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The theory of point bosons [1—6] based on the Bethe ansatz is a valuable part of the physics 
of many-particle systems, since the system of equations for quasimomenta kj can be solved exactly 
at any coupling constant γ , and the thermodynamic quantities can be determined from Yang—
Yang’s equations [4] at any temperature. This allows one to test the solutions for real nonpoint 
bosons, the equations for which can rarely be solved.

In the present work, we will study a one-dimensional (1D) system of spinless point bosons 
in the exactly solvable approach based on the Bethe ansatz. For the real systems, the boundary 
conditions (BCs) are closer to the zero ones ( 1( , , ) 0Nx xΨ =  on the boundaries), than to the 
periodic BCs. Therefore, it is important to find the ground-state energy and the dispersion law 
under the zero BCs. The ground state was already studied [5, 7], but the dispersion law was not 
found. To find it, one needs to determine the energy and the quasimomentum of a quasipar-
ticle. These problems will be considered in our work. The main difficulty consists in obtaining 
the formula for the quasimomentum, because the ordinary method with the use of the operator 
of momentum fails under the zero BCs.

Under the periodic BCs [2], a quasiparticle possesses the momentum [3, 6, 8, 9]

1

( )
N

j j
j

p k k
=

= −′∑ ,  (1)

https://doi.org/10.15407/dopovidi2019.12.049

UDC 538.941

M.D. Tomchenko
Bogolyubov Institute for Theoretical Physics of the NAS of Ukraine, Kyiv
E-mail: mtomchenko@bitp.kiev.ua

Quasimomentum of an elementary 
excitation for a system of point bosons 
under zero boundary conditions
Presented by Academician of the NAS of Ukraine V.M. Loktev

As is known, an elementary excitation of a many-particle system with boundaries is not characterized by a defi-
nite momentum. We obtain the formula for the quasimomentum of an elementary excitation for a one-dimensional 
system of N spinless point bosons under zero boundary conditions (BCs). In this case, we use Gaudin's solutions 
obtained with the help of the Bethe ansatz. We have also found the dispersion laws of the particle-like and hole-like 
excita tions under zero BCs. They coincide with the known dispersion laws obtained under periodic BCs.

Keywords: point bosons, elementary excitation, quasimomentum, zero boundary conditions. 

ФІЗИКА



50 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2019. № 12

M.D. Tomchenko

where kj are the solutions for the ground state, kj are the solutions for the state with one qua-
siparticle. This definition of the momentum of a quasiparticle is self-consistent: the thermody-

namic velocity of sound ( 1 /th
sv m P−= ∂ ∂ρ , 0 /P E L= −∂ ∂ , /N Lρ = ) coincides with the mic-

roscopic one ( 0( ) / |mic
s pv E p p →= ∂ ∂ ) [3].

Under the zero BCs, the quasimomentum of a quasiparticle was obtained similarly to (1) 
[7, 10]:
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However, in such approach, the equality th mic
s sv v=  is strongly violated [7]. Below, we will 

define the quantity p in such a way that this difficulty disappears.
Initial equations. Consider N spinless point bosons placed on a line of length L. The Schrödinger 

equation for such system reads
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We use the units with 2 1m= = . Under the periodic BCs, for each of the domains 1x �
2 Nx x� � � , a solution of the Schrödinger equation is the Bethe ansatz [2, 5]
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where 
lPk  is one of  1, , Nk k… , and P means all permutations of lk . Under the zero BCs, the so-

lution is a superposition of counter-waves [5]:
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where | |j j jk k= ε , 1jε = ± . Under any BCs, the energy of the system is

2 2 2
1 2 .NE k k k= + + +   (6)

Under the periodic BCs, jk  satisfy Lieb—Liniger’s equations [2] that are usually written in 
Yang—Yang’s form [4]
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We will use Lieb—Lininger’s equations in the Gaudin’s form [5]:
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where jn  are integers. For the ground state of the system, 0jn =  for all 1, ,j N=  . The sys-

tems of equations (7) and (8) are equivalent [5]. In this case, 
1

2j j
N

I n j
+= + − .

Under the zero BCs, jk  satisfy the Gaudin’s equations [5]:
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where jn  are integers, 1jn �  [5,11]. The ground state corresponds to 1jn =  for all j. We de-
note /N Lρ = , /cγ = ρ .

Equations (8) has the unique real solution { }jk  [6], and Eqs. (9) have the unique real solu-
tion {| |}jk  [11].

The quasiparticles are commonly described with the help of Yang—Yang’s jI -numbering (7). 
Below, we will introduce the quasiparticles with the help of Gaudin’s jn -numbering (8), (9), 
since this way is simpler and more physical [12] and allows one to sight the Bose properties of 
quasiparticles [7]. These two ways of introduction of quasiparticles are equivalent. For example, 

under the periodic BCs, the “particle” 
1 1 1
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  with the 

help of the jn -numbering is written as { } (0, , 0, )jn l=  . In the jn -language, the “hole” 
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  is { } (0, , 0,1,1)jn =  . A way of in tro-

duction of quasiparticles with the help of the jn -numbering was proposed in [7].
Definition of the quasimomentum of an elementary excitation. We now find how the quasi-

momentum of an elementary excitation can be determined under the zero BCs. Under the peri-
odic BCs, the relation [2] 
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holds in the whole domain 1, , [0, ]Nx x L∈ . Therefore, the system has the total momentum
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and the momentum of a quasiparticle is given by formula (1). Under the zero BCs, the relation
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is not satisfied. Therefore, the system has no definite momentum. To find the formula for the 
quasimomentum of an excitation, we use the following property. It is known that the momentum 
(quasimomentum) of a quasiparticle is quantized by the law 2 /jp j L= π  ( 1, 2,j = ± ± ) under 
the periodic BCs [13], and /jp j L= π  ( 1, 2,j = ) under the zero BCs [14,15]. Starting from 
these relations, one can guess the formula for the momentum (quasimomentum).



52 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2019. № 12

M.D. Tomchenko

Consider a periodic system. Equations (8) yield
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It is seen that the quantity 
1

N
jj

P k== ∑  is quantized in the same way as the momentum of an 

ensemble of quasiparticles [13]. Therefore, it is natural to identify P with the total momentum of 
the system (in the reference system, where the center of masses is at rest). We obtain that 
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P k r L== = π∑  for the state with one particle-

like excitation ( 1 0j Nn − =� , 0Nn r= ≠ ). The momentum of a particle-like excitation
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corresponds to formula (1) and to momentum quantization 2 /jp j L= π  [13]. We have solved 
system (8) numerically, found the energies of the ground and excited states, and obtained that 
the equality th mic

s sv v=  holds with high accuracy: for 1ρ = , 200,1000, 5000N =  and  0.1, 1, 10, 
the equality th mic

s sv v=  holds with an error of 0.1� %. In this case, the error depends strongly 

on γ  and N: 
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We now consider the system under the zero BCs. Relation (9) yields
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Introduce the quantity
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then relations (14) and (15) yield
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Since P is quantized similarly to the quasimomentum of the ensemble of quasiparticles for an in-
teracting system under the zero BCs [15], it is natural to identify P with this quasimomentum. It 
is essential that the quasiparticles are introduced for a system of point bosons in such a way that 
the total number of quasiparticles is N�  (the same limitation exists also for a system of nonpoint 
bosons [12]). This agrees with (16). The smallest quasimomentum of the system corresponds to 
the ground state:
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The quasimomentum of a particle-like excitation is
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where {| |}jk′  and {| |}jk  are solutions of Gaudin’s equations (9) for the states with one par -
ticle-like excitation and without excitations, respectively. Relations (16), (18) yield 

1 ( 1)/rp r L− = π − ,  (19)

where r is equal to the value of Nn  for the state with one particle-like excitation: 2, 3, 4,Nr n= = ; 

1 1j Nn − =� .We have obtained the quantity with the required law of quantization: /jp j L= π  
[14, 15]. The numerical analysis has shown that the equality th mic

s sv v=  is satisfied with an 
error of � 1% for 1ρ = ;  0.1, 1, 10; 200,1000, 5000N = . This error depends on γ  and N approxi-

ma tely as 
| | 0.5mic th

s s
th
s

v v

Nv

−
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 . In this case, the linearity of the dispersion law requires 1Nγ  . 

It is significant that, for the zero and periodic BCs, the error disappears as N →∞. In other 
words, this error is due to the finiteness of a system (for very large N, one more error related to 
a numerical method should appear). The equality th mic

s sv v=  must be exact in the thermodyna-
mic limit and may be violated for not large N, L. Thus, in the thermodynamic limit, our formu-
lae agree with the exact equality th mic

s sv v= . Hence, formulae (18) and (19) for the quasimomen-
tum are exact, at least as ,N L→∞ .

We note that, for the zero BCs, the error is larger by 1—2 orders of magnitude, than in the 
periodic BCs case. We suppose that this is connected with a nonuniformity of the wave function 
near boundaries. In particular, for a periodic system, the solution for the ground-state energy 0E  
becomes close to Bogoliubov’s asymptotic solution 0( )E N →∞  [13], if 100N � ; for the zero 
BCs, this occurs for larger N : 1000N � .

Thus, we have obtained the formula for the quasimomentum of a quasiparticle for the sys-
tem under the zero BCs. Apparently, quasimomentum (15), (16) corresponds to an acciden tal 
integral of motion. It would be of interest to clarify which operator corresponds to quasimo-
mentum (15).

Let us find the dispersion law ( )E p  of particle-like excitations for a system under the zero 
and periodic BCs. Under the zero BCs, we are based on (19), and the formula for the energy of a 
quasiparticle is [3]

' 2 2
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E k k
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Under the periodic BCs, we use formulae (13), (20). We find the solutions { }jk′  and { }jk  from 
Eqs. (8) under the periodic BCs and from Eqs. (9) under the zero BCs. In this case, { }jk′  co r-
responds to the state with one quasiparticle ( 1 0j Nn − =� , Nn r=  for the periodic BCs and 
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1 1j Nn − =� , 1Nn r= >  for the zero BCs), whereas { }jk  corresponds to the ground state ( 0j Nn =�  
for the periodic BCs and 1j Nn =�  for the zero BCs). We have solved Eqs. (8), (9) numerically 
and determined the dispersion law ( )E p  for the zero and periodic BCs. As is seen from Figure, the 
dispersion laws ( )E p  under the periodic and zero BCs coincide. The numerical solution of 
systems (8) and (9) indicates that the ground-state energy ( 0E ) under the zero BCs exceeds 0E  
under the periodic BCs by only a small surface contribution  0 0 /E E N∼  [7]. For interacting 
nonpoint bosons, the picture is similar: at any repulsive interatomic potential, the values of 0E  
and ( )E p  of a 1D system under the zero BCs [15] coincide with 0E  and ( )E p  of a periodic sys-
tem [13]. Moreover, for a 1D system of interacting bosons, it was found in the harmonic-fluid 
approximation that the sound velocity is identical under the periodic and zero BCs [14].

We have also calculated the dispersion law of hole-like excitations. It is seen from Figure 
that the dispersion law is the same under the zero and periodic BCs. Visually, it coincides with 
the dispersion law of holes obtained by Lieb [3]. Under the zero BCs, holes correspond to the 
states with the following quantum numbers jn : 1 1j ln =� � , 2l j Nn < =� , where 0,1, , 2l N= − . 
Under the periodic BCs, holes are the states with 1 0j ln =� � , 1l j Nn < =�  ( 0,1, , 2l N= − ) and 
the states with 1 1j kn = −� � , 0k j Nn < =�  ( 2, 3, ,k N=  ). Formula (16) implies that the qua si mo-
mentum of a hole under the zero BCs is p (N–l)/L; the largest quasimomentum is p N/L. 
Under the periodic BCs, the hole has momentum (1), (12), which takes values from 2p = − πρ  to 

2p = πρ . Note that, as shown in work [12], a hole is a set of interacting partic le-like excitations.
We note that the formulae for the quasimomentum and the solutions for the dispersion 

laws, obtained above under the zero BCs, are new results.
Interestingly, the dispersion law of particle-like excitations (see Figure) differs at 1γ =  

from the Bogoliubov law only by 5 %. In this case, the available criterion of applicability of 
the Bogoliubov model in the 1D case for the zero and periodic BCs is as follows (at 0T = ) [15]:

ln 1
2

Nγ γ
π π

 .  (21)

Dispersion curves E(p) obtai ned by the nume-
rical solution of Eqs. (8), (9) within the Newton 
method for N  L 1000. 1) 1γ = : E (p) of parti-
cle-like excitations under the periodic BCs (open 
circles), under the zero BCs (open triangles), 

and the Bo goliubov law [13] 4 2 24E p p= + γρ  

(crosses); 2)   10 : E(p) of particle-like excita-
tions under the periodic BCs (circles), under the 
zero BCs (triangles), the Bogoliubov law (stars), 
and Girardeau’s law [1] 2 2 | |E p p= + πρ  (squa-
res); 3) 1.725γ = : E (p) of hole-like excitations 
under the periodic (open diamonds) and zero 
(diamonds) BCs
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According to (21), it should be 0γ →  as N →∞. But the solutions 0E  and ( )E p  for point 
bosons are close to the Bogoliubov solutions even at N →∞ , 1γ   (as for the periodic BCs, see 
[2, 3]; for the zero BCs, it was found [7] that the solutions 0E  and ( )E p  obtained in the limit 
N →∞  coincide (with an error of 1 %) with 0E  and ( )E p  found by directly numerically solving 
Eqs. (9) at 1000N = ; therefore, the dispersion law ( ) |NE p →∞ coincides with the above-found 
one 1000( ) |NE p →  and is close to the Bogoliubov law, if 1γ� ). We remark that the dispersion law 
for 10γ =  (see Figure) is closer to the Bogoliubov law, than to Girardeau’s one. Though it would 
be expected the contrary, since Girardeau’s formula is exact at γ = +∞ , whereas the Bogoliubov 
formula loses its meaning at such γ . The reason for the applicability of the Bogoliubov solu-
tions at not small γ  is yet unclear.

It was obtained [7] that the dispersion laws of particle-like excitations under the zero and 
periodic BCs are strongly different. However, this difference is unphysical: it arose because, under 
the zero BCs, formula (2) was used instead of formula (18).

The question is how can one measure the dispersion law in a system under the zero BCs? 
Apparently, this can be made with the help of an ordinary scattering. But we do not know how to 
pass from Gaudin’s wave function (5) to a localized wave package with a definite momentum.

The present work was partially supported by the Program of Fundamental Research of the 
Department of Physics and Astronomy of the National Academy of Sciences of Ukraine (project No. 
0117U000240).
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КВАЗІІМПУЛЬС ЕЛЕМЕНТАРНОГО ЗБУДЖЕННЯ 
ДЛЯ СИСТЕМИ ТОЧКОВИХ БОЗОНІВ 
З НУЛЬОВИМИ МЕЖОВИМИ УМОВАМИ

Як відомо, елементарне збудження багаточастинкової системи з межами не має визначеного імпульсу. 
Ми отримали формулу для квазіімпульсу елементарного збудження одновимірної системи N безспінових 
точкових бозонів з нульовими межовими умовами (МУ). При цьому ми спирались на розв’язки Годена, 
отримані за допомогою анзаца Бете. Також ми знайшли закони дисперсії частинкоподібних та діркопо-
дібних збуджень за нульових МУ. Вони збігаються з відомими законами дисперсії, знайденими для пе-
ріодичних МУ.

Ключові слова: точкові бозони, елементарне збудження, квазіімпульс, нульові межові умови.
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КВАЗИИМПУЛЬС ЭЛЕМЕНТАРНОГО ВОЗБУЖДЕНИЯ 
ДЛЯ СИСТЕМЫ ТОЧЕЧНЫХ БОЗОНОВ 
С НУЛЕВЫМИ ГРАНИЧНЫМИ УСЛОВИЯМИ

Как известно, элементарное возбуждение многочастичной системы с границами не имеет определенного 
импульса. Мы получаем формулу для квазиимпульса элементарного возбуждения одномерной системы N 
бесспиновых точечных бозонов с нулевыми граничными условиями (ГУ). При этом мы используем ре-
шения Годена, полученные с помощью анзаца Бете. Также мы нашли законы дисперсии частицеподоб ных 
и дыркоподобных возбуждений при нулевых ГУ. Они совпадают с известными законами дисперсии, най-
денными при периодических ГУ.
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