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The paper observes the similarity between the stochastic optimal control over discrete dynamical systems and the
learning multilayer neural networks. It focuses on contemporary deep networks with nonconvex nonsmooth loss and
activation functions. The machine learning problems are treated as nonconvex nonsmooth stochastic optimization
ones. As a model of nonsmooth nonconvex dependences, the so-called generalized dif ferentiable functions are used.
A method for calculating the stochastic generalized gradients of a learning quality functional for such systems is
substantiated basing on the Hamilton— Pontryagin formalism. This method extends a well-known “backpropagation”
machine learning technique to nonconvex nonsmooth networks. Stochastic generalized gradient learning algorithms
are extended for training nonconvex nonsmooth neural networks.

Keywords: machine learning, deep learning, multilayer neural networks, nonsmooth nonconvex optimization, sto-
chastic optimization, stochastic generalized gradient.

Introduction. The machine learning problem consists of the identification of parameters of a
neural network model, e.g., neural weights, using a set of input-output observations. The training
task is formulated as a task of minimizing some smooth loss functional (empirical risk), which
measures the average forecast error of the neural network model.

Methods of training (identification) of large neural network models are discussed in many
articles and books [1, 2]. To train deep (i.e., multilayer) neural networks, the stochastic gradient
method and its modifications are mainly used [2, 3], being adopted from the theory of stochastic
approximation and stochastic programming, since only they are practically applicable for training
such networks. The stochastic gradient of a risk functional is a random vector whose mathema-
tical expectation approximates the gradient of a target functional, and the stochastic gradient
descent method is an iterative one for changing the desired model parameters in the direction
of the stochastic (anti-) gradient.

To solve smooth neural network training problems, the BackProp method is widely used
[1, 4], i.e. a special method for calculating the gradients of a target functional with respect to
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various parameters. The history of the discovery, development, and application of the BackProp
method was studied in [5]. Nonsmooth machine learning tasks arise, when using nonsmooth (mo-
dule type) indicators of the quality of training, when applying nonsmooth regularizations, and
when using nonsmooth (e. g., piecewise linear, linear rectification ReLLU, etc.) activation func-
tions in multilayer neural networks [ 1, 5]. Such functions give rise to essentially nonconvex non-
smooth functionals of the quality of learning, and the question arises of the convergence of the
stochastic generalized gradient descent method in solving such problems. This problem has been
relatively recently recognized and is already considered in the literature [6]. However, it is usu-
ally assumed using the Clarke stochastic subgradients [7] of the optimized functional, but the
problem of their calculation for deep networks is not discussed.

In this paper, we extend the BackProp method to calculating the stochastic gradients of non-
convex nonsmooth problems for training the multilayer neural networks and formulate the meth-
od in terms of stochastic generalized gradients of nonsmooth Hamilton—Pontryagin functions. As
a model of nonsmooth nonconvex dependences, we use the so-called generalized differentiable
functions [8, 9]. We also consider an important version of the BackProp method for training the
so-called recurrent neural networks, i.e. networks with feedbacks and memory [1, Ch. 10].

Nonconvex nonsmooth learning problems and calculation of stochastic generalized gradi-
ents. Let us consider a standard neural network model. Let the network consist of m layers of
neurons, let each layer i € {1, ..., m} have n; neurons with numbers j =1, ..., n; and let each of them have
n;_y inputs and one output. In the initial layer, there are n; neurons, each neuron of this layer has
ny common inputs and one output. The outputs of the neurons of each layer go to the inputs of the
neurons of the next layer. The output layer of the network may consist of one or more neurons.

In the theory of neural networks, the standard mathematical model of neuron (i, j) is some
smooth activation function g/ (x;, w;;, v;) (e.8. the logistic sigmoid, the hyperbolic tangent, etc.
[1, Section 6.3.2], which expresses the dependence of the output signal x(;,4y; of neuron 3, )
on the input signal x;, for example, x;); j =g/ (x;, w;j, v;;) = (1+exp{~x;, w;; ) — vl]}) , where
x; € R"-1 is a common input of all neurons in layer i; w;; e R"-! and vjj € (—0, +0) are the in-
diVidual weight vector and the activation level of neuron j €{l,...,n;} in layer i; the expression
(xl, w;;) denotes the scalar product of the vectors x; and w; The weights wj and thresholds

may satisfy the constraints w; € W;;, v; €Vj;. Here, the notation like R" is used for the
n- dlmensmnal Euclidian vector space

Note that activation functions themselves can be random, for example, neurons can accidentally
fall into the so-called sleep (drop out) state, i.e. produce a zero output signal: g/ (x;, wjj, vy, O;) =
=0 g/ (x;, w;j, v;), where @;; is an additional random parameter taking values 1 or 0 with prob-
abilities p; and 1-p;;. We assume that the random parameters {®;} are independent and com-
bined into a common vector ®={w;;} that takes values from a f1n1te set Q.

In what follows, we assume that the activation functions gf (x;, @ w;j, v;;, ;) of neurons j =
=1,...,n; in each layer i for any fixed value of @;; are generalized differentiable Wlth respect of their
variables (x;, @, v;;) in the sense of the following definition, which covers all practical examples.

Definition 1 [8 10]. A function f:R" —R! is called generalized differentiable at the point
zeR", if, in some € -neighborhood {zeR": ||z z|| < ¢} of the point z, a multivalued mapping
df () upper semicontinuous at z, with convex compact values 9f(z) is defined and is such that
the following expansion holds true:
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f(2)=f(Z)+{d,z—=2z)+0(Z, z,d),

where d €df(2), (,-) denotes a scalar product of two vectors, and the remainder term o(Z, z,d)
satisfies the condition: lim,_,_, o(Z, 2 d*yy | Z -z ||=0 for all sequences dteaf (), >z
as k— . A function f is called generalized differentiable, if it is generalized differentiable
at each point z e R”; the mapping 9f(-) is called the generalized gradient mapping of the func-
tion f; the set 9f(2) is called a generalized gradient set of the function f(-) at a point z; vectors
d € df (z) are called generalized gradients of the function f(-) at a point z.

Properties of generalized differentiable functions were studied in details in [8—10]. In par-
ticular, it was shown that they are locally Lipschitzian, and their Clarke subdifferential d.f(z)
can serve as a generalized gradient mapping d9f(z) of f(-), and 0. f(z) < df (z) always holds. This
class of functions contains continuously differentiable, convex, and concave functions and is
closed with respect to finite maximum, minimum, superposition operations, and with respect to
taking the mathematical expectation.

Suppose that there is a (training) set {(x} e R™, y5 ., €R""), s=1,..., S} of observations of
a network inputs-outputs. The standard training (identification) task for the network with the
training quality criterion @(x,,,, ¥;,+1) and regularization is as follows:

o
+

1 S m n; o .
J{w;} {viH) =E, EZ O (Xppits Ymat) + kziﬂzjﬂ H Wi+ | Mg ewy, opevy (D
s=1
where x,,,4€R"™ is the vector of outputs of the last network layer for a training example s;
Y11 € R™ is a known, generally speaking, multidimensional vector of observations of the net-

work outputs; H w;; H denotes the norm of the vector w; A>0, a>1; E, is the mathematical ex-

pectation operator over ® ; the sequence of layers’ outputs {x; = («j;, ..., x;,. T oi=2.., m+1}
for a given first layer input a7 € R™ is given by the relations
xgl+1)]:gl](xf,wl],vl],(l)y), j:1,...,ni, i:1,...,m. (2)

Moreover, the training examples may contain not only the input and output of a network
(e. g., features and labels of objects) {(x{,¥,,+1), s=1...,8}, but also may include additional
intermediate features y; e R" | ie I < {2,...,m}, which can be used to improve the learning of the
intermediate layers of the network, i.e. training examples may take the form of sequences
{(x{ {yi i€}, yp), s=1,...,5}. That's why we consider the following general network train-
ing task:

m
j(u) = Ee z f; (‘xi (e)’ U; ) + Eefm+1 (xm+1(e)) - IninueU (3)
i=1
subject to constraints (satisfied for all values of the random parameter 6 €© ):

%141(0) = g(;(8), 1;,0) = (8] (x;(0),u, )}y, i=1,..,m: () eR™. %)

Here, u = (uy,...,u, ) € R/ (Z = 2:11 nl) is the vector of all adjusted parameters (u = ({w;;}, {v;;})

for problem (1), (2)); x; =(x;, ..., Xin,_, ' is the input vector for neurons in layer i; u; is the

1
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}""_11 is the vector of the adjusted

vector of the adjusted parameters of neuron (i, j); w; = {wi};

parameters of all neurons in layer i; g/ is the activation f{mction of neuron j in layer i;
g ={g/ ?1;1 is the vector activation function of the neurons in layer i; x{(6) e R™ is a random
vector of input signals to the network; 6 is a random vector parameter that defines the distribu-
tion of input signals and influences the propagation of signals through the network (6 = (s, ®) for
problem (1), (2)); and Eq denotes the sign of the mathematical expectation over 6.

Assumption. Suppose that, in problem (3), (4), the functions f(x;,%;), &/ (x;, u;;,0), and
Smi1(Xp41) are generalized differentiable with respect to the totality of their arguments, res-
pectively, (x;, u;), (x;,u;), and x,, 4 (for fixed 8). Here, the activation function g/l (x;, u;;,0) can
be of a general form, i.e. optionally, the function g/ may depend not on all elements of the vec-
tor x;, and the dimension of the vector of the adjustable parameters »; may not coincide with
the dimension of the vector of inputs x;. The random parameter 6 € © is a random variable de-
fined on some probability space.

Note that, in the literature (see, e. g., [6]) for the purpose of training neural networks, it is
proposed to use (stochastic) Clarke subgradients of the risk functional J(u), but these sub-
gradients are relatively simple to be calculated only for subdifferentially regular Lipschitz func-
tions [7, §2.3, §2.7]. For general nonconvex nonsmooth functions, their calculation is a problem.

For arbitrary generalized differentiable (over the totality of variables) vector functions
g;(x,u) e R"i with arguments x = (x1, cyx )T eR" u= (u1, e ul )T 1S Rl, we denote the matrices:

1 1
gi171 o gl‘)?" g gll 1 gll ! gl

gix = = y giu = =

n; i i i ;i n;
.4 o B 8ix .1 o 8. 8iu
For arbitrary generalized differentiable (over the totality of arguments) scalar functions

fi(x,u), xeR", ue R/, and Sms1(x), xeR" let us introduce vectors

(fo)T :(f;'x“""fix”)’ (f;u)T :(fiui’”"f;'ul)’ ((pkx)T :((kau---y(kan),

where (f, f.)', (g{;, gl]u ) are some generalized gradients of the functions f,(,-), gij ,+0);
Jim+1)x () is some generalized gradient of the function f,,,;(); and the expression ()" denotes
the transposition of matrix (-).

The next theorem exploits the similarity between optimal control problems for discrete dy-
namical systems [11, 12] and multilayer neural networks and formalizes a method for calculating
the stochastic generalized gradients in the problem of training a nonconvex nonsmooth neural
network. It extends the well-known method of “backpropagation of the error” (BackProp) [1, 4,
5] to nonconvex nonsmooth learning problems.

Theorem 1. Under the assumptions made, the objective function J(u) of problem (3), (4) is
generalized dif ferentiable with respect to variables u = (u, e R™, ..., u,, € R"m), and the vectors

hy (u, ) = (hyy,, (21(0), W1(0), 1), oy, (25(8), W5(0), uy), ...,

T
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are stochastic generalized gradients of the function J(u) at a given point u, i.e., Egh,(u,0) € dJ (),
where h(x;, v, u;)= f(x;,u;)+ g (x;,u)-v, i=1,..,m, is a discrete (over i) Hamilton—
Pontryagin function; the vector

i, (), W3 0),4;) = (g (6(0), W3 (0), ),y oy (10, W5 (6), ) =
= ([ (i (0), 1)+ 8,1 (x,(0), 1) ;(6), .., (6)

[ (xi(O) u)+ 8] (:(8), ) y;(8)) eR”™

is the u;-component of a generalized gradient of the function h;(,y;,-), i=1,...,m; x(8)=
=(x((8), ..., x,,,1(0)) is a discrete random trajectory of process (4), corresponding to the given se-
quence of parameters (..., u,,)=u and the random initial data x,(0) e R™ . Here, the random
sequence of auxiliary (conjugate) vector functions (y(0),...,v,,(0))=w(0) is determined
through the backpropagation equations (adopted from the Pontryagin maximum principle):

W, (0)= f(m+1)x (X41(0)),

m+1

Vi 1(0)= hixi (x;(8), v;(8),1;) = fixl- (x;(0), “i)+g1;7;ci (x;(0), u;)-y;(8),

i=mm-1,...,2; @)
(fir (x;(0), 1), [, (x;(6), ui))T,(gl{C(xi(e), ui),gi];l (x;(0),u)) are some generalized gradients of
the functions f;(,-), gij (,+0) at the point (x;(8),u;), and f, yx,,,, (Xme1(9)) is some generalized
gradient of the function f,, ., at the point x,,,((0), which are used in (6), (7).

Proof. Note that process (4) can be formally treated as a stochastic dynamic system [12, 13]
in the discrete time i =1,..., m+1 with states x;, control parameters u;, a given initial state x,(8),
and the optimality criterion (3). The stochasticity of system (4) is generated by the random in-
put x(0), a random mechanism of dropping out of neurons, and possibly other factors. Using re-
lations (4), the vectors x;, i=2,...,m+1, can be sequentially excluded from the formulation of
the optimization problem (3). Then, under the sign of summation in (3), there remains some com-
plex composite function f(u,6)= Zzifi(fci(m, o Ui_g, 0) U )+ [ (X iy (g, -, 1y, 0)), Which
depends on optimization variables , and where &;(uy,...,u;_{,0),i=2,...,m+1, are complex com-
pound functions of their arguments. Since the class of generalized differentiable functions is closed
with respect to compositions, this function f(u,8) under the made assumptions becomes general-
ized differentiable with respect to u for each 8€®. The expectation Eg (in this case, summa-
tion) does not move out from the class of generalized differentiable functions. Therefore, the func-
tion J(u)=Egyf(u,0) is also generalized differentiable with respect to «. Now, similar to the
proofs of Theorems 6—8 from [13], applying the rules of differentiation of the sum, the chain rule
of differentiation of complex generalized differentiable functions [8, 9] (which are analogs to
the rules of differentiation of smooth and convex functions), and introducing the auxiliary var-
iables (7), after some algebraic manipulations [13], we obtain formula (6) for stochastic gene-
ralized gradients A, (u,0) of the function J(u).
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Neural networks may have a complex heterogeneous structure. However, introducing the
additional dummy neurons, such networks can be reduced to a canonical multilayer form, and,
for them, one can apply the formulas of Theorem 1.

Let us consider an important special case of networks in which the adjusted parameters are
the same for each layer. For example, a network can consist of identical neurons, or some identical
neurons are added to each layer in an already trained network, or the network consists of dup-
licates of the same layer. Then, similarly to (3), (4), the training task consists in solving the follo-
wing problem:

J(u)=Ee§fi<xi<e>, W)+ Eg fyi1 (X (8)) > min (8)

%141 (8) = 8;(x; (), u,0) = {g] (x;(8), u, )1, i=1,...,m; x;(8) eR™. )

Theorem 2. Under the assumptions made, the objective function J(u) of problem (8), (9) is
generalized differentiable with respect to variables u= (uy,...,u; ), and the vector

T
(221 hl (xl (9), Wz(e)r u)) (221 hiu1 (xz (e)r Wz(e)v U), () 221 hiul (xl (9)’ Wz(e)r u))

u

is a stochastic generalized gradient of the function J(u) at the point u , i.e.

Eq (Z:L h;(x;(0), \Ifi(e),u)) €dJ(u),
where
By (g, Wi ) = [, u)+ g (6, w)- Wy i=1,.m,

is a discrete (over i ) Hamilton—Pontryagin function; x(0) = (x,(8),..., x,,.1(0)) is a discrete ran-
dom trajectory of process (9), corresponding to the vector parameter u and the random initial data
x1(8)eR™. Here, the random sequence of auxiliary (conjugate) vector functions (W((0),...,
W, (0)) = y(0) is determined through the backpropagation equations: y,,(0) = f41) PN CATC)))

Vi1 (8) =y, (x;(0), W;(0), u) = fiy. (x;(8), u)+gi§i (x;(0),u)-y;(®), i=m,m—1,...,2.

The method of stochastic generalized gradient descent and its variants. The stochastic
gradient descent method [3] is the main method for training the deep neural networks, firstly,
because of enormous dimensions of such networks and, secondly, due to the regularizing pro-
perties of the method. The properties of the stochastic gradient method and its modifications
were studied in details in the cases of smooth and convex optimized functions [2, 3, 12]. In [9,
14, 15], this method and its modifications were substantiated for the solution of nonconvex nons-
mooth stochastic programming problems (with generalized differentiable functions), and thus
are applicable to nonconvex nonsmooth machine learning problems.

The work is partially supported by grant CPEA-LT-2016,/10003 funded by the Norwegian Agen-
cy for International Cooperation and Quality Enhancement in Higher Education (Diku).
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OBIPYHTYBAHHS 3A JIOTTOMOTOIO ®OPMAJII3MY TAMIJIBTOHA—ITOHTPATIHA
METO/1Y 3BOPOTHOTO ITPOCYBAHHA ITOXMBKU
JIJII HABUAHHS HEONIYKJINX HEIIAAKMX HEMPOHHUX MEPEX

[IpocrexyeTbes aHANOTIST MizK 3a/lauaMid OIITUMAJIBHOTO KePyBaHHS IMCKPETHUMU CTOXACTUYHUMMU JIMHAMIYHU-
MU CHCTEMaMH Ta 3a/[auaMi HaBYaHHsI GaraToMapoOBUX HEHPOHHUX Mepek. YBara KOHIEHTPYEThCS Ha BUBYEHHI
CYYacHUX TJIMOOKUX Mepexk 3 HerJIaJKUMU IiJIbOBUMH (hyHKIioHaIaMu i 38’a3kamu. [TokaszaHo, mo s3azaui ma-
MTUHHOTO HABYAHHS MOKYTh TPAKTYBATHUCA SIK 3a/1a4i CTOXaCTUIHOTO TIPOTPAMyBaHHS, i JJI IXHBOTO aHaJIi3y 3a-
CTOCOBAHO TEOPiI0 HEOIYKJIOTO HETJIAJIKOTO CTOXaCTUYHOTO MTPOrpaMyBaHHs. SIK Mo/iesib HeTJIaIKUX HEOITyKJINX
3aJIE;KHOCTEN BUKOPUCTAHO TaK 3BaHi y3aranbHeHo audepentifioBani hynkiii. O6rpyHTOBAHO METO OGUHCITIEH-
HS CTOXaCTUYHUX y3araJbHeHUX rPaiieHTiB (DyHKITIOHAIA SKOCTI HABUYAHHS JIJIs1 TAKUX CHCTEM Ha OCHOBI hopma-
nizmy Taminsrona—IlouTtpsirina. [leit MeTox y3araabHIOE BiIOMUIT METOM “3BOPOTHOTO TMIPOCYBAHHS MOXUOKK” Ha
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3a/a4i HaBUYaAHHS HETJIAIKNX HEOMyKJINX MepexX. Y3arajbHeHi (CTOXacTUYHi) TPaJi€HTHI aJTOPUTMU HaBYAHHS
[IOIIMPEHO HA HEOITYKJI HEerJIa/IKi HeHPOHHI MepeKi.

Kniouosi cnosa: mawunie naguannsi, 2iuboxke Haguamuns, 6azamomaposi Heuponni Mepeici, neziaoka Heonyxia
ONMUMIZAYLS, CMOXACTRUYHA ONMUMIZAUISL, CIMOXACMUYHUU Y3a2a bHeHUl 2padienm.
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OBOCHOBAHMUE ITOCPEACTBOM ®OPMAJIN3MA TAMUJIBTOHA—TIOHTPATNHA
METO/IA OBPATHOT'O PACITPOCTPAHEHMA OIIMBKUA
JIJIA OBYYEHMS HEBBIITYKJIBIX HEIJIAJJKMX HEMPOHHBIX CETEN

IIpocaesxknBaeTcs anasorusa MexKay 3aladaMi ONTUMAIBHOTO YIIPaBIEHUS JUCKPETHBIMU CTOXaCTHUCCKUMU /U~
HAMHMYECKUMHE CHCTEMAMNI ¥ 3alayaMil 00ydeH sI MHOTOCTONHBIX HEHPOHHBIX ceTell. BHUMaHe KOHIeHTPHIpPY-
€TCsl Ha U3YYCHUU COBPEMEHHbBIX ITyOOKHUX ceTell ¢ HErJIaJKUMU 1eJieBbIMU (DyHKIMOHANIAMU U cBsi3simu. [Toka-
3aHO, Y4TO 3aa41 MAITUHHOTO 06YYEHNsT MOTYT TPAKTOBATHCS KK 33/Ia4l CTOXACTHYECKOTO TTPOrPAMMUPOBAHUS,
1 /115 X aHAJIM3A TIPUMeHeHa TeOPUs HEBLIITYKJIOTO HeTJIaIKOTO CTOXaCTHYECKOTO IIPOrpaMMupoBanus. B kauect-
Be MOJIEJIH HETJIA[KNX HEBBIMYKJIBIX 3aBUCUMOCTE} NCIIOIb30BAHbl TaK HazbiBaeMble 00001eHHO A dbepeHi-
pyembie dyukiuu. OG0CHOBAH METO/ BBIYUCIEHMS CTOXACTUYCCKUX 0GOOIIEHHBIX IPAJUEHTOB (hYHKIIMOHATA
KauecTBa 00yYeHNs IUIsl TAKUX cucTeM Ha ocHoBe hopmanuama Tamussrona—IlonTpsaruma. ItoT Metos 060611a-
€T M3BECTHBIN METO “00paTHOrO PacipocTpaHeHust OOk Ha 3aj1aun 00yYEHUsT HETJIA[KUX HEBBIITYKIIbIX Ce-
teil. O6061menHble (CTOXACTHYECKHE ) TPAIMEHTHDIE AITOPUTMBI 00YYEHHsI PACIIPOCTPAHEHBI Ha HEBBITYKJIbIE He-
TJIaJIKie HePOHHbIE CETH.

Kmoueswvte crosa: maiunnoe 06yueHue, Z]ly607€0€ 06yueHue, MHO20CIOUHbBLE HEZZpOHHble cemu, HeznaoKas Heebl-
nyxiast onmumusayust, Cmoxacmuueckas onmumMu3auusd, cmoxacmuyueckuil O606ZI,4€HHbL7Z zpaﬁueum.
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