ПРОЦЕССЫ В СИСТЕМЕ «ОКЕАН-АТМОСФЕРА»

УДК 551.465

С.Г. Демышев, Н.В. Маркова, Г.К. Коротаев

Морской гидрофизический институт НАН Украины, г. Севастополь

МОДЕЛИРОВАНИЕ ЦИРКУЛЯЦИИ В ЧЕРНОМ МОРЕ В СЕНТЯБРЕ 2005 г. ПРИ РАЗЛИЧНЫХ ПАРАМЕТРИЗАЦИЯХ ТУРБУЛЕНТНОЙ ДИФФУЗИИ И ВЯЗКОСТИ ПО ВЕРТИКАЛИ

Приводится сравнение параметризаций вертикальной турбулентной вязкости и диффузии по формулам Филандера-Пакановского и модели Меллора-Ямады при численном моделировании динамики Черного моря в штормовой ситуации в сентябре 2005 г. При сильном ветре динамический отклик моря, при использовании параметризации Филандера-Пакановского, сосредоточен в приповерхностном 10-метровом слое, что приводит к нереальным скоростям течений. Показано, что параметризация Меллора-Ямады обеспечивает адекватное описание течений в верхнем слое моря и более быстрый отклик на атмосферное воздействие.

Ключевые слова: Черное море, гидродинамика, численное моделирование, турбулентная вязкость, диффузия, параметризация Филандера-Пакановского, Меллора-Ямады, атмосферный форсинг, квазитропический циклон.

Введение. Правильное описание процессов, происходящих в верхнем перемешанном слое Черного моря, принципиально важно для адекватного воспроизведения морской термодинамики и, следовательно, для прогноза его состояния.

Формирование и эволюция верхнего слоя в модели динамики [1, 2] ранее описывались на основе аппроксимации Филандера-Пакановского [3]. В серии численных расчетов (например, в работе [2]) было показано, что в случае гладкой структуры атмосферных полей использование этого приближения оправданно. В то же время, при резких изменениях атмосферной ситуации аппроксимация Филандера-Пакановского приводит к неадекватным результатам. В первую очередь, это связано с тем, что в приближении Филандера-Пакановского, в отличие от параметризации Меллора-Ямады [4], при расчете коэффициентов турбулентности влияние атмосферного воздействия учитывается опосредованно, через число Ричардсона. Для реализации численной модели оперативного прогноза течений в море, когда необходимо учитывать реальную изменчивость атмосферного воздействия, такой недостаток должен быть преодолен.

Параметризация Меллора-Ямады 2.5 используется в численной модели динамики океана, разработанной в Принстонском университете [5]. Эта мо-

© С.Г. Демышев, Н.В. Маркова, Г.К. Коротаев, 2012

8

дель выписана в σ -системе координат и применяется для решения задач диагноза и прогноза состояния морской среды. В отличие от нее, в данной работе на основе подхода Меллора-Ямады реализована численная схема расчета коэффициентов турбулентной вязкости и диффузии для трехмерной модели оперативного прогноза течений в Черном море в *z*-системе координат. В работе [6] проведен анализ конечно-разностных аналогов уравнений для кинетической энергии турбулентности и макромасштаба турбулентности. На основе сопоставления результатов прогностических экспериментов с данными наблюдений выбрана лучшая аппроксимация слагаемого, описывающего генерацию энергии турбулентности.

Цель настоящей работы – провести сопоставление двух подходов [3, 4] для параметризации вертикальной турбулентной вязкости и диффузии. Для их сравнения были проведены численные эксперименты в период прохождения над юго-западной частью Черного моря интенсивного атмосферного циклона 25 – 29 сентября 2005 года. Он представлял собой мезомасштабный вихрь, который характеризовался небольшими горизонтальными размерами (порядка 100 км) и значительной орбитальной скоростью.

Проведено два численных прогностических эксперимента с различными параметризациями турбулентной вязкости и диффузии по вертикали и сопоставлены их результаты.

Постановка задачи. Уравнения модели. Система уравнений модели в приближении Буссинеска, гидростатики и несжимаемости морской воды имеет вид (ось *z* направлена вертикально вниз) [1]:

$$u_t - (\xi + f)v + wu_z = -g\rho_0\varsigma_x - \frac{1}{\rho_0}(P^1 + E)_x + (v_V u_z)_z - v_H \nabla^4 u, \qquad (1)$$

$$v_t + (\xi + f)u + wv_z = -g\rho_0\varsigma_y - \frac{1}{\rho_0}(P^1 + E)_y + (v_V v_z)_z - v_H \nabla^4 v, \qquad (2)$$

$$P = g\rho_0 \varsigma + g \int_0^{\varsigma} \rho d\mu = g\rho_0 \varsigma + P^1, \qquad (3)$$

$$u_x + v_y + w_z = 0, (4)$$

$$\varsigma_t + \int_0^H (u_x + v_y) dz = (Pr - Ev) / \rho_1 ,$$
 (5)

$$T_t + (wT)_x + (wT)_y + (wT)_z = -\kappa^H \nabla^4 T + (\kappa^T T_z)_z,$$
(6)

$$S_{t} + (uS)_{x} + (vS)_{y} + (wS)_{z} = -\kappa^{H} \nabla^{4} S + (\kappa^{S} S_{z})_{z},$$
(7)

$$\rho = \alpha_1^T + \alpha_1^S S + \alpha_2^T T^2 + \alpha_2^S S^2 + \alpha^{TS} TS.$$
(8)

Для расчета коэффициентов турбулентной вязкости и диффузии по вертикали используются два подхода. В первом (I) рассматривается аппроксимация Филандера-Пакановского [3], во втором (II) – параметризация Меллора-Ямады 2.5 [4].

В соответствии с приближением Филандера-Пакановского коэффициенты турбулентной вязкости и диффузии по вертикали имеют вид:

$$v = v_0 (l + Ri)^{-2} + v_1^V ,$$

$$\kappa^S = [(v_0 (l + Ri)^{-2} + v_1](l + Ri)^{-1} + \kappa_1^S ,$$

$$\kappa^T = [(v_0 (l + Ri)^{-2} + v_1](l + Ri)^{-1} + \kappa_1^T ,$$

(9)

где $Ri = (g / \rho_0) \partial \rho / \partial z [(\partial u / \partial z)^2 + (\partial v / \partial z)^2]$ – число Ричардсона, и в классическом варианте $v_0, v_1, v_1^V, \kappa^S, \kappa^T$ – известные постоянные.

Проведенные ранее специализированные расчеты [7] показали, что при большом числе Ричардсона минимальные значения коэффициентов турбулентной диффузии по вертикали для температуры и солености (κ^T , κ^S) должны зависеть от времени и от глубины.

В соответствии с теорией Меллора-Ямады 2.5 [4] для определения коэффициентов турбулентной вязкости и диффузии (v^V , κ^V) необходимо знать кинетическую энергию турбулентности ($e^2/2$) и макромасштаб турбулентности (l), уравнения для которых записываются следующим образом:

$$\frac{de^{2}}{dt} = \frac{\partial}{\partial z} \left(\mu^{V} \frac{\partial e^{2}}{\partial z} \right) + 2v^{V} \left[\left(\frac{\partial u}{\partial z} \right)^{2} + \left(\frac{\partial v}{\partial z} \right)^{2} \right] + \frac{2g}{\rho_{0}} \kappa^{V} \frac{\partial \rho}{\partial z} - \frac{2e^{3}}{B_{I}l} + v^{e} \nabla^{4} e^{2}, \quad (10)$$

$$\frac{d(e^{2}l)}{dt} = \frac{\partial}{\partial z} \left(\mu^{V} \frac{\partial (e^{2}l)}{\partial z} \right) + lE_{I} v^{V} \left[\left(\frac{\partial u}{\partial z} \right)^{2} + \left(\frac{\partial v}{\partial z} \right)^{2} \right] + \frac{lE_{3}g}{\rho_{0}} \kappa^{V} \frac{\partial \rho}{\partial z} - \frac{e^{3}}{B_{I}} H + v^{e} \nabla^{4} (e^{2}l), \quad (11)$$

где H – эмпирическая функция и E_1 , E_3 – эмпирические константы. Соответствующие соотношения для расчета коэффициентов имеют вид

$$\nu^V = leS_H, \quad \kappa^V = leS_M \,, \tag{12}$$

где *S_H*, *S_M* – функции устойчивости, которые определяются из эмпирических соотношений [4].

Эта система уравнений должна быть дополнена соотношением для расчета μ^V :

$$\mu^V = leS_e,\tag{13}$$

где эмпирическая константа $S_e = 0, 2$.

Поставим краевые условия для системы уравнений (1) – (11). На поверхности при z = 0:

$$v_V u_z = -\tau^x, \ v_V v_z = -\tau^y, \ \kappa^T T_z = Q^T, \ \kappa^V S_z = \frac{Ev - Pr}{\rho_1} S_0 + \beta (S^{cl} - S_0), \ (14)$$

$$e^{2} = B_{1}^{2/3} \left[\left(\tau^{x} + \tau^{y} \right) / \rho_{0}^{2} \right]^{1/2}, \quad e^{2}l = 0 .$$
 (15)

На боковой границе ставится условие отсутствия потоков.

На дне при z = H(x, y):

$$u = v = w = 0, \quad T_z = S_z = 0.$$
 (16)

$$e^2 = 0, \quad e^2 l = 0$$
 (17)

На твердых боковых стенках:

для меридиональных участков границы:

$$u = \nabla^2 u = v_x = \nabla^2 v_x = 0, \ T_x = (\nabla^2 T)_x = S_x = (\nabla^2 S)_x = 0,$$
(18)

для зональных участков границы:

$$v = \nabla^2 v = u_y = \nabla^2 u_y = 0, \quad T_y = (\nabla^2 T)_y = S_y = (\nabla^2 S)_y = 0.$$
 (19)

На участках границы, где вода втекает, используются условия Дирихле: для меридиональных участков:

$$u = u^{p}, \ \nabla^{2}u = v_{x} = \nabla^{2}v_{x} = 0,$$

$$T = T^{p}, \ S = S^{p}, \ (\nabla^{2}T)_{x} = (\nabla^{2}S)_{x} = 0,$$
(20)

для зональных участков:

$$v = v^{p}, \quad \nabla^{2}v = u_{y} = \nabla^{2}u_{y} = 0,$$

$$T = T^{p}, \quad S = S^{p}, \quad (\nabla^{2}T)_{y} = (\nabla^{2}S)_{y} = 0.$$
(21)

Для верхнебосфорского течения и для Керченского пролива, когда течение направлено из Черного моря в Азовское:

$$v = v^{s}, \quad \nabla^{2}v = u_{y} = \nabla^{2}u_{y} = 0,$$

 $T_{x} = 0, \quad S_{x} = 0, \quad (\nabla^{2}T)_{y} = (\nabla^{2}S)_{y} = 0.$ (22)

Для e^2 и e^2l на боковых границах ставится условие отсутствие потоков.

В выражениях (1 – 22) приняты следующие обозначения: u,v,w – компоненты вектора скорости, направленные вдоль осей x, y, z соответственно; $\xi = v_x - u_y$, $E = \rho_0 (u^2 + v^2)/2$, Pr – скорость выпадения осадков, Ev – скорость испарения воды с поверхности моря, ρ_1 – плотность морской воды, (τ^x, τ^y) – касательное напряжение трения ветра, Q^T – поток тепла, S_0 – поверхностная соленость, S^{cl} – климатическая соленость, β – параметр релаксации. Остальные обозначения общепринятые. Смешанное краевое условие для солености (третье соотношение в (14)) вводится из следующих соображений. Проведенные специализированные эксперименты показали, что данные по осадкам и испарений содержат большие ошибки, и при интегрировании уравнений модели структура поля солености в верхнем слое моря искажается. Для предотвращения этого эффекта используется краевое условие (14), в котором ассимилируется климатическая соленость на поверхности. Релаксационный параметр β означает скорость приспособления модельного поля к климатическому. По результатам расчетов его значение выбрано равным 0,0011574 см с⁻¹, что соответствует скорости приблизительно 1м в сутки.

В (18) – (22) введены следующие обозначения: u^{p} , v^{p} , v^{s} – горизонтальные скорости в устьях рек (индекс p) и проливах (индекс s) соответственно; T^{p} , S^{p} – температура и соленость речных вод.

В качестве начальных полей при $t = t^0$ взяты трехмерные климатические поля Черного моря, соответствующие 25 сентября, полученные в работе [8]:

$$u = u^{cl}(x, y, z), \quad v = v^{cl}(x, y, z), \quad \zeta = \zeta^{cl}(x, y),$$

$$T = T^{cl}(x, y, z), \quad S = S^{cl}(x, y, z), \quad (23)$$

$$e = e^0, \ l = l^0$$
 (24)

где индекс *cl* означает климатические поля из [8].

Система уравнений (1) – (11) с соответствующими краевыми (12)–(22) и начальными (23) – (24) условиями решалась численно.

Конечно-разностная формулировка модели. Конечно-разностная схема модели выписана на сетке *С* (терминология работы [5]). Она обладает вторым порядком аппроксимации по времени и, с точностью до равномерного шага, вторым – по пространству.

Из записанных в традиционной форме уравнений движения не следует схема, обладающая двумя квадратичными инвариантами в баротропном приближении для уравнений мелкой воды [9]. Поэтому используется запись уравнений движения в форме Громеки-Лэмба, которая позволяет получить разностную схему для уравнений движения, сохраняющую в баротропном приближении с точностью до аппроксимации по времени полную энергию и потенциальную энстрофию [9, 10].

При аппроксимации уравнения для возвышения свободной поверхности (ζ) была использована полунеявная схема [11], которая обеспечила возможность проведения расчетов с большим по сравнению, например, с моделью [12] шагом по времени.

При расчетах с высоким пространственным разрешением для достижения вихреразрешения необходимо было уменьшить трение для крупномасштабных и синоптических движений, для чего использовалось бигармоническое представление горизонтальной турбулентной вязкости и диффузии.

Окончательно дифференциально-разностная формулировка модели (дифференциальная по времени) имеет вид:

$$du_{i+1/2} / dt = [v, \xi]_{i+1/2} - \left(\overline{w_{i+1/2}^{x}} (\delta_z u_{i+1/2}) h_k^{z} h_k^{-1} \right) - , \qquad (25)$$
$$-\delta_x (E_{i+1/2} + P_{i+1/2}) - v_H \nabla^4 u_{i+1/2} + \delta_z (v^u \delta_z u)$$

$$dv_{j+1/2} / dt = -[u,\xi]_{j+1/2} - \left(\overline{\overline{w}_{j+1/2}^{y}}(\delta_{z}v_{j+1/2})h_{k}^{z}h_{k}^{-1}\right) - , \qquad (26)$$
$$-\delta_{y}\left(E_{j+1/2} + P_{j+1/2}\right) - v_{H}\nabla^{4}v_{j+1/2} + \delta_{z}\left(v^{v}\delta_{z}v\right)$$

$$P = g\rho_{0}\zeta + g\sum_{l=1}^{k} \rho_{l+1/2}h_{l+1/2} = g\rho_{0}\zeta + P', \qquad (27)$$

$$\delta_x u + \delta_y v + \delta_z w = 0, \qquad (28)$$

$$d\varsigma / dt + \sum_{k} (\delta_{x} u + \delta_{y} v) h_{k} = (Pr - Ev) / \rho_{1}, \qquad (29)$$

$$dT/dt + \delta_x(F_u^T) + \delta_y(F_v^T) + \delta_z(F_w^T) = \delta_z(\kappa^T \delta_z T) - \kappa_H \nabla_{xy}^2(\nabla_{xy}^2 T), \quad (30)$$

$$dS/dt + \delta_x(F_u^S) + \delta_y(F_v^S) + \delta_z(F_w^S) = \delta_z(\kappa^S \delta_z S) - \kappa_H \nabla_{xy}^2(\nabla_{xy}^2 S), \quad (31)$$

$$\rho = \rho_0 + \alpha_1^T T + \alpha_1^S S + \alpha_2^T T^2 + \alpha^{ST} ST .$$
(32)

В уравнениях (25) – (32) целочисленные значения индексов опущены и использованы разностные операторы (по осям *y*, *z* – аналогично).

$$\overline{\varphi}_{i,j,k}^{x} = \frac{\varphi_{i+1/2,j,k} + \varphi_{i-1/2,j,k}}{2},$$
$$\delta_{x}\varphi_{i,j,k} = \frac{\varphi_{i+1/2,j,k} - \varphi_{i-1/2,j,k}}{h_{x}}, \quad \nabla_{x,y}^{2}\varphi_{i,j,k} = \delta_{x}^{2}\varphi_{i,j,k} + \delta_{y}^{2}\varphi_{i,j,k}.$$

В дискретных уравнениях использованы следующие обозначения. В соответствии с работами [9, 10] горизонтальная адвекция в уравнениях (25), (26) расписывается следующим образом:

$$[v,\xi]_{i+1/2,j,k} = -\overline{v_{i+1/2,j}}^{y} \overline{\xi_{i+1/2,j}}^{xy^{x}} + \frac{1}{12} \{ [\delta_{x}(u_{i+1/2,j}\delta_{y}\overline{\xi_{i+1/2,j}}^{x})] - \frac{1}{24} [u_{i+1/2,j}\delta_{x}\delta_{y}\overline{\xi_{i+1/2,j}}^{x}] - [v_{i+1,j+1/2}\delta_{y}\overline{\xi_{i+1,j}}^{x} + v_{i,j-1/2}\delta_{y}\overline{\xi_{i,j}}^{x} + , (33a) + v_{i+1,j-1/2}\delta_{x}\overline{\xi_{i+1,j}}^{y} + v_{i,j+1/2}\delta_{x}\overline{\xi_{i,j}}^{y}] \}$$

$$[u,\xi]_{i,j+1/2,k} = \overline{\overline{u_{i,j+1/2}}^{x} \overline{\xi_{i,j+1/2}}^{y}}^{y} + \frac{1}{12} \{ [\delta_{y}(v_{i,j+1/2} \delta_{x} \overline{\xi_{i,j+1/2}}^{y})] - \frac{1}{24} [v_{i,j+1/2} \delta_{x} \overline{\delta_{y}} \overline{\xi_{i,j+1/2}}^{y}] - [u_{i+1/2,j+1} \delta_{x} \overline{\xi_{i,j+1}}^{y} + u_{i-1/2,j} \delta_{x} \overline{\xi_{i,j}}^{y} + . \quad (336) + u_{i-1/2,j+1} \delta_{y} \overline{\xi_{i,j+1}}^{x} + u_{i+1/2,j} \delta_{y} \overline{\xi_{i,j}}^{x}] \}$$

В случае нелинейного уравнения (8) выполнение закона сохранения полной энергии достигается специальной аппроксимацией уравнения гидростатики [10]. Тогда плотность в уравнении (20) аппроксимируется следующим образом

$$\rho_{i,j,k+1,2} = [\alpha_1^T (T_{i,j,k+1} + T_{i,j,k}) + \alpha_1^S (S_{i,j,k+1} + S_{i,j,k}) + \alpha_1^{TS} (T_{i,j,k} S_{i,j,k+1} + T_{i,j,k+1} S_{i,j,k})] 0,5 + \alpha_2^T T_{i,j,k+1} T_{i,j,k}.$$
(34)

При использовании приближения Филандера-Пакановского коэффициенты турбулентной вязкости и диффузии по вертикали аппроксимируются в соответствии с соотношениями (17):

$$v_{i+1/2,j,k}^{u} = v_0 (1 + Ri_{i+1/2,j,k})^{-2} + v_1^{V}, v_{i,j+1/2,k}^{v} = v_0 (1 + Ri_{i,j+1/2,k})^{-2} + v_1^{V},$$

$$\kappa_{i,j,k}^{S} = [(v_0 (1 + Ri_{i,j,k})^{-2} + v_1](1 + Ri_{i,j,k})^{-1} + (\kappa_1^{S})_k,$$

$$\kappa_{i,j,k}^{T} = [(v_0 (1 + Ri_{i,j,k})^{-2} + v_1](1 + Ri_{i,j,k})^{-1} + (\kappa_1^{T})_k.$$
(35)

Заметим, что *и* и *v* расписаны в разных относительно друг друга точках, поэтому и коэффициенты вязкости по вертикали v^{u} , v^{v} определены в (25), (26) соответствующим образом. Коэффициенты κ_{1}^{S} и κ_{1}^{T} кроме вертикальной координаты зависят также и от времени. Они подбирались для каждого месяца на основе специализированных численных экспериментов [7].

Разностные аналоги уравнений (10), (11) с учетом неявного представления по времени диффузионного члена имеют вид [4, 6]

$$\frac{\hat{e}_{k+1/2}^{n+1} - \hat{e}_{k+1/2}^{n-1}}{2\tau} + \delta_{x}(\overline{u_{k+1/2}^{n}}^{z}\hat{e}_{k+1/2}^{n}) + \delta_{y}(\overline{v_{k+1/2}^{n}}^{z}\hat{e}_{k+1/2}^{n}) + \\
+ \delta_{z}(\overline{w_{k+1/2}^{n}}^{z}\hat{e}_{k+1/2}^{n}) = \delta_{z}\left[(\mu_{k+1/2}^{V})^{n-1}\delta_{z}(\hat{e}_{k+1/2}^{n+1})\right] + \\
+ 2(\tilde{v}_{k+1/2}^{V})^{n-1}\left\{\left[\delta_{z}\left(\overline{u_{k+1/2}^{n-1}}^{x}\right)\right]^{2} + \left[\delta_{z}\left(\overline{v_{k+1/2}^{n-1}}^{y}\right)\right]^{2}\right\} + \\
+ \frac{2g}{\rho_{0}}(\tilde{\kappa}_{k+1/2}^{V})^{n-1}\delta_{z}(\rho_{k+1/2}^{n-1}) - \frac{2\hat{e}_{k+1/2}^{n+1}(\hat{e}_{k+1/2}^{n-1})^{3/2}}{B_{1}\Lambda_{k+1/2}^{n-1}} + \\
+ v^{e}(\delta_{x}^{4}\hat{e}_{k+1/2}^{n-1} + 2\delta_{x}^{2}\delta_{y}^{2}\hat{e}_{k+1/2}^{n-1} + \delta_{\mu}^{4}\hat{e}_{k+1/2}^{n-1}),$$
(36)

$$\frac{\Lambda_{k+1/2}^{n+1} - \Lambda_{k+1/2}^{n-1}}{2\tau} + \delta_{x} (\overline{u_{k+1/2}^{n-1}}^{z} \Lambda_{k+1/2}^{n}) + \delta_{y} (\overline{v_{k+1/2}^{n-2}}^{z} \Lambda_{k+1/2}^{n}) + \\
+ \delta_{z} (\overline{w_{k+1/2}^{n-2}}^{z} \Lambda_{k+1/2}^{n}) = \delta_{z} [(\mu_{k+1/2}^{V})^{n-1} \delta_{z} (\Lambda_{k+1/2}^{n+1})] + \\
+ l_{k+1/2}^{n-1} E_{1} (\widetilde{v}_{k+1/2}^{V})^{n-1} \left\{ \left[\delta_{z} \left(\overline{u_{k+1/2}^{n-1}}^{x} \right) \right]^{2} + \left[\delta_{z} \left(\overline{v_{k+1/2}^{n-1}}^{y} \right) \right]^{2} \right\} + \\
+ \frac{l_{k+1/2}^{n-1} E_{3}g}{\rho_{0}} (\widetilde{\kappa}_{k+1/2}^{V})^{n-1} \delta_{z} (\rho_{k+1/2}^{n-1}) - \frac{\Lambda_{k+1/2}^{n+1} (\widehat{e}_{k+1/2}^{n-1})^{3/2}}{B_{1} \Lambda_{k+1/2}^{n-1}} H_{k+1/2} + \\
+ \nu^{e} (\delta_{x}^{4} \Lambda_{k+1/2}^{n-1} + 2\delta_{x}^{2} \delta_{y}^{2} \Lambda_{k+1/2}^{n-1} + \delta_{y}^{4} \Lambda_{k+1/2}^{n-1}),$$
(37)

где n – временной уровень и τ – шаг по времени.

Здесь введены следующие обозначения:

$$\widehat{e}_{k+1/2}^{n} = (e^{2})_{k+1/2}^{n}, \quad \Lambda_{k+1/2}^{n} = (le^{2})_{k+1/2}^{n}, \quad l_{k+1/2}^{n} = \frac{\Lambda_{k+1/2}^{n}}{\widehat{e}_{k+1/2}^{n}}.$$
(38)

В работе [6] анализировались различные аппроксимации коэффициентов v^V , κ^V и μ^V . На основе сопоставления с данными наблюдений результатов численных экспериментов была выбрана следующая аппроксимация:

$$(\widetilde{\nu}_k^V)^n = \overline{l_k^n}^z \, \overline{\widehat{e_k}^n}^z (S_H)_k^n, \ (\widetilde{\kappa}_k^V)^n = \overline{l_k^n}^z \, \overline{\widehat{e_k}^n}^z (S_M)_k^n, \ (\mu_k^V) = \overline{l_k^n}^z \, \overline{\widehat{e_k}^n}^z S_l \ . \tag{39}$$

В уравнениях (36), (37) преобразовано предпоследнее слагаемое в правых частях [5]. Цель такого преобразования заключается в следующем. Нетрудно видеть, что эти разностные уравнения сводятся к уравнениям прогонки. Условием их разрешимости является свойство диагонального преобладания. Преобразование последних членов этих уравнений приводит к усилению этого свойства и, следовательно, к повышению устойчивости решения конечно-разностной задачи.

Для анализа численных расчетов необходимо указать на особенность аппроксимаций коэффициентов турбулентности в уравнениях движения и адвекции-диффузии тепла и соли. В соответствии с распределением переменных на сетке *C* компоненты горизонтальной скорости *u* и *v* рассчитываются для разных относительно друг друга узлов. Поэтому, строго говоря, коэффициенты вертикального турбулентного обмена в конечно-разностных аналогах уравнений движения должны быть определены для различных точек сеточной области. В уравнении для *u*-компоненты v^V аппроксимируются в точках (*i*+1/2, *j*, *k*+1/2), а в уравнении для *v* – в точках (*i*, *j*+1/2, *k*+1/2). Поэтому в уравнениях движения они имеют вид:

$$v_{i+1/2,j,k}^V = \overline{\widetilde{v}_k^V}^x, \qquad v_{i,j+1/2,k}^V = \overline{\widetilde{v}_k^V}^y.$$

В свою очередь, коэффициент вертикальной турбулентной диффузии определяется в точках (i, j, k+1/2).

Атмосферные условия в конце сентября 2005 г. над Черным морем. Для анализа эффективности параметризации Меллора-Ямады при расчетах течений в период интенсивного атмосферного воздействия был выбран конец сентября 2005 года. В этот период над Черным морем наблюдался квазитропический циклон, который характеризовался небольшими горизонтальными размерами (порядка 100 км) и значительной орбитальной скоростью [14].

Эволюция вихря характеризовалась тремя стадиями [14].

<u>Начальная стадия</u> развития циклона – с 0 ч 25 сентября до 12 ч 26 сентября, при которой его радиус составлял 100 – 115 км и максимальная скорость приводного ветра достигала 15 м/с. В его горизонтальной структуре наблюдалась сильная асимметрия с отчетливо выраженными спиральными рукавами неправильной формы.

<u>На втором этапе</u> (с 12 ч 26 сентября до 12 ч 27 сентября) имело место быстрое развитие циклона, когда скорость ветра достигла 24 м/с, а радиус уменьшился до 65 км. Он принял осесимметричную форму.

<u>На третьей стадии</u> (с 12 ч 27 сентября до 12 ч 28 сентября) циклон сохранял квазистационарный характер. Он немного усилился и принял практически круговую форму с радиусом 65 км. Скорость ветра превышала 30 м/с.

В качестве примера на рис. 1 приведено приводное поле ветра в период наиболее интенсивного развития атмосферного вихря [15]. На последней стадии с 12 ч 28 сентября до 0 ч 29 сентября циклон быстро затухал, начал приближаться к берегу и вышел на сушу.

Рис. 1. Поле ветра над Черным морем 27 сентября 2005 г.

Параметры модели. По горизонтали использовано разрешение (5×5) км, по вертикали расчет проводился на 45 горизонтах с глубинами от 2,5 до 2100 м. В первом эксперименте шаг по времени составлял 5 минут, во втором – 1 минуту. Уменьшение шага по времени во втором расчете обусловлено большими значениями коэффициентов турбулентной вязкости и диффузии при использовании подхода Меллора-Ямады. Так как при больших значениях коэффициентов турбулентности необходимо было значительно уменьшать шаг по времени, то было введено ограничение, равное 500 см²/с, которое было получено на основе анализа результатов предварительных специализированных численных экспериментов. В точках, где это значение могло быть превышено, использовалась процедура конвективного перемешивания.

На поверхности моря задается напряжение трения ветра, полученное на основе региональной модели *MM5* (*Fifth-Generation Penn State /NCAR Mesoscale Model, NCAR – National Centers of Atmospheric Research*) [16] в отделе взаимодействия атмосферы и океана Морского гидрофизического института НАН Украины [15]. Данные по ветру поступали каждый час с 0 ч 25 сентября по 12 ч 29 сентября, и затем они линейно интерполировались на каждый шаг по времени.

Для задания краевых условий для уравнений переноса-диффузии тепла и соли использовались данные о потоках тепла, осадках и испарений на поверхности моря из работы [17], параметры рек и проливов – из справочномонографического пособия [18].

Значение коэффициента горизонтального обмена импульсом равнялось $5 \times 10^{17} \text{ см}^4/\text{с}$, коэффициент горизонтальной диффузии в уравнениях адвекции-диффузии тепла и соли – $\kappa_H = 10^{16} \text{ см}^4/\text{ссe} \cdot 10^{16} \text{ см}^4/\text{сek}$.

В качестве начальных полей использовались климатические поля температуры, солености и скорости на 0 ч 25 сентября, полученные в [8]. Срок интегрирования уравнений модели в обоих расчетах составлял 5 суток: с 0 ч 25 сентября по 12 ч 29 сентября 2005 года. Проведено 2 эксперимента: в первом для расчета коэффициентов вертикальной турбулентной вязкости и диффузии использовалась параметризация Филандера-Пакановского, во втором – Меллора-Ямады 2.5.

Результаты численных расчетов. Рис. 2 демонстрирует поведение средней по горизонтам кинетической энергии в двух экспериментах. В первом варианте кинетическая энергия на поверхности моря (горизонт 2,5 м) значительно превышает свои значения во втором расчете, где она распределяется достаточно равномерно по глубине. Значения E на первом горизонте (см. рис. 2, a) превышают её значения во втором эксперименте в 3 – 4 раза (см. рис. 2, b), что обусловлено слабым перемешиванием по вертикали при использовании приближении Филандера-Пакановского. В свою очередь, непосредственный учет касательного напряжения трения ветра в параметризации Меллора-Ямады приводит к большим вертикальным коэффициентам вязкости, что обеспечивает быстрое перемешивание в верхнем слое моря.

25 – 26 сентября в результате действия ветра в западной части моря наблюдалось усиление циклонического круговорота и формирование в поле уровня пограничного слоя у западного побережья, где его значения достигали 22 см. В зону циклонического вращения вод были вовлечены воды Основного черноморского течения (ОЧТ), начиная от болгарского побережья (на северо-западе) и до центральной части турецкого Анатолийского побережья (на юго-востоке). В дальнейшем усиление ветра привело к значительной интенсификации течений в западной части моря и затем к формированию мощного циклонического вихря, в котором понижение уровня достигло 30 см, и совпадающим с центром западного циклонического круговорота (рис. 3).

Рис. 2. Средняя по горизонтам кинетическая энергия: *a* – в эксперименте I; *б* – в эксперименте II.

Рис. 3. Поле уровня (см) в 12 ч 28 сентября: a – в эксперименте I; δ – в эксперименте II.

К этому времени в поле уровня сохранялся интенсивный западный пограничный слой, который в первом варианте выражен более ярко. Значительно усилилось ОЧТ на западе рассматриваемой области и вдоль Анатолийского побережья, в то время как мощность восточного циклонического круговорота не изменилась.

При использовании параметризации Филандера-Пакановского 25 - 26 сентября максимальная скорость на поверхности моря превысила 256 см/с (см. рис. 4, *a*), во втором эксперименте – максимальная скорость равна 113 см/с (см. рис. 4, *б*). Во втором варианте в результате интенсивного перемешивания за сутки в верхнем 15-метровом слое количественные отличия в скорости по глубине составили несколько сантиметров. В то время как в первом расчете наибольшие скорости наблюдались на поверхности моря, и уже на 10 м они уменьшились примерно на 65 %. В циклоническом круговороте на горизонте 20 м скорости во втором расчете по сравнению с первым вариантом больше примерно в два раза. Они составили 50 - 100 см/с, тогда как в первом эксперименте – 20 - 60 см/с.

Рис. 4. Течения на верхнем расчетном горизонте 2,5 м в 12 ч 26 сентября: a - в эксперименте I, $\delta - в$ эксперименте II; в 12 ч 27 сентября: b - в эксперименте I, z - в эксперименте II.

Своей наибольшей мощности квазитропический циклон достиг 27 – 28 сентября, что привело к интенсивным процессам перемешивания в верхнем слое моря и подъему глубинных вод. В первом эксперименте максимальные скорости на поверхности достигали нереальных значений – 364 см/с (см. рис. 4, *в*). Причем осреднение за сутки, проведенное для фильтрации инерционных колебаний, привело к незначительным изменениям этих величин. В тоже время, использование параметризации Меллора-Ямады обеспечило гораздо более интенсивное перемешивание, вследствие которого кинетическая энергия перераспределилась более равномерно по глубине, и скорости на поверхности моря, например, не превышали 153 см/с (см. рис. 4, *г*). На глубине 20 м количественные отличия между двумя вариантами меньше (см. рис. 5, a, δ), хотя наблюдалась более упорядоченная структура течений в варианте II (см. рис. 5, δ). В этот период квазитропический циклон принял осесимметрическую форму, чему в большей степени соответствовало поведение течений в верхнем слое моря во втором варианте расчетов (см. рис. 5, δ).

При использовании параметризации Меллора-Ямады скорости на поверхности в области вихря ниже более чем в два раза по сравнению с экспериментом І. В первом эксперименте наибольшие скорости (превышающие 250 см/с) наблюдались по периферии вихря. В обоих вариантах вдоль западного берега сформировалось узкое струйное течение, скорости в котором достигали 100 см/с. Наибольшие скорости, превышающие 150 см/с, во втором расчете имели место в нескольких точках во вдольбереговом течении.

Рис. 5. Течения на горизонте 20 м в 12 ч 27 сентября: *а* – в эксперименте I; б – в эксперименте II.

В подповерхностном слое моря (примерно до 50 м) в области циклонического вихря скорости в эксперименте II больше по сравнению с первым расчетом примерно на 6 – 7 %, что свидетельствует о более сильном перемешивании и соответствующем перераспределении кинетической энергии по глубине. Анализ течений по глубине показал, что по сравнению с первым вариантом, при использовании параметризации Меллора-Ямады наблюдались большие скорости в области циклона, и меньшие в ОЧТ.

Рис. 6 демонстрирует структуру поля течений на 29 сентября, когда квазитропический циклон покинул акваторию Черного моря. К этому времени значительно уменьшилась скорость в первом расчете (примерно в несколько раз), тогда как во втором эксперименте ее уменьшение составило 15 - 20% по сравнению со скоростью на 28 сентября. Рис. 6, *б* демонстрирует более упорядоченную структуру течений, как в области циклонического круговорота, так и вдоль Анатолийского побережья. Эта особенность характерна для верхнего слоя, где в первом эксперименте накапливалась энергия, поступающая из атмосферы. Видимо, в этом случае ее диссипация обеспечивалась образованием мелкомаштабных образований, которые создали нерегулярную картину в западной части бассейна (см. рис. 6, *a*). Во втором расчете ее распределение по глубине имело гораздо более равномерный характер, и, видимо, поэтому горизонтальные течения имели гладкую структуру.

Рис. 6. Течения на горизонте 10 м в 12 ч 29 сентября: a - в эксперименте I; $\delta - в$ эксперименте II.

В результате действия атмосферного циклона в западной части циклонического круговорота значительно усилился процесс подъема холодных и соленых глубинных вод. В период 25 - 26 сентября в обоих экспериментах процесс подъема вод реализовывался достаточно схоже. Заметные различия наблюдались 27 сентября (см. рис. 7). В первом расчете (см. рис. 7, *a*) холодный промежуточный слой (ХПС) приблизился к поверхности моря, что свидетельствует о преобладании процессов вертикальной адвекции над диффузией. Во втором расчете (см. рис. 7, δ) наблюдался разрыв ХПС, и слой теплой приповерхностной воды в области развивающегося циклонического вихря имел толщину 20 - 25 м. Следовательно, при использовании параметризации Меллора-Ямады в случае интенсивного ветра процессы диффузии преобладают над с вертикальной адвекцией. Резкое усиление атмосферного циклона произошло в период с 12 ч 26 сентября до 12 ч 27 сентября.

Рис. 7. Зональный разрез в поле температуры (°С) вдоль параллели 42° с.ш. 27 сентября 2005 г.: a - в эксперименте I; $\delta - в$ эксперименте II.

В первом расчете ХПС 28 сентября вышел на поверхность, и температура поверхностных вод в центре циклонического круговорота составила +8 °C. Во втором эксперименте продолжился интенсивный процесс диффузии, что привело к увеличению области разрыва ХПС. Рис. 8 демонстрируют указанные процессы в обоих вариантах расчета. В первом расчете на поверхность моря вышел холодный промежуточный слой (см. рис. 8, *a*), во втором – наряду с подъемом вод имело место мощное перемешивание, которое привело к попаданию на поверхность моря вод, лежащих ниже XПС (см. рис. 8, δ).

Рис. 8. Зональный разрез в поле температуры (°С) вдоль параллели 42°с.ш. 29 сентября 2005 г.: *а* – в эксперименте I; *б* – в эксперименте II.

Процесс подъема воды в центре вихря сопровождался опусканием теплых вод по его периферии. Скорость опускания теплых вод во втором расчете – примерно 10 м в сутки, что привело к увеличению толщины верхнего перемешанного слоя 28 сентября до 60 м.

Сложная штормовая ситуация, вызванная атмосферным циклоном, привела к приостановке навигации в юго-восточной части Черного моря на несколько суток. Получить информацию о гидрофизических параметрах контактными методами в это время не представлялось возможным. Поэтому результаты численных экспериментов в период прохождения циклона могут быть подтверждены только данными спутниковых измерений.

Поверхностная структура модельной температуры (см. рис. 9, *a*) соответствует спутниковым измерениям (см. рис. 9, δ). Область холодной воды с температурой в центре ниже +8,5 °C наблюдалась в области циклонического вихря 28 и 29 сентября и сохраняла свое местоположение ко времени выхода циклона за пределы акватории Черного моря.

Рис. 9. Поле температуры (в °С) на поверхности моря 29 сентября 2005 г.: *а* – по результатам эксперимента II; *б* – по спутниковым данным.

В результате расчета получено качественное соответствие в структуре поверхностной температуры и главной ее особенности – области холодной воды на западе моря. Так как в этих расчетах ассимиляция натурных дан-

ных в модели не проводилась, и атмосферные потоки тепла задавались климатические, то наблюдаются количественные отличия от спутниковой температуры.

В поле солености заметные изменения между двумя расчетами произошли к 27 сентября (рис. 10). В результате действия сильной диффузии в приповерхностном слое и подъема вод в нижних слоях моря во втором варианте в слое 20 – 40 м наблюдался более обостренный халоклин (см. рис. 10).

В дальнейшем процесс диффузии привел к тому, что на поверхности моря во втором расчете 29 сентября сформировались воды с соленостью, превышающей 19,5 ‰, что соответствует климатической солености на глубине 70 – 80 м. В первом эксперименте в центре циклонического вихря вода имела соленость, не превышающую 19,2 ‰.

Рис. 10. Зональный разрез в поле солености (в ‰) вдоль параллели 42°с.ш. 27 сентября 2005 г.: *а* – в эксперименте I; *б* – в эксперименте II.

Заключение. Проведенные расчеты показали преимущество использования параметризации Меллора-Ямады по сравнению с подходом Филандера-Пакановского, по крайней мере, в период интенсивного атмосферного воздействия. При сильном ветре динамический отклик моря в первом расчете сосредоточен в тонком верхнем 10-метровом слое, что приводит к нереальным скоростям течений и, как следствие, к неадекватной адвекции в полях температуры и солености. Это, в свою очередь, может повлиять на перестройку поля плотности и привести тем самым к увеличению ошибки прогноза течений в морском бассейне.

Параметризация Меллора-Ямады обеспечивает непосредственный отклик на атмосферное воздействие. При сильном ветре в верхнем слое моря за счет большого вертикального коэффициента турбулентной вязкости развивается интенсивное перемешивание.

Анализ кинетической энергии по глубине показал, что в области циклонического вихря в первом расчете она может превышать свои значения во втором эксперименте на один-два порядка. Объяснение такой значительной разнице может быть следующее. Отличие между двумя расчетами заключается в коэффициентах турбулентной вязкости и диффузии по вертикали. Поэтому изменение кинетической энергии обусловлено слагаемым, описывающим перераспределение энергии за счет трения по вертикали. Приток энергии от ветра зависит от напряжения трения ветра, которые в обоих расчетах одинаковы, и от скорости течений на поверхности моря. Диссипация энергии за счет трения о дно в обоих вариантах мала. Можно предположить, что большая разница в значениях энергии обусловлена потерей энергии за вертикального внутреннего трения, величина которого впрямую зависит от значения коэффициента вязкости, а он на один-два порядка больше во II расчете. Поэтому во II эксперименте значения скорости в верхнем слое в области вихря составляли величину около 100 см/с, в отличии от I расчета, где они превысили 200 см/с. В I эксперименте по сравнению со II расчетом наблюдались большие скорости в ОЧТ и меньшие – в циклоническом вихре.

Накапливание значительной части энергии в тонком верхнем слое в первом (I) расчете привело к тому, что после ослабления ветра в поле скорости сформировались мезомасштабные особенности, которые обеспечивали сток энергии в малые масштабы, но искажали общую структуру циркуляции. Во втором (II) расчете на протяжении всего периода интегрирования поддерживалась осесимметричная форма циклона и узкий струйный вид ОЧТ, что представляется более адекватной картиной течений.

Параметризация Меллора-Ямады обеспечивает более быстрый по сравнению с приближением Филандера-Пакановского динамический отклик на действие ветра. Об этом косвенно свидетельствует структура сформировавшегося вихря на 28 сентября, которая соответствует изменению формы квазитропического циклона в этот период.

В тоже время необходимо отметить, что нет надежных данных наблюдений, с которыми можно было бы сравнить результаты расчетов. Спутниковая температура поверхности моря свидетельствует о выходе холодных вод нижележащих слоев моря, которая характерна для обоих расчетов. Точность ее измерений составляет примерно 0,5 °C, что соответствует разнице в температуре в центре вихря между двумя вариантами.

Список литературы

- Демышев С.Г., Коротаев Г.К. Численная энергосбалансированная модель бароклинных течений океана на сетке С // Численные модели и результаты калибровочных расчетов течений в Атлантическом океане. – М.: ИВМ РАН, 1992. – С. 163-231.
- 2. Демышев С.Г., Кныш В.В., Коротаев Г.К. Численное моделирование сезонной изменчивости гидрофизических полей Черного моря // Морской гидрофизический журнал. 2002. № 3. С. 12-26.
- Pacanowski R.C., Philander S.G.H. Parameterization of vertical mixing in numerical models of tropical oceans // J. Phys. Oceanogr. – 1981. – Vol. 11, № 11. – P. 1443-1451.
- 4. *Mellor G.L., Yamada T.* Development of a turbulence close model for geophysical fluid problems // Rev. Geophys. Space Phys. 1982. Vol. 20. P. 851-875.
- 5. *Mellor G.L., Yamada T.* Users Guide for Three-Dimensional Primitive Equation Numerical Ocean Model // Available on the Princeton Ocean Model. [Электронный ре-

сурс]. http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/ (Последнее обращение 25.08.2012).

- 6. Демышев С. Г. Исследование чувствительности параметризации Меллора-Ямады к выбору конечно-разностных аналогов в численной трехмерной модели оперативного прогноза течений в Черном море // Морской гидрофизический журнал. – 2010. – № 3. – С. 29-39.
- 7. Демышев С.Г., Кныш В.В., Коротаев Г.К. Численное моделирование сезонной изменчивости гидрофизических полей Черного моря // Морской гидрофизический журнал. 2002. № 3. С. 12-26.
- Демышев С.Г., Иванов В.А., Маркова Н.В., Черкесов Л.В. Построение поля течений в Черном море на основе вихреразрешающей модели с ассимиляцией климатических полей температуры и солености // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа. Севастополь: НПЦ «ЭКОСИ-Гидрофизика». 2007. Вып. 15. С. 215-226.
- 9. Arakawa A., Lamb V.R. A potential enstrophy and energy conserving scheme for the shallow water equation // Mon. Wea. Rev. 1981. Vol. 109, №1. P. 18-36.
- 10. Демышев С.Г. Аппроксимация силы плавучести в численной модели бароклинных течений океана // Известия РАН: Физика атмосферы и океана. 1998. Том 34, № 3. С. 404-412.
- 11. Демышев С.Г. Численные эксперименты по сопоставлению двух конечноразностных схем для уравнений движения в дискретной модели гидродинамики Черного моря // Морской гидрофизический журнал. – 2005. – № 5. – С. 47-59.
- 12. *Яковлев Н.Г.* Численная модель и предварительные результаты расчетов по воспроизведению летней циркуляции вод Карского моря. // Известия РАН: Физика атмосферы и океана. 1996. Том 32, № 5. С. 714-723.
- Морской портал НКАУ. [Электронный ресурс]. http://dvs.net.ua (Последнее обращение 10.05.2012).
- 14. Ефимов В.В, Станичный С.В., Шокуров М.В., Яровая Д.А. Наблюдения квазитропического циклона над Черным морем // Метеорология и гидрология. - 2008. – № 4. – С. 53-62.
- 15. *Ефимов В.В., Шокуров М.В., Яровая Д.А.* Численное моделирование квазитропического циклона над Черным морем // Известия РАН: Физика атмосферы и океана. – 2007. – Том 43, №6. – С. 1-21.
- Сайт «MM5 Community model. Pennsylvania State University / National Center for Atmospheric Research numerical model» [Электронный ресурс]. http://www.mmm. ucar.edu/mm5/ (Последнее обращение 20.10 2012).
- 17. *Staneva J.V. Stanev E.V.* Oceanic response to atmospheric forcing derived from different climatic data sets. Intercomparison study for the Black sea // Oceanologica Acta. 1998. Vol. 21, № 3. P. 393-417.
- Гидрометеорология и гидрохимия морей СССР. Т. IV. Черное море. Вып. 1. Гидрометеорологические условия / Ред. Симонов А.И., Альтман Э.Н. – 1991. – СПб.: Гидрометеоиздат. – С. 103-262.

Материал поступил в редакцию 25.11.2012 г.

АНОТАЦІЯ Приводиться порівняння параметризацій вертикальної турбулентної в'язкості і дифузії по формулах Філандера-Пакановського і моделі Меллора-Ямади при чисельному моделюванні динаміки Чорного моря в штормовій ситуації у вересні 2005 року. При сильному вітрі динамічний відгук моря, при використанні параметризації Філандера-Пакановського, зосереджений в приповерхневому 10-метровому шарі, що приводить до нереальних швидкостей течій. Показано, що параметризація Меллора-Ямади забезпечує адекватне відтворення поля течій у верхньому шарі моря і швидший відгук на атмосферну дію.

ABSTRACT The parameterization comparison of vertical turbulence viscosity and diffusion by Philander-Pacanowsky formula and Mellor-Yamada model within a numerical modeling of the Black sea dynamics in a storm situation on September, 2005, is presented. In the case the parameterization of Filander-Pakanowsky is used, a strong wind forced the Black sea dynamic response is concentrated in a 10-meter upper layer that results to unreal current velocities. It is shown that Mellor-Yamada parameterization provides the adequate description of currents in the upper sea layer and faster response on the atmospheric forcing.