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We propose new multivariate cryptosystems over an n-dimensional free module over the arithmetical ring Z,, based
on the idea of hidden discrete logarithm for Z,). These cryptosystems are based on the hidden Eulerian equations.
If mis a “sufficiently large” product of at least two large primes, then the solution of the equation is hard without
knowledge of the decomposition of m. In the Postquantum Era, one can solve the factorization problem for m and
the discrete logarithm problem for Z,,. However, it does not lead to the straightforward break of such cryptosystem,
because of the parameter o.is unknown. Some examples of such cryptosystems were already proposed. We define their
modifications and generalizations based on the idea of Eulerian transformations, which allow us to use asymmetric
algorithms based on families of nonlinear multiplicatively injective maps with prescribed polynomial density and
degree bounded by constant.

Keywords: postquantum cryptography, multivariate cryptography, public keys, hidden discrete logarithm problem,
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1. On Post Quantum and Multivariate Cryptographies. Post Quantum Cryptography serves
for the research of asymmetric cryptographical algorithms which can be potentially resistant
against attacks based on the use of a quantum computer. The security of currently popular al-
gorithms is based on the complexity of three following known hard problems: integer factori-
zation, discrete logarithm problem, and discrete logarithm problem for elliptic curves. Each of
these problems can be solved for the polynomial time by Peter Shor’s algorithm for a theoretical
quantum computer. Though the known nowadays experimental examples of a quantum computer
are not able to attack the currently used cryptographical algorithm, cryptographers already start-
ed researches of the postquantum security. They have also count on the new results of general
complexity theory.

The history of the international conferences on Post Quantum Cryptography (PQC) started
in 2006. We have to note that Post Quantum Cryptography differs from Quantum Cryptography,
which is based on the idea of usage of quantum phenomena to reach a better security.
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Modern PQC is divided into several directions such as Multivariate Cryptography, Latti-
ce-based Cryptography, Hash-based Cryptography, Code-based Cryptography, and studies of
isogenies for superelliptic curves.

The oldest direction is Multivariate Cryptography (see [1]), which uses a polynomial map
of the affine space K" defined over a finite commutative ring into itself as encryption tools. It
exploits the complexity of finding a solution of a system of nonlinear equations for many variab-
les. Multivariate cryptography uses, as security tools, nonlinear polynomial transformations
X1 = [1(X, X9,y ey X)), Xg = [o(Xy, X9y ey X)), ooy X,y = [, (X4, X9, ..., x,,) acting on the affine space
K", where f;:K[x{, x9,...,x,],i=1,2,..,n are multivariate polynomials given in the standard form,
i. e, via the list of monomials in a chosen order. Important ideas in this direction are given in [2].
The density of a map Fis the maximal number den(F) of monomial terms of f;,i=12,...,n. We
say that den(F) is polynomial, if this parameter has size O(n?) for some positive constant d. The
degree deg(F) of the map Fis the maximal value of degrees f;,i=1,2,..

Let F be a map of K" to itself, which has the polynomial density of size C1n and the poly-
nomial degree of size Cyn % Then the value of Fon the tuple (b, by, ..., b,) can be computed by
O(n n?i+%*1y basic operations of the ring. The current task is the search for an algorithm with re-
sistance to cryptoanalytic attacks based on the ordinary Turing machine. Multivariate cryptography has
to demonstrate the practical security algorithm, which can compete with RSA and Diffie—
Hellman protocols, which are popular methods of elliptic curve cryptography (see [1, 2]).

It is a still young promising research area with the current lack of known cryptosystems
with the proven resistance against attacks with the use of ordinary Turing machines. Studies of
attacks based on a Turing machine and a quantum computer have to be investigated separately,
because of different nature of two machines, deterministic and probabilistic, respectively. Let K
be a commutative ring. S(K") stands for the affine Cremona semigroup of all polynomial trans-
formations of the affine space K”. Multivariate cryptography started from studies of the poten-
tial for a special quadratic encryption multivariate bijective map of K%, where K is an extension
of a finite field F,, of characteristic 2. One of the first such cryptosystems was proposed by Imai
and Matsumoto, and the cryptanalysis for this system was invented by J. Patarin. The survey on
various modifications of this algorithm and corresponding cryptanalysis can be found in [1].
Various attempts to build a secure multivariate public key were unsuccessful, but the research
of the development of new candidates for secure multivariate public keys is going on (see, €. g.,
[3] and references therein).

Applications of Algebraic Graph Theory to Multivariate Cryptography were recently pre-
sented in [4]. This survey is devoted to algorithms based on bijective maps of affine spaces into
ourselves. Applications of algebraic graphs to cryptography started from symmetric algorithms
based on explicit constructions of the extremal graph theory and their directed analogs (see sur-
veys [4, 5]). The main idea is to convert an algebraic graph in a finite automaton and to use pseu-
dorandom walks on a graph as encryption tools. This approach can be also used for the key ex-
change protocols. Nowadays, the idea of "symbolic walks" on algebraic graphs, when the walk on a
graph depends on parameters given as special multivariate polynomials in variables depending on
a plainspace vector, brings several public key cryptosystems. Other source of graphs suitable for
cryptography is connected with finite geometries and their flag system. Bijective multivariate sparse
encryption maps of a rather high degree based on walks in algebraic graphs were proposed in [5].
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One of the first usages of a nonbijective map of multivariate cryptography in the oil and
vinegar cryptosystem was proposed in [6] and analyzed in [7]. Nowadays, this general idea is
strongly supported by work [8] devoted to the security analysis of direct attacks on modified un-
balanced oil and vinegar systems. This algorithm was patented. It seems that such systems and
schemes of rainbow signatures may lead to promising Public Key Schemes of Multivariate En-
cryption defined over finite fields. Nonbijective multivariate sparse encryption maps of degrees
of at least 3, which are based on walks on algebraic graphs D(n, K) defined over general commu-
tative rings, and their homomorphic images were proposed in [9]. A new cryptosystem with non-
bijective multivariate encryption maps of the affine space Z, into itself was presented at the in-
ternational conference DIMA 2015. Tt uses the plainspace (Z:;l )", where n=*k (k—1)/2, k>1, can
be any natural number.

The private key space is formed by a sequence of general multivariate polynomials from
Zplxy, 29, ..., X(3_qy] and a sequence of parameters /;,i=1,2,..,k—1, which are mutually prime
with @(m). The properties of the encryption map depend strongly on the prime factorization of
m. This nonbijective encryption map is the deformation of a special computation generated by
the Schubert automaton of “k—1 dimensional projective geometry” over Z, . This method does not
use the partition of variables into groups, and the nonbijective nature of the map is caused by
zero devisors of a composite integer m. In fact, the idea of multiple “hidden RSA” is used (see
[10]). The other algorithm exploited the “hidden RSA” idea is described in [11]. In Section 2, we
introduce a concept of multiplicatively injective maps, Eulerian diagonal maps, and the idea of
their use for the construction of cryptosystems.

2. On Eulerian public key schemes. We refer to the equation x* = b in the arithmetical ring
Z, as an Eulerian equation, it (o, m)=1. We say_ that the multivariate map F:Z, — Z,is an
Eulemm map of rank 7, if F is injective on o= (Z ) Z,", the parameter 7 is mlmmal Wlth this
property, and each equation F (x) = b is reducible to the solution of » Eulerian equations. The first
examples of such maps can be found in [11] (rank 1) and [10] (case of arbitrarily large rank).

In this paper, we suggest a scheme based on the following idea of a diagonal Eulerian trans-
formation of the affine space over Z . We say that the polynomial map G of Z,, to Z, is multipli-
catively injective, if its restriction on (Z )" is injective. So, bijective polynomlal maps and Eule-
rian maps of rank > 0 are multiplicatively injective. Let us consider a transformation T ;, i
of Z toitself of kind x; — y;, where

where (a;;, 9(m))=1 for i=12,..,m; a; j<e(m), and the sequence L of elements i, iy, ..., i, is a
permutation of 1,2,...,n. Let A be a triangular matrix with entries 8 ; as above. We refer to a map
of kind T4 1y, where §is a monomial linear transformation x; = ;a0 ;) , for which ; is an ele-
ment of Z;, i=1,2,..,n,and 7 is a permutation of (1, 2, ..., 7), as a monomial Eulerian map ET(A,L)s'

We say that 1 is an Eulerian element, if it is a composition of several monomial Eulerian
maps. It is clear that 1 sends the variable x; to a certain monomial term. The decomposition of 1
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into a product of Eulerian monomial transformations allows us to find a solution of the equa-
tions 1(x) =b for x from (Z; )". Really, we have to find b, from the condition t,(b,)=5 and to
compute b, , from the condition t,_;(b,_1)=by, ..., x = b, from the condition t,(b;)=b,.

Assume that a polynomial transformation Fof Z,, written in the standard form has a poly-
nomial degree d (maximal degree of monomial terms) and a polynomial density. We can take a
bijective affine map T of Z,, onto itself and form the map G =1tFT of a finite degree bounded by
some linear function of the variable .

We refer to G as an Eulerian deformation of F. If F has the density of size O(n'), then the
density of G is O(n ™). It is clear that the Eulerian deformation of a multiplicatively injective
map is also a multiplicatively injective transformation.

Let us consider the asymmetric encryption scheme based on the pair F, D, where Fis a multi-
plicatively injective transformation of (Z; )" into Z; and D is the data (private key), which al-
lows one to solve the equation F (x) = b for x from Q = (Z:n )" for the polynomial time. As usual,
Alice has (F, D) and the public user Bob has only a map Fin the standard form. So, Bob forms the
plaintext p from Q and sends the ciphertext ¢ = F (p) to Alice. She uses D and solves F (x) = ¢
for the unknown tuple x for the decryption.

Let us consider a modification of the above scheme via the Eulerian deformation G =tFT.
Alice will use new data D' obtained by adding the maps t, S, T to D. Alice sends the encryption
rule G to the public user Bob. He sends ¢ = G (p). Alice computes d = T~!(¢). She forms the tuple
of unknowns y = (y,, ¥,, ..., yn). She uses the data D to get the solution b of F (y) = d. Finally, she
computes b" as S! (b) and gets the plaintext as a solution of the Eulerian system t(x)="5".

This scheme can be applied to various known pairs (F, D), where F is a bijective map. For
instance, we can take a stable cubic transformation of K” into itself defined in [12] or [13] in
the case where K= Z, for the chosen parameter m or nonstable maps [6].

Here, we concentrate on the Eulerian maps of rank s, when D contains information on the
triangular system of Eulerian equations

by () =agx; “ 4+ by =cq,
o o
hy (x5 %3, ) = agx; 2, 22 + by (x5 ) = ¢,

— Oy . Os2 o =
hs(xi1 1 Xigr wees X )= asxi1s xi; xisss +bs(xli rXiyr o iy )=cs,

beZz, beZ

mlxy ]

byeZ

iy, gy oy ] Ao Jj=12,..s, are regular elements of Z, , i,, iy, ..., i is
a permutation of {1, 2, ..., s}, (oyy, @(m))=1,i=12, .., s.

We refer to the map F: x;— hj (xi1 ) Xy veery X ), j=1,2,...,s,as a triangular Eulerian map. As-
sume that a;;,i=1,2,.., s, are unknown. Other coefficients are available together with the solu-
tion d,, d,, ..., d. Then finding o

discrete logarithm problem:

4 =(er=b) /ay and =0y, d5 =(e, ~bydy) /a1t and

ii=12,.. s, can be done via the consecutive solution of the

X=0yy, ey dy =(cg—by(dy, dy, ... ds_y)) / (a,d{" dg?. 4ty

Ps—1
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In the case where m is a large prime integer, the determination of a discrete logarithm is the
known hard problem. In the case where m is a product of at least two large primes, the solution of a
triangular Eulerian system is hard without knowledge of the factorization problem for integer m.

Note that the parameters a; ; (as well as a i of the diagonal affine transformation) will be
unknown for the public user Bob in the above-described cryptosystem. So, we can talk on the
hidden discrete logarithm problem and the hidden factorization problem for integer m.

Example 1. Let us consider a cryptosystem based on the deformation of the above-written
Eulerian triangular map Fof Z,,.

The map Fis defined by the parameters a, as, ..., a,, from Z,*n, triangular matrices A, and the
list of elements by € Z,,, by(21) € Z,y,,1, b3(21, 20) € Zyyp 2070 0n (21 20,00 2 ) € Zyp 2 2]
Polynomials b, of constant degrees ¢; can be specially chosen to make the density of FF of the
prescribed size O (n?) for a certain constant d. We can choose a matrix A to make the degree
of F bounded by some constant ¢.

Alice takes a sequence of triangular matrices A,, A,, A, and linear orders L, L,, .., L,
on 1, 2, .., n to form Eulerian diagonal transformations t T L of constant degree ;. She takes
strings k1, 7»2, k and permutations 7; to form monomial linear transformations S,i=1,2,..,k
Alice chooses a matrix B and a vector ¢ to form a bijective affine transformation Tsendmg x= (x1,
Xy, ..., X,) into xB + c.

Ahce computes the polynomial map G =1, 1 51,T4, 1,5 .- T4, 1, SpFT and writes G in
the standard form. The degree of G is bounded by tity .. 1, and its densﬂ:y is of size O (n'*1).

Alice sends the standard form of G to the public user Bob.

He writes a plaintext p = (py, py, ... p,,) from (Z,,)". He computes the ciphertext G (p) and
sends to Alice. She uses her knowledge on the decomposition G=1, 1 Sy, Ty, 1,59, Ta, 1, SFT-
So, she computes ¢ = T-1(c). She solves the equation F (z) = ¢, for 2. Note that the solutlon
¢ is an element of Z, . Alice gets the solution G- 1 of the equation 1, ; =S8; (). She creates
inductively ¢, ;asa solut1on Ty i Lo =8, ]+1(ck j+1) forj=2,3,.., k- 1. We can see that
c/isa plamtext

Example 2. Let K be a commutative ring. We define A (n, K) as a bipartite graph with the
point set P= K" and a line set L = K" (two copies of a Cartesian power of K are used).

We will use brackets and parentheses to distinguish tuples from P and L. S, (p) = (p,,
Doy - D,y) from P and [[] =1, 1,, .., [ ] from L . The incidence relation I = A (n, K) (or correspond-

’n

ing bipartite graph 1) is given by condition (p) I [1] if and only if the following equations hold:

py—ly=lipy,
p3—l3=pily,
pi—li=lps,
ps—l5=pily,

p,—1,=pl,_4 foroddn,

pn—1, =lip,_ forevenn.

Let us consider the case of finite commutative ring K, |[K| = m. It instantly follows from the
definition that the order of our bipartite graph A(n, K) is 2m". The graph is m-regular. Really, the
ISSN 1025-6415. Jlonos. Hay,. axad. nayx Yxp. 2017. Ne 5 21
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neighbor of a given point (p) is given by the above equations, where the parameters p,, p,, ..., p,,
are fixed elements of the ring, and the symbols /;, [,, ..., [, are variables. It is easy to see that the
value for /; could be freely chosen. This choice uniformly establishes values for /,, 5, ..., /. So, each
point has precisely m neighbors. In a similar way, we observe the neighborhood of the line, which
also contains m neighbors. We introduce the color p(p) of the point (p) and the color p[/] of the
line [1] as the parameters p, and /, respectively.

Graphs A (n, K) with coloring p belong to the class of linguistic graphs defined in [14]. In the
case of linguistic graph v, the path consisting of its vertices v, v, v,, ..., v, is uniquely defined by
the initial vertex v, and colors p(v;), i=1, 2, ..., k, of other vertices from the path. So, the fol-
lowing symbolic computation can be defined. Take the symbolic point (x) = (x, x,, ..., x,)), where x;
are variables, and the symbolic key is a string of polynomials f, (x), f, (x), ..., f, (x) from K [x].

Form the path of vertices v, = x, v, such that v fv,, and p(v,) = f ,(x,), v, such that v,Iv, and
p(vy) = [, (x)), .., v such that o Jo and p(v)) = £, (x)).

We use the term symbolic point-to-point computation in the case of even k and talk on the
symbolic point-to-line computation in the case of odd k. We note that the computation of each
coordinate of v, via the variables x,, x,, ..., x, and polynomials f, (x), f, (x), ..., f, (x) needs only
the arithmetical operations of addition and multiplication. The final vertex o, (point or line)
has coordinates (g(xy), g (%, X9), 83(Xy, X9, X3), ..., &, (¥, X9, ..., x,,)), Where g, (x)) = 1, (x))
g (xy) = [ (xy).

Assume that the equation f(x) = b has at most one solution under the condition that
xet|(t,m)=1. Then the map H:x; — h(x(,xy,..,x;) is a multiplicatively injective map. If
the equation /| (x) = b, x € Z,, has the unique solution, then H is a bijection.

In the case of a finite parameter s and finite densities of fi(x), i=1,2,..,s the map H also has finite
density. If all parameters deg (f; (x)) are finite, then the map [ has a linear degree. For simplicity,
we set f, (x) =ax"+ b, where (r,¢(m))=1 and (a, m) = 1. This means that we can substitute the
kernel of a map Fin the case of Example 1 by the map H. The map G =1 A1y SiTa, L Sy T, L St
written in the standard form has linear density and constant degree.

Let Ny be the operator on P, and L be the operator sending the vertex (x,, x,, ..., x,,) (point
or line) to its neighbor of color g(x ). In the case of symbolic key defined via the choice of f; (x)
and the recurrent relations f{l (%) =g (f; (x)),i=1,2, .., s—1, the map H is a composition of
N, = Nf @y N, = Ng @y Ny= Ng @y - . N= N (@) So, in the case of bijective map, N|N,, ... N, is
an example of the invertible decomposmon of H in sense of [4].

The following cases of maps with prescribed density can be also used for the implementations.

1) Let, in the case of even s, we have f, (x) =& (x) + b, forodd i=1, 3, .., s—1, where A (x)
has chosen degree a.. Foreveni=2, 4, .., s, we set f; (x) =x + ¢;. From results of [15], we can de-
duce that the degree of His 20t+1. It is easy to see that H is bijective. Let T be a bijective affine
transformation of the free module Z;,. One can take the composition H, = T,H. Independently
of the size of s = [(n), the degree of H, ist = 20.+1. So, its density is O (n').

This means that we can substitute the kernel of a map F in the case of Example 1 by the
map YlH The map G=1, 1 STy, 1,59-Ta, 1 SH T written in the standard form has density
0 (ﬂ” ).

2) Let us choose the odd parameter s. As in the case above, f; (x) =h (x) + b,foroddi=1,3, ...,
s,and, foreveni=2,4, .., s—1, the equalities f; (x) =x + ¢, hold. We set & (x) = ax”+ b, and a is from
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Z:,,. So the map H is multiplicatively injective. We can check that the degree of His t = 200+1.
Let T, be a bijective affine transformation of Z,’f,*of kind x; — Ay, xy = Ly(x), X, ..., ), X =15 (),
Koy cor X))y or X, = L (X, Xy, .., X)), Where Ae Z,, and [ from Z, [x, x,, ..., x,,] are of degree 1.
We set H, = T,H. The encryption map G =1, 1, 51Ty, 1,5 T4, 1 SHoT has density 0(n**3).

The paper is dedicated to the memory of V.I. Sushchansky, whose research and teaching gave the
outstanding contribution to the development of Group Theory in Ukraine and Poland.

This research is patially supported by the grant PIRSES-GA-2013-612669 of the 7th Framework
Programme of European Commission.
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TacTuTyT TeseKOMYHIKalliil i riobanbroro indopmariiinoro npocropy HAH Yipainu, Kuis
VYuisepcurer Mapii Kiopi-Crionosebkoi, Jliobuin, [Tombiia
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I[MTPO KPUIITOCUCTEMMU BIJI BATATbOX SMIHHUX,
11O TPYHTYIOTHCA HA IIPUXOBAHUX PIBHAHHAX ENJIEPA

ITosaHo HOBI KPUIITOCUCTEMH Bijl 6araThOX 3MIHHUX, BU3HAUEHI HA 7-BUMIPHOMY BIJIBHOMY MOJLYJIi Hajl aprdme-
THYHUM KLIbLEM JIMIIKIB Z, , 10 TPYHTYEThC Ha i€l IPUXOBAHOro AUCKPeTHOro Jorapudma. Taki kpunrocuc-
TeMu 6asyloThCA Ha IPUXOBAHUX piBHAHHAX Eitnepa x* = a,(o, m) =1. K110 m € 0CTaTHHO BETUKUM 100YTKOM
[IOHAIMEHIIIE IBOX BEJMKKX TIPOCTUX YHCEN, TO PO3B’SI30K PIBHSIHHS SIBJIsIE OO0 BaKKOPO3B'SI3HY 3aj1auy 3a
YMOBH, IO PO3KJIA UM CJIa 711 Ha TIIbHUKY HEBiZIOMITH. Y TOCTKBAHTOBY €TIOXY 3a/aua haKTOpU3allii po3B’'a3y€ThCs
3a mosriHOMiaTbHIIT wac. [lefl hakT He TPU3BOANUTH 0 HE3MOCEPENTHBOTO 37TaMy TaKOi KPUITTOCUCTEMHU, TOMY IO
mapameTp o HeBifioMuit. Jleski TpUKIaau TaKUX KPUTITOCUCTEM PO3TJISAAINCS paHilre. 3apONOHOBAHO iX MO-
mdikarii Ta y3araJbHEHHS, SIKi AI0Th MOKIUBICTD BUKOPUCTOBYBATH ACUMETPUYHI aITOPUTMH, 1110 6a3yioThest
Ha POAMHAX MYJIBTUILIIKATUBHO 1H €KTUBHUX BiZOOpaskeHb i3 Hallepe/| 3a1aH0I0 MOJIIHOMIaIbHOIO IIJIBHICTIO Ta
crereneM, 0OMeKeHUM CTaIo0.

Kantouosi crosa: nocmreanmosa xpunmozpadyisi, kpunmozpagis 6i0 6azamvox sminnux, nyoniuni Kioui, npuxoea-
Hull Ouckpemmuil 1ozapudm, npuxosari pisuanns Einepa, anzebpaiuni epagu, ouinxku cxkaaonocmi.

B.A. Yemumenxo

WHeTutyT TenekoMMyHUKanuil 1 rio6anbioro utdopmaiontoro npocrpancrsa HAH Ykpaunbl, Kues
Vuusepcurer Mapuu Kiopu-Crnogosckoit, JTobauw, [Tosbira
E-mail: vasylustimenko@yahoo.pl

O KPUIITOCUCTEMAX OT MHOTUX ITEPEMEHHDIX,
OCHOBAHHBIX HA CKPBITBIX YPABHEHUAX 9JIEPA

ITpeacraBiieHbl HOBbIE KPUIITOCKCTEMBI OT MHOTHX TIEPEMEHHBIX, OIPe/IeJIeHHbIE HA 71-MEPHOM CBOOOIHOM MOJLY-
Jie Hazl apu(BMETHYECKUM KOJIbIIOM BbIYETOB Z , OCHOBAHHOM Ha MJI€€ CKPBITOrO AUCKPETHOrO Jorapudma. ITu
KPHUIITOCUCTEMbI OCHOBBIBAIOTCS HA CKPBITHIX ypaBHeHUAX Jitnepa x* =a,(o, m)=1. Eciu m sBnsercs nocta-
TOYHO GOJIBIITIM MTPOU3BEAECHUEM ABYX MK GoJiee GOJIBIINX MTPOCTBIX YUCEJ, TO PEIIEHNE YPABHEHUS COCTABJISIET
TPYAHOPEIIAEMYIO 33124y TIPU YCJIOBUH, YTO PA3JI0KEHUE YICJIA M HA JIEIUTET HEU3BECTHO. B MOCTKBaHTOBYIO
apy 3amauy (pakTOpU3aAIUU MOKHO PElTUTh 32 TIOJTMHOMHUAIBbHOE BpeMs. JTOT GaKT He MPUBOIUT K HETOCPE]-
CTBEHHOMY B3JIOMY TaKOH KPUTITOCUCTEMBI, TaK KaK ITapameTp o Hen3BecTeH. HekoTopbre MprMephl TAKUX KPHTI-
TOCHUCTEM PACCMATPUBAINCEH paHbliie. [IpemokeHbl UX MOAUGDUKAINN U 0600TIEHHST, KOTOPBIE TTO3BOJISIIOT HC-
0JIb30BAaTh ACHMMETPUYHbIE aJITOPUTMBI, Ga3MPYIOIIHECs Ha CEMbSIX MYJIBTHIIMKATHBHO HHBEKTUBHBIX 0TOOPA-
JKEHUN ¢ HaTlepe]] 33[aHHON TTOJNHOMHUATBHOM TIJIOTHOCTHIO U CTETEHbIO, OTPAHUYEHHON KOHCTAaHTOM.

Kntoueewle cno6a: nocmxeanmosas Kpunmozpagust, Kpunmozpagus 0m Muozux nepemMeHnvly, nyoiuunoie Kol
CKPOIMbLEL OUCKPEMIbLIL 102apUpM, CKpbimble ypasrenus Jiiepa, arzedpauieckue 2pagvl, OUernKu CIoNCHOCU.
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