{II},Ln)O₆ і InO₆

(O(2)) є аксіальним атомом октаедра InO_6 сусіднього перовськітоподібного блока. Міжблочний поліедр (Sr,Ca,La)O₉ в ШПС $Sr_{0,7}Ca_{0,3}LaInO_4$ досить сильно деформований (величина його ступеня деформації становить $219 \cdot 10^{-4}$).

Аналіз кристалографічних характеристик фази Sr_{0,7}Ca_{0,3}LaInO₄ зі ступенем заміщення атомів стронцію, близьким до максимально можливого, та відомих одношарових індатів BaLaInO₄ i SrLaInO₄ (див. табл. 1) показав, що зменшення розмірів атомів лужноземельних металів в A-позиції ШПС індатів A^{II}LaInO₄ супроводжується значним лінійним зростанням ступеня деформації поліедрів (A^{II}, La)O₉. Як видно з рис. 2, екстрапольоване значення Δ (Ca, La)O₉ для гіпотетичного індату "CaLaInO₄" буде становити ~265·10⁻⁴, що перевищує такі значення для відомих сполук A^{II}₂BO₄ з одношаровою ШПС.

Слід відзначити, що аналогічне зростання ступеня деформації міжблочних поліедрів (Sr, Ln)O₉ було зафіксовано нами раніше в ряду одношарових індатів SrLnInO₄ при зменшенні розміру атома РЗЕ (Δ (Sr, La)O₉ = 192·10⁻⁴, Δ (Sr, Pr)O₉ = 249·10⁻⁴ [7]) і є однією з головних причин руйнації ШПС в цьому ряду індатів при Ln = Nd.

Одержані нами результати дають підставу для висновку, що на відміну від алюмінатів та галатів $A^{II}LnB^{III}O_4$ основним фактором, який обмежує утворення індатів лужноземельних металів та РЗЕ $A^{II}LnInO_4$, є збільшення ступеня деформації поліедрів (A^{II} , Ln) O_9 при зменшенні розміру атомів А-позиції ШПС.

Характер залежності $\Delta(A^{II}, Ln)O_9 = f(\overline{R}(A^{II}, Ln)_{IX})$ вказує на можливість контрольованого регулювання ступеня деформації поліедрів (A^{II} , $Ln)O_9$ в ШПС індатів $A^{II}LnInO_4$ шляхом ізовалентного заміщення атомів А-позиції ШПС, що, безсумнівно, дозволить впливати на їх властивості, які для значної частини оксидних функціональних матеріалів обумовлені саме деформацією кристалічної структури.

Таким чином, нами синтезована одношарова фаза $Sr_{0,7}Ca_{0,3}LaInO_4$ та визначена її ШПС. На підставі результатів аналізу особливостей будови ШПС індатів $Sr_{0,7}Ca_{0,3}LaInO_4$, SrLnInO₄ та BaLaInO₄ встановлено закономірності впливу розмірів атомів в А-позиції одношарової ШПС індатів $A^{II}LnInO_4$ на ступінь деформації міжблочних поліедрів (A^{II} , Ln) O_9 та на положення границі області існування індатів $A^{II}LnInO_4$ з ШПС, що полегшує цілеспрямований пошук і синтез нових матеріалів на їх основі.

ЦИТОВАНА ЛІТЕРАТУРА

- 1. Александров К.С., Безносиков Б.В. Перовскиты. Настоящее и будущее. Новосибирск: Изд-во СО РАН, 2004. 231 с.
- 2. Schaak R.E., Mallouk T.E. Perovskites by design: a toolbox of solid-state reactions. *Chem. Mater.* 2002. **14**, No 4. P. 1455–1471.
- 3. Kato S., Ogasawara M., Sugai M., Nakata S. Synthesis and oxide ion conductivity of new layered perovskite La_{1-x}Sr_{1+x}InO_{4-d}. *Solid State Ionics*. 2002. **149**, No 1–2. P. 53–57.
- 4. Zhen Y.S., Goodenough J.B. Oxygen ion conductivity in Ba₈In₆O₁₇. *Mat. Res. Bull.* 1990. **25**, No 6. P. 785–790.
- 5. Смирнов Ю.Е., Зверева И.А. Распределение катионов и межатомные взаимодействия в оксидах с гетеровалентным изоморфизмом атомов. III. Сложные алюминаты LaCaAlO₄ (Ln = Y, La, Nd, Gd, Ho, Er, Yb). *Журн. общей химии.* 2001. **71**, № 6. С. 901–908.
- 6. Василечко Л.О., Федорчук А.А., Савицкий Д.И., Матковский А.О., Убизский С.Б. Кристаллическая структура LaCaGaO₄ и NdSrGaO₄. *Неорганические материалы*. 1995. **31**, № 9. С. 1234–1237.
- 7. Тітов Ю.О., Білявина Н.М., Марків В.Я., Слободяник М.С., Краєвська Я.А. Синтез і кристалічна структура BaLaInO₄ та SrLnInO₄ (Ln = La, Pr). *Допов Нац. акад. наук Укр.* 2009. № 10. С. 160—166.

ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2017. № 4

- 8. Тітов Ю.О., Слободяник М.С., Краєвська Я.А., Чумак В.В. Ізовалентне заміщення атомів А-позиції в шаруватій структурі MeLn_nB^{III}_nO_{3n+1} (Me = Ba, Sr, B^{III} = Sc, In). *Укр. хим. журн.* 2016. **82**, № 2. С. 67—70.
- Марків В.Я., Бєлявіна Н.М. Апаратно-програмний комплекс для дослідження полікристалічних речовин за їх дифракційними спектрами. КФМ-97: Тези доп. Другої міжнар. конф. (14—16 жовт. 1997). Львів: Вид-во наук. тов-ва ім. Т.Г. Шевченка, 1997. С. 260—261.
- 10. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and halcogenides. *Acta Crystallogr.* 1976. A32, No 5. P. 751-767.

Надійшло до редакції 11.10.2016

REFERENCES

- 1. Alexandrov, K. S. & Beznosikov, B. V. (2004). Perovskites. The present and future. Novosibirsk: Izd-vo SO RAN (in Russian).
- Schaak, R. E. & Mallouk, T. E. (2002). Perovskites by design: a toolbox of solid-state reactions. Chem. Mater., 14, No. 4, pp. 1455-1471.
- 3. Kato, S., Ogasawara, M., Sugai, M. & Nakata, S. Synthesis and oxide ion conductivity of new layered perovskite La_{1-x}Sr_{1+x}InO_{4-d}. Solid State Ionics, 149, No. 1-2, pp. 53-57.
- 4. Zhen, Y. S., Goodenough, J. B. (1990). Oxygen ion conductivity in Ba₈In₆O₁₇. Mat. Res. Bull., 25, No. 6, pp. 785-790.
- 5. Smirnov, Yu. E. & Zvereva, I. A. (2001). Cation distribution and interatomic interactions in oxides with heterovalent isomorphism. III. Complex aluminates LaCaAlO₄ (Ln = Y, La, Nd, Gd, Ho, Er, Yb). Zhurn. obshchei khimii, 71, No. 6, pp. 901-908 (in Russian).
- 6. Vasilechko, L. O., Fedorchuk, A. A., Savitskiy, D. I., Matkovskiy, A. O. & Ubizskiy, S. B. (1995). Crystal structure LaCaGaO₄ and NdSrGaO₄. Neorganicheskie marerialy, 31, No. 9, pp. 1234-1237 (in Russian).
- 7. Titov, Yu. A., Belyavina, N. M., Markiv, V. Ya., Slobodyanik, M. S., & Krayevska, Ya. A. (2009). Synthesis and crystal structure of BaLaInO₄ and SrLnInO₄ (Ln La, Pr). Dopov. Nac. akad. nauk Ukr., No. 10, pp. 160-166 (in Ukrainian).
- 8. Titov, Yu. A., Slobodyanik, N. S., Krayevskaya, Ya. A. & Chumak, V. V. (2016). Isovalent substitution of A-position atoms in layer structure of $MeLn_nB^{III}{}_nO_{3n+1}$ (Me = Ba, Sr, $B^{III} = Sc$, In). Ukr. khim. zhurn., 82, No. 2, pp. 67-70 (in Ukrainian).
- Markiv, V. Ya. & Belyavina, N. M. (1997, October). Hardware and software system for the study of polycrystalline materials for their diffraction spectra. Proceedings of the 2nd International Conference "KFM-97", (pp. 260-261), Lviv: Vyd-vo nauk. tov-va im. T. G. Shevchenka (in Ukrainian).
- Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and halcogenides. Acta Crystallogr., A32, No. 5, pp. 751-767.

Received 11.10.2016

Ю.А. Титов, Н.Н. Белявина, Н.С. Слободяник, А.А. Бабарик, М.В. Тимошенко Киевский национальный университет им. Тараса Шевченко

E-mail: tit@univ.kiev.ua

ВЛИЯНИЕ СОСТАВА НА СТРОЕНИЕ СЛОИСТОЙ ПЕРОВСКИТОПОДОБНОЙ СТРУКТУРЫ ИНДАТОВ А^{II}LaInO₄

Термообработкой совместно закристаллизованных нитратов синтезирована фаза $Sr_{0,7}Ca_{0,3}LaInO_4$ и методом рентгеновской дифракции порошка определена ее слоистая перовскитоподобная структура (СПС). Установлена изоструктурность $Sr_{0,7}Ca_{0,3}LaInO_4$ и SrLaInO₄ (пр.гр. *Pbca*). Обнаружено влияние состава на строение СПС однослойных индатов $A^{II}LnInO_4$. Показано, что замещение атомов A-позиции в структуре $A^{II}LnInO_4$ на меньшие атомы увеличивает степень деформации межблочных полиэдров (A^{II} , $Ln)O_9$, что приводит к дестабилизации их СПС.

Ключевые слова: индаты A^{II}LnInO₄, слоистая перовскитоподобная структура, порошковая рентгеновская дифракция. Yu.A. Titov, N.M. Belyavina, M.S. Slobodyanik, A.A. Babaryk, M.V. Timoschenko

Taras Shevchenko National University of Kiev E-mail: tit@univ.kiev.ua

INFLUENCE OF THE COMPOSITION ON THE ORGANIZATION OF A LAYERED PEROVSKITE-LIKE STRUCTURE OF INDATES $A^{II}LAINO_4$

The phase $Sr_{0.7}Ca_{0.3}LaInO_4$ has been synthesized by heat treatment of co-crystallized nitrates, and its layered perovskite-like structures (LPS) has been determined by X-ray powder diffraction. It is found that $Sr_{0.7}Ca_{0.3}LaInO_4$ is isostructural to $SrLaInO_4$ (sp. gr. Pbca). Influence of the composition on the organization of LPS mono-layered indates $A^{II}LnInO_4$ is established. It has been shown that the substitution of atoms in the A-position by smaller ones in the $A^{II}LnInO_4$ LPS results in an increase of the deformation degree of the (A^{II} , Ln) O_9 polyhedra, which destabilizes their LPS.

Keywords: indates A^{II}LnInO₄, layered perovskite-like structure, X-ray powder diffraction.