doi: https://doi.org/10.15407/dopovidi2019.01.072 УДК 546.42'651'682

Ю.О.Тітов¹, Н.М.Білявина¹, М.С.Слободяник¹, В.В.Чумак², М.В.Тимошенко¹, Л.В.Томазенко¹

¹ Київський національний університет ім. Тараса Шевченка ² Житомирський державний університет ім. Івана Франка E-mail: tit@univ.kiev.ua

Синтез та особливості будови шаруватої структури $SrLa_{1-x}Sm_xInO_4$

Представлено членом-кореспондентом НАН України М.С.Слободяником

Визначено умови заміщення атомів La на атоми Sm у шаруватій перовськітоподібній структурі (ШПС) індатів SrLa_{1-x}Sm_xInO₄: $0 \le x \le 0,4$. Методом Рітвельда визначена ромбічна (пр. гр. Pbca) кристалічна структура фаз складу SrLa_{1-x}Sm_xInO₄ з x = 0,2 і 0,4. Встановлено, що в результаті заміщення атомів La на атоми Sm в ШПС SrLa_{1-x}Sm_xInO₄ відбувається поступове зменшення ступеня деформації міжблочних поліедрів (Sr,La,Sm)O₉ та середньої відстані In—O в октаедрах InO₆, а також значно збільшується довжина міжблочних зв'язків (Sr, La, Sm)—O2. Зі збільшенням відстані між перовськітоподібними блоками зменшується міцність їх зв'язування між собою, що призводить до руйнування ШПС і обмежує область твердих розчинів SrLa_{1-x}Sm_xInO₄ з ШПС.

Ключові слова: індати SrLa_{1-x}Sm_xInO₄, шарувата перовськітоподібна структура, рентгенівська порошкова дифрактометрія, ізоморфізм, тверді розчини.

Синтез та дослідження нових сполук Рудлесдена—Попера загального складу $A_{n+1}B_nO_{3n+1}$ (n — число шарів октаедрів BO_6 у перовськітоподібному блоці) з шаруватою перовськітоподібною структурою (ШПС) мають як теоретичне, так і практичне значення, оскільки сполукам цього сімейства притаманний широкий спектр цінних властивостей (зокрема, таких як люмінесцентні, резистивні, надпровідні, значний магнітоопір, сегнетоелектричні властивості, каталітична активність та інші) [1—7].

Для одношарових (n = 1) індієвмісних сполук типу A_2BO_4 встановлена наявність у $A^{II}LaInO_4$ іонопровідних властивостей [3], які обумовлюють перспективу їх використання як твердих електролітів, а також люмінесцентних властивостей у $Sr_{1,5}Ln_{0,5}In_{0,5}Sn_{0,5}O_4$ [4]. Проте обмежене число відомих одношарових індатів не давало змоги провести повноцінний аналіз особливостей будови цього підкласу сполук та встановити кристалохімічні фактори, які обумовлюють морфотропний перехід ШПС у ряду індатів $A^{II}LnInO_4$.

© Ю.О.Тітов, Н.М.Білявина, М.С.Слободяник, В.В.Чумак, М.В.Тимошенко, Л.В.Томазенко, 2019

ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2019. № 1

Рис. 1. Кристалічна структура $SrLa_{0,8}Sm_{0,2}InO_4$ у вигляді октаедрів InO_6 та атомів Sr, La, Sm (кружечки) **Рис. 2.** Будова міжблочної границі в ШПС $SrLa_{0,6}Sm_{0,4}InO_4$ у вигляді октаедрів InO_6 та атомів Sr, La, Sm (сірий кружечок)

Мета даної роботи — синтез фаз SrLa $_{1-x}$ Sm $_x$ InO $_4$ та пошук взаємозв'язків склад—особливості будови їх ШПС.

Синтез індатів SrLa_{1-x}Sm_xInO₄ проводили шляхом сумісної кристалізації (випаровування при інтенсивному перемішуванні) суміші водних розчинів нітратів Sr, La, Sm та In зі співвідношенням Sr : La : Sm : In = 1 : 1 - x : x : 1 з подальшою термообробкою одержаного продукту на газовому пальнику для видалення основної маси оксидів нітрогену. Отриману таким способом шихту перетирали, пресували у вигляді дисків та піддавали термообробці при 1570 K до досягнення незмінного фазового складу. Як вихідні використано нітрати Sr, P3E та In марок "хч".

Рентгенівські дифракційні спектри полікристалічних зразків записано на дифрактометрі Shimadzu XRD-6000 в дискретному режимі (крок сканування 0,02°, експозиція в точці 7 с, інтервал кутів 20 = 18 ÷ 82°) на мідному фільтрованому (дуговий графітовий монохроматор перед лічильником) Cu K_{α} випромінюванні. Кристалічна структура одержаних зразків визначена методом Рітвельда. Первинна обробка дифракційних спектрів та структурні розрахунки виконано з використанням апаратно-програмного комплексу як описано в [8].

Результати рентгенофазового аналізу термооброблених зразків показали, що фази SrLa_{1-x}Sm_xInO₄ з ШПС існують в інтервалі значень $0 \le x \le 0,4$. У випадку подальшого зростання ступеня заміщення атомів лантану на атоми самарію в одношарових індатах SrLa_{1-x}Sm_xInO₄ починається руйнування ШПС і утворення другої фази зі структурою типу CaFe₂O₄, у В-позиції якої одночасно розташовані атоми Sm та In.

Виходячи із встановлених меж області існування фаз з ШПС у системі SrLa_{1-x}Sm_xInO₄, для пошуку кореляцій склад–особливості будови ШПС нами визначено ШПС фаз SrLa_{1-x}Sm_xInO₄ зі ступенями заміщення атомів лантану (*x*) рівними 0,2 та 0,4.

Дифрактограми одержаних термообробкою шихти спільно закристалізованих нітратів фаз SrLa_{1-x}Sm_xInO₄ з ШПС подібні до дифрактограм SrLaInO₄, а індексування показало належність їх ШПС до ромбічної сингонії. Систематика погасань відбиттів (наявні відбиття: hkl — будь-які, 0kl з k = 2n, h0l з l = 2n, hk0 з h = 2n, h00, 0k0, 00l з h,k,l = 2n) вказує на належність кристалічної структури SrLa_{1-x}Sm_xInO₄ з ШПС до центросиметричної просторової групи *Pbca*.

ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2019. № 1

Puc. 3. Залежності довжини міжблочного зв'язку (Sr, Ln) — O2 (1) та довжини зв'язку In — O2 в октаедрах InO_6 (2) в ШПС $SrLa_{1-x}Sm_xInO_4$ від ступеня заміщення атомів лантану (значення x)

Рис. 4. Залежність ступеня деформації (Δ) поліедрів (Sr, La, Sm)O₉ в ШПС SrLa_{1-x}Sm_xInO₄ від ступеня заміщення атомів лантану (значення x)

Первинну оцінку координатних параметрів для початкових моделей ШПС фаз SrLa_{1-x}Sm_xInO₄ проведено за відомими структурними даними для індату SrLaInO₄ (пр. гр. *Pbca*) [9]. Зіставлення експериментальних і розрахованих для таких моделей структури інтенсивностей показало їх задовільну збіжність. Результати уточнення побудованих в пр. гр. *Pbca* моделей структури SrLa_{1-x}Sm_xInO₄ наведені в табл. 1, 2. Встановлений у результаті розрахунку структури склад зазначених фаз у межах похибки визначення відповідає експериментально заданому.

ШПС фаз SrLa_{1-x}Sm_xInO₄ (x = 0,2 та 0,4) побудована двовимірними (нескінченними в напрямках осей Y i Z) перовськітоподібними блоками завтовшки в один шар деформованих октаедрів InO₆ (значення довжини відстаней In—O знаходяться в межах від 0,202(2) до 0,220(1) нм). Блоки зсунуті один відносно іншого вздовж діагоналі площини YZ на півребра перовськітового куба. Октаедри InO₆ в перовськітоподібному блоці ШПС SrLa_{1-x}Sm_xInO₄ зв'язані між собою тільки вершинами і кожний октаедр InO₆ має чотири спільні вершини із сусідніми октаедрами одного і того ж блока (рис. 1). Безпосередній зв'язок між октаедрами InO₆ сусідніх перовськітоподібних блоків у ШПС SrLa_{1-x}Sm_xInO₄ відсутній. Блоки розділені міжблочним шаром поліедрів (Sr, La, Sm)O₉ і утримуються разом за допомогою зв'язків — O—(Sr,La,Sm)—O—.

В одношаровій ШПС SrLa_{1-x}Sm_xInO₄ катіони Sr, La, Sm розташовані на межі перовськітоподібного блока, а їх розподіл в позиції 8*с* має статистичний характер. З дев'яти атомів оксигену поліедра (Sr,La,Sm)O₉ вісім атомів (чотири O1 та чотири O2 належать до того ж блока, що і атоми (Sr,La,Sm), а дев'ятий атом оксигену O2 є аксіальним атомом октаедра InO₆ сусіднього перовськітоподібного блока (рис. 2).

Аналіз одержаних нами даних про ШПС фаз $SrLa_{1-x}Sm_xInO_4$ та відомих даних для індату $SrLaInO_4$ [9] показав, що заміна в А-позиції ШПС індату $SrLaInO_4$ атомів лантану на менші за розміром атоми самарію призводить до послідовної перебудови його ШПС. Зокрема, найістотніші зміни відбуваються із зовнішньоблочними поліедрами (Sr,Ln)O₉, а саме: значно збільшується довжина міжблочних зв'язків (Sr,Ln)–O2 (рис. 3, 1) та змен-

ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2019. № 1

1аолиця 1	. Структу	и дани	$\operatorname{SrLa}_{1-x}\operatorname{Sm}_{x}\operatorname{II}$	10 ₄								
Позитія	Атом	Запов-		$SrLaInO_4$ [9]		S	rLa _{0,8} Sm _{0,2} InO	4	S	$rLa_{0,6}Sm_{0,4}InO$	4	
		нення	X	Y	Z	X	Y	Z	X	Y	Ζ	
δc	Sr	0,5	0,1454(2)	-0,0174(2)	0,9718(3)	0,1471(1)	0,9867(2)	0,9649(3)	0,1473(2)	0,9928(2)	0,9579(3)	
δc	La	и С	0,1454(2)	-0,0174(2)	0,9718(3)	0,1471(1)	0,9867(2)	0,9649(3)	0,1473(2)	0,9928(2)	0,9579(3)	
&c	Sm	c, v)	I			0,1471(1)	0,9867(2)	0,9649(3)	0,1473(2)	0,9928(2)	0,9579(3)	
4b	In	Ţ	0,5	0	0	0.5	0	0	0,5	0	0	
δc	01	Ţ	0,032(2)	0,235(3)	0,225(2)	0,001(2)	0,229(2)	0,212(3)	0,037(2)	0,249(3)	0,230(2)	
δc	02	-	0,327(3)	0,065(2)	0,048(2)	0,331(3)	0,082(2)	0,018(2)	0,340(3)	0,083(2)	-0,030(2)	
		_	_		Просторов	а група <i>Рbca</i>	(Nº 61)	-				
Періоди гратки, н	кристаліч м	іної	· 7	a = 1,2594(2) b = 0,58747(7) z = 0,58400(8)	_		a = 1,2564(2) = 0,58695(8) = 0,58649(7)		070	$ \begin{aligned} & a = 1,2514(3) \\ & 5 = 0,5849(1) \\ & c = 0,5867(2) \end{aligned} $		
Незалеж.	ні відбит	RI		116			132			132		
Загальнь В фактор	ій ізотрог • (нм ²)	іний		$1,11(5)\cdot 10^{-2}$		J	$0,13(3)\cdot 10^{-2}$		C	$0,68(2)\cdot 10^{-2}$		
Фактор і	недостові	рності		$R_W = 0.056$			$R_W=0,047$			$R_W = 0,047$		

ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2019. № 1

Відстані	<i>d</i> , нм			D	<i>d</i> , нм		
	SrLaInO ₄ [9]	SrLa _{0,8} Sm _{0,2} InO ₄	$\rm SrLa_{0,6}Sm_{0,4}InO_4$	Відстані	SrLaInO ₄ [9]	$\rm SrLa_{0,8}Sm_{0,2}InO_4$	$\rm SrLa_{0,6}Sm_{0,4}InO_4$
Sr, Ln–O2	0,238(2)*	0,240(1)*	0,240(2)	In-O1	0,208(1)	0,202(2)	0,205(2)
Sr, Ln–O2	0,252(1)	0,241(2)	0,247(2)*	In-O1	0,208(1)	0,202(2)	0,205(2)
Sr, Ln–O2	0,252(2)	0,267(1)	0,290(2)	In-O1	0,216(2)	0,216(1)	0,220(1)
Sr, Ln–O1	0,254(2)	0,248(2)	0,244(1)	In-O1	0,216(2)	0,216(1)	0,220(1)
Sr, Ln–O1	0,262(1)	0,274(2)	0,259(2)	In-O2	0,223(2)	0,218(2)	0,207(2)
Sr, Ln–O1	0,282(1)	0,289(1)	0,292(1)	In-O2	0,223(2)	0,218(2)	0,207(2)
Sr, Ln–O1	0,320(3)	0,306(2)	0,327(2)				
Sr, Ln–O2	0,339(2)	0,328(3)	0,304(2)				
Sr, Ln–O2	0,347(3)	0,352(2)	0,346(3)				
Середня відстань (Sr,Ln)–О	0,283	0,283	0,283	Середня відстань In–O	0,216	0,212	0,211
Δ(Sr,Ln)O ₉	$192\cdot 10^{-4}$	$174\cdot 10^{-4}$	$162\cdot 10^{-4}$	$\Delta \operatorname{InO}_6$	$8 \cdot 10^{-4}$	$11 \cdot 10^{-4}$	$10\cdot 10^{-4}$

Таблиця 2. Міжатомні відстані (нм) та ступінь деформації (Δ) поліедрів (Sr, Ln)O₉ і InO₆ в кристалічних структурах SrLa_{1-x}Sm_xInO₄ (x = 0, 0,2, 0,4)

Примітка. Ступінь деформації полієдрів MeO_n розраховано за формулою $\Delta = 1/n \sum [(R_i - \overline{R})/\overline{R}]^2$ (R_i – відстані $Me-O, \overline{R}$ – середня відстань Me-O, n – координаційне число) [10]. * Міжблочна відстань.

шується ступінь деформації міжблочних поліедрів (Sr,Ln)O₉ (рис. 4). Одночасно зі збільшенням значень x відбувається зменшення як аксіальної відстані In—O2 (див. рис. 3, 2), так і середньої відстані In—O в октаедрах InO₆ (див. табл. 2).

Зростання відстані між перовськітоподібними блоками зі збільшенням ступеня заміщення атомів лантану в ШПС фаз ${\rm SrLa}_{1-x}{\rm Sm}_x{\rm InO}_4$ спричиняє зменшення міцності зв'язування сусідніх блоків між собою, що врешті призводить до руйнації ШПС та пояснює обмеженість області твердих розчинів ${\rm SrLa}_{1-x}{\rm Sm}_x{\rm InO}_4$ з ШПС значенням $x\leqslant 0,4$ і відсутність сполуки ${\rm SrSmInO}_4$. Збільшення довжини міжблочних зв'язків $-{\rm O2-(Sr,Ln)}-{\rm O2-}$ призводить відповідно до скорочення аксіальної відстані In-O2 в октаедрах InO₆ та сприяє зменшенню середньої відстані In-O в октаедрах InO₆. Можна очікувати, що однією з головних причин дестабілізації ШПС фаз складу ${\rm SrLa}_{1-x}{\rm LnI}_x{\rm InO}_4$ (LnI = Nd, Eu-Lu) також буде зменшення міцності зв'язування між собою сусідніх перовськітоподібних блоків.

Таким чином, у даній роботі встановлено умови ізовалентного заміщення атомів лантану в індаті SrLaInO₄ по типу SrLa_{1-x}Sm_xInO₄ ($0 \le x \le 0,4$) та визначено будову ШПС фаз SrLa_{1,8}Sm_{0,2}InO₄ і SrLa_{1,6}Sm_{0,4}InO₄. Аналіз одержаних даних дав змогу виявити характер впливу ізовалентного заміщення атомів лантану на будову ШПС фаз SrLa_{1-x}Sm_xInO₄ та встановити структурні фактори, які обмежують область їх існування. Визначення залежностей будови ШПС фаз SrLa_{1-x}Sm_xInO₄ від складу дасть можливість регулювання параметрів їх функціональних властивостей, які для великої частини оксидних сполук значною мірою обумовлені будовою їх кристалічної структури.

ЦИТОВАНА ЛІТЕРАТУРА

- 1. Александров К.С., Безносиков Б.В. Перовскиты. Настоящее и будущее. Новосибирск: Изд-во СО РАН, 2004. 231 с.
- Schaak R.E., Mallouk T.E. Perovskites by design: a toolbox of solid-state reactions. *Chem. Mater.* 2002. 14, № 4. P. 1455–1471. doi: https://doi.org/10.1021/cm010689m
- 3. Kato S., Ogasawara M., Sugai M., Nakata S. Synthesis and oxide ion conductivity of new layered perovskite La_{1-x}Sr_{1+x}InO_{4-d}. *Solid State Ionics*. 2002. **149**, № 1–2. P. 53–57. doi: https://doi.org/10.1016/S0167-2738(02)00138-8
- Titov Yu., Nedilko S.G., Chornii V., Scherbatskii V., Belyavina N., Markiv V., Polubinskii V. Crystal structure and luminescence of layered perovskites Sr₃LnInSnO₈. Solid State Phenomena. 2015. 230. P. 67–72. doi: https://doi.org/10.4028/www.scientific.net/SSP.230.67
- 5. Kim I.S., Nakamura T., Itoh M. Humidity sensing effects of the layered oxides SrO·(LaScO₃)_n (n = 1,2,∞).
 J. Ceram. Soc. Jap. 1993. 101, № 7. P. 800–803. doi: https://doi.org/10.2109/jcersj.101.800
- 6. Yang H.M., Shi J.X., Gong M.L. A new luminescent material, Sr₂SnO₄: Eu³⁺. *J. Alloys Compd.* 2006. **415**, № 1–2. P. 213–215. doi: https://doi.org/10.1016/j.jallcom.2005.04.221
- Ueda K., Yamashita T., Nakayashiki K., Goto K., Maeda T., Furui K., Ozaki K., Nakachi Y., Nakamura S., Fujisawa M., Miyazaki T. Green, orange, and magenta luminescence in strontium stannates with perovskite-related structures. *Jap. J. Appl. Phys.* 2006. 45, № 9A. P. 6981–6983. doi: https://doi.org/10.1143/ JJAP.45.6981
- 8. Dashevskyi M., Boshko O., Nakonechna O., Belyavina N. Phase transformations in equiatomic Y–Cu powder mixture at mechanical milling. *Metallofiz. Noveishie Tekhnol.* 2017. **39**, № 4. P. 541–552. doi: https:// doi.org/10.15407/mfint.39.04.0541
- 9. Тітов Ю.О., Білявина Н.М., Марків В.Я., Слободяник М.С., Краєвська Я.А. Синтез і кристалічна структура BaLaInO₄ та SrLnInO₄ (Ln = La, Pr). Допов. Нац. акад. наук Укр. 2009. № 10. С. 160–166.
- Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and halcogenides. *Acta Crystallogr.* 1976. A32. P. 751–767.

Надійшло до редакції 21.09.2018

REFERENCES

- 1. Alexandrov, K. C. & Beznosikov, B. V. (2004). Perovskites. Present and future. Novosibirsk: Izd-vo SO RAN (in Russian).
- Schaak, R. E. & Mallouk, T. E. (2002). Perovskites by design: a toolbox of solid-state reactions. Chem. Mater., 14, No. 4, pp. 1455-1471. doi: https://doi.org/10.1021/cm010689m
- 3. Kato, S., Ogasawara, M., Sugai, M. & Nakata, S. (2002). Synthesis and oxide ion conductivity of new layered perovskite $\text{La}_{1-x}\text{Sr}_{1+x}\text{InO}_{4-d}$. Solid state ionics, 149, No. 1-2, pp. 53-57. doi: https://doi.org/10.1016/S0167-2738(02)00138-8
- Titov, Yu., Nedilko, S. G., Chornii, V., Scherbatskii, V., Belyavina, N., Markiv, V. & Polubinskii, V. (2015). Crystal structure and luminescence of layered perovskites Sr₃LnInSnO₈. Solid State Phenomena, 230, pp. 67-72. doi: https://doi.org/10.4028/www.scientific.net/SSP.230.67
- 5. Kim, I. S., Nakamura, T. & Itoh, M. (1993). Humidity sensing effects of the layered oxides SrO·(LaScO₃)_n (n = 1,2,∞). J. Ceram. Soc. Jap., 101, No. 7, pp. 800-803. doi: https://doi.org/10.2109/jcersj.101.800
- Yang, H. M., Shi, J. X. & Gong, M. L. (2006). A new luminescent material, Sr₂SnO₄: Eu³⁺. J. Alloys Compd., 415, No. 1-2, pp. 213-215. doi: https://doi.org/10.1016/j.jallcom.2005.04.221
- Ueda, K., Yamashita, T., Nakayashiki, K., Goto, K., Maeda, T., Furui, K., Ozaki, K., Nakachi, Y., Nakamura, S., Fujisawa, M. & Miyazaki, T. (2006). Green, orange, and magenta luminescence in strontium stannates with perovskite-related structures. Jap. J. Appl. Phys., 45, No. 9A, pp. 6981-6983. doi: https://doi.org/10.1143/ JJAP.45.6981
- Dashevskyi, M., Boshko, O., Nakonechna, O. & Belyavina, N. (2017). Phase transformations in equiatomic Y-Cu powder mixture at mechanical milling. Metallofiz. Noveishie Tekhnol., 39, No. 4, pp. 541-552. doi: https://doi.org/10.15407/mfint.39.04.0541

ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2019. № 1

- 9. Titov, Y. O., Belyavina, N. M., Markiv, V. Ya., Slobodyanik, M. S. & Krayevska, Ya. A. (2009). Synthesis and crystal structure of BaLaInO₄ and SrLnInO₄ (Ln = La, Pr). Dopov. Nac. akad. nauk Ukr., No. 10, pp. 160-166 (in Ukrainian).
- 10. Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and halcogenides. Acta Crystallogr., A32, pp. 751-767.

Received 21.09.2018

Ю.А. Титов¹, Н.Н. Белявина¹, Н.С. Слободяник¹, В.В. Чумак², М.В. Тимошенко¹, Л.В. Томазенко¹

¹ Киевский национальный университет им. Тараса Шевченко

 2 Житомирский государственный университет им. Ивана Франко

E-mail: tit@univ.kiev.ua

СИНТЕЗ И ОСОБЕННОСТИ СТРОЕНИЯ СЛОИСТОЙ СТРУКТУРЫ SrLa_{1-r}Sm_rInO₄

Определены условия замещения атомов La на атомы Sm в слоистой перовскитоподобной структуре (СПС) индатов SrLa_{1-x}Sm_xInO₄: $0 \le x \le 0,4$. Методом Ритвельда определена ромбическая (пр. гр. *Pbca*) кристаллическая структура фаз состава SrLa_{1-x}Sm_xInO₄ с x = 0,2 и 0,4. Установлено, что при замещении атомов La на атомы Sm в CПС SrLa_{1-x}Sm_xInO₄ происходит постепенное уменьшение степени деформации межблочных полиэдров (Sr,La,Sm)O₉ и среднего расстояния In–O в октаэдрах InO₆, а также значительно увеличивается длина межблочных связей (Sr,La,Sm)–O2. С увеличением расстояния между перовскитоподобными блоками уменьшается прочность их связывания между собой, что приводит к разрушению СПС и ограничивает область твердых растворов SrLa_{1-x}Sm_xInO₄ с CПС.

Ключевые слова: индаты SrLa_{1-x}Sm_xInO₄, слоистая перовскитоподобная структура, рентгеновская порошковая дифрактометрия, изоморфизм, твердые растворы.

Y.A. Titov¹, N.M. Belyavina¹, M.S. Slobodyanik¹, V.V. Chumak², M.V. Timoschenko¹, L.V. Tomazenko¹ ¹ Taras Shevchenko National University of Kiev

² Zhytomyr Ivan Franko State University

E-mail: tit@univ.kiev.ua

SYNTHESIS AND STRUCTURAL FEATURES OF SLAB STRUCTURE SrLa_{1-r}Sm_rInO₄

The substitution conditions of La by Sm atoms in the slab perovskite-like structure (SPS) of $SrLa_{1-x}Sm_xInO_4$ ($0 \le x \le 0.4$) indates are determined. Orthorhombic (sp. gr. *Pbca*) crystal structures of $SrLa_{1-x}Sm_xInO_4$ phases with x = 0.2 and 0.4 are determined, by using the X-ray powder diffraction methods. Analysis of the obtained data has shown that, in a case of the substitution of La atoms by Sm atoms in SPS of $SrLa_{1-x}Sm_xInO_4$, a gradual reduction of the deformation degree of interblock (Sr, La, Sm)O_9 polyhedra and the average In–O distance in InO₆ octahedra takes place. Length of (Sr, La, Sm)–O2 interblock bonds is significantly increased. Increase in the distance between perovskite-like blocks reduces a durability of their bonding. This results in the destruction of SPS and a limitation of the area of $SrLa_{1-x}Sm_xInO_4$ solid solutions with SPS.

Keywords: indates $SrLa_{1-x}Sm_xInO_4$, slab perovskite-like structure, X-ray powder diffraction, isomorphism, solid solutions.