УДК 551.46(262.5)

В.С. Кочергин, С.В. Кочергин, В.В. Фомин

Морской гидрофизический институт НАН Украины, г.Севастополь

ОПРЕДЕЛЕНИЕ ПОЛЯ КОНЦЕНТРАЦИИ ПАССИВНОЙ ПРИМЕСИ В АЗОВСКОМ МОРЕ НА ОСНОВЕ РЕШЕНИЯ СЕРИИ СОПРЯЖЕННЫХ ЗАДАЧ

На основе решения серии сопряженных задач осуществлена оценка поля концентрации пассивной примеси в Азовском море. Алгоритм реализован на многопроцессорной системе.

КЛЮЧЕВЫЕ СЛОВА: сопряженная задача, алгоритм, поле концентрации, Азовское море, многопроцессорные системы.

При решении задачи переноса пассивной примеси с использованием большого количества различных начальных полей необходимо многократно интегрировать уравнение модели. Представленный в данной работе алгоритм позволяет существенно упростить эту процедуру с использованием подхода [1]. При численной реализации алгоритма решается серия сопряженных задач для каждой точки области интегрирования на заданном интервале времени. Алгоритм позволяет решать эти задачи в параллельном режиме для максимального использования ресурсов многопроцессорной системы [2].

Алгоритм. В качестве модели переноса пассивной примеси в Азовском море рассмотрим следующее уравнение в *σ*- координатах

$$\frac{\partial DC}{\partial t} + \frac{\partial DUC}{\partial x} + \frac{\partial DVC}{\partial y} + \frac{\partial WC}{\partial \sigma} =$$

$$= \frac{\partial}{\partial x} A_H \frac{\partial DC}{\partial x} + \frac{\partial}{\partial y} A_H \frac{\partial DC}{\partial y} + \frac{\partial}{\partial \sigma} \frac{K_H}{D} \frac{\partial C}{\partial \sigma}$$
(1)

с краевыми условиями

$$\Gamma: \frac{\partial C}{\partial n} = 0$$

$$\sigma = 0, \quad \sigma = -1: \frac{\partial C}{\partial \sigma} = 0$$
(2)

и начальными данными

$$C(x, y, \sigma, 0) = C_0(x, y, \sigma), \qquad (3)$$

где C – концентрация примеси; U, V, W – компоненты поля скорости; A_H и K_H – коэффициенты турбулентной диффузии в горизонтальном и верти-

© В.С. Кочергин, С.В. Кочергин, В.В. Фомин, 2012

кальном направлениях; D(x, y) – динамическая глубина; σ – вертикальная координата ($\sigma = 0$ на поверхности, $\sigma = -1$ на дне); M – область интегрирования модели; Γ – граница области M; $M_t = M \times [0,T]$.

Поставим в соответствие (1) – (3) сопряженную задачу

$$-\frac{\partial DC^{*}}{\partial t} - \frac{\partial DUC^{*}}{\partial x} - \frac{\partial DVC^{*}}{\partial y} - \frac{\partial WC^{*}}{\partial \sigma} =$$

$$= D\frac{\partial}{\partial x}A_{H}\frac{\partial C^{*}}{\partial x} + D\frac{\partial}{\partial y}A_{H}\frac{\partial C^{*}}{\partial y} + \frac{\partial}{\partial \sigma}\frac{K_{H}}{D}\frac{\partial C^{*}}{\partial \sigma} ;$$

$$\Gamma : \frac{\partial C^{*}}{\partial n} = 0 ;$$

$$\sigma = 0, \ \sigma = -1: \frac{\partial C^{*}}{\partial \sigma} = 0 ;$$

$$C^{*}(x, y, \sigma, T) = h(x, y, \sigma) .$$
(4)

При выводе (4) учтено соотношение, полученное из уравнения неразрывности

$$\frac{\partial D}{\partial t} + \frac{\partial DU}{\partial x} + \frac{\partial DV}{\partial y} + \frac{\partial W}{\partial \sigma} = 0 .$$
 (5)

Умножая (1) – (3) на C^* и интегрируя по частям с учетом (4) и (5) получим

$$\int_{M} hCdM = \int_{M} C_0 C^* dM \quad , \tag{6}$$

Выбираем h в виде

$$h = \begin{cases} \frac{1}{m(\Omega)} & \text{в области } \Omega\\ 0 & \text{вне области } \Omega \end{cases},$$
(7)

где m – мера некоторой области $\Omega \in M$. При этом, в левой части выражения (6) получаем среднюю концентрацию \overline{C}_T в Ω на момент времени T.

Выбрав в качестве Ω ячейку расчетной сетки имеем

$$\overline{C}_T = \int_M C_0 C^* dM \quad . \tag{8}$$

113

Таким образом, решая серию сопряженных задач (4) с начальными данными (7) по формуле (8) осуществляется оценка поля концентрации в некоторой ячейке расчетной сетки. Начальные данные C_0 могут соответствовать любому моменту времени $t_0 \in [0,T]$, при этом процедура восстановления поля концентрации пассивной примеси \overline{C}_T реализуется на интервале времени $[t_0,T]$. При интегрировании сопряженных задач осуществляется запись C^* на каждом моменте времени для восстановления \overline{C}_T по различным начальным данным C_{t_0} .

Сопряженные задачи в данном алгоритме независимы друг от друга и могут быть реализованы различными исполнителями (процессорами). Это позволяет с использованием современной вычислительной техники осуществлять необходимые вычисления в распараллеленном режиме. Дальнейшая оценка \overline{C}_T осуществляется без пространственно временного счета с использованием уже насчитанных значений C^* .

Численная реализация модели. При численной реализации модели (1) - (3) использовались TVD^1 -аппроксимации [3, 4]. Поток вещества F = UC аппроксимируется следующим образом

$$F = F^G + \psi \left(F^L - F^G \right), \tag{9}$$

где ψ – весовой множитель; F^{L} – аппроксимация схемой Лакса-Вендроффа, которая при U = const преобразуется в схему Лейта; F^{G} – аппроксимация направленной разностью. Из (9) видно, что при $\psi = 0$ имеем $F = F^{G}$, а при $\psi = 1$ получаем $F = F^{L}$.

Величина ψ выбиралась одним из известных способов

$$\psi = \max(0, \min(1, r)) , \qquad (10)$$

$$\psi = \max(0, \min(1, 2r), \min(2, r)), \qquad (11)$$

где аргумент г имеет вид

$$r_{i+1/2} = \frac{\left(C_{i+1-n} - C_{i-n}\right)}{\left(C_{i+1} - C_{i}\right)}, \ n = \begin{cases} 1, & U \ge 0\\ -1, & U < 0 \end{cases}.$$
 (12)

Из формулы (10) для весового множителя (схема *Minmod*) видно, что величина $\psi \in [0,1]$, а в случае использования схемы *Superbee* (11) величина

¹ TVD – Total Variation Diminishing – уменьшение полной вариации.

 $\psi \in [0,2]$. При $\psi = 2$ имеем $F = 2F^L - F^G$. Если значения $A < \frac{|U|h}{4}$, то в некоторых точках области интегрирования наблюдается эффект «отрица-

Рис. 1. Установившееся поле течений на поверхности и начальное пятно загрязнения (прямоугольник).

Результаты численных экспериментов. Численные эксперименты проводились с моделью [5] для акватории Азовского моря. Для тестирования алгоритма оценки поля концентрации было получено уставившееся модельное поле течений при западном ветре 10 м/с (см. рис. 1). В результате расчетов по модели было получено пространственное распределение используемых коэффициентов A_H и K_H. Полученные поля скоростей и коэффициентов турбулентной диффузии использовались в качестве входных параметров при интегрировании модели переноса пассивной примеси на срок 66 часов. При этом шаг по времени $\Delta t = 240$ с, шаг по пространству $\Delta x = 0.78 \ \kappa m$, $\Delta y = 1.125 \ \kappa m$. В качестве начального поля концентрации задаются значения равные единице в прямоугольной области на верхних десяти уровнях. По вертикали в модели используется расчетная сетка в *о*-координатах с 15-ю горизонтами. Результаты численных экспериментов показали, что \overline{C}_T практически совпадает с концентрацией C рассчитанной по модели, поэтому для оценки точности воспроизведения решения введены следующие нормы

$$NC = \frac{\max_{x \in D} |\overline{C} - C| \times 100}{\max_{x \in D} |C|};$$
(12)

$$NL = \frac{\sum_{x \in D} |\overline{C} - C| \times 100}{\sum_{x \in D} |C|};$$
(13)

Проведен расчет с малыми значениями $A_H = 1 \text{ см}^2/\text{с}$ и $K_H = 10^{-6} \text{ см}^2/\text{с}$. Результат моделирования поведения пятна загрязнения представлен на рис. 2.

Рис. 2. Местоположение начального пятна загрязнения (а) и результат моделирования (б), max – максимальное значение концентрации примеси в восстановленном начальном поле.

Результат восстановления \overline{C} представлен на рис. 3. Видно, что по своей пространственной структуре результаты хорошо согласуются, при этом NC = 7,342 и NL = 6,814.

Рис. 3. Результат восстановления поля концентрации, max – максимальное значение концентрации примеси в восстановленном начальном поле.

Проведен расчет со значениями коэффициентов A_H и K_H полученными по модели. Результат расчета модели переноса на срок 66 часов представлен на рис. 4, а результат восстановления поля концентрации – на рис. 5. При этом значения норм NC = 3,4546 и NL = 3,8214. На рис. 4 и рис. 5 указаны максимальные значения концентрации примеси в восстановленном начальном поле (max). В целом расчеты показали надежную работу алгоритма оценки поля концентрации в применении к модели переноса пассивной примеси в Азовском море. Используемая процедура позволяет осуществлять расчеты в параллельном режиме на многопроцессорной системе, что существенно сокращает затраты времени при вычислении.

Рис. 4. Местоположение начального пятна загрязнения (*a*) и результат моделирования (*б*).

Рис. 5. Результат восстановления поля концентрации.

Такой подход может быть применен в случае многократного решения задачи переноса с различными начальными данными, например при реализации вариационного алгоритма идентификации, где для достижения минимума функционала качества прогноза требуется необходимое число итераций.

Список литературы

- 1. *Марчук Г.И.* Математическое моделирование в проблеме окружающей среды. М.: Наука, 1982. 320 с.
- Кочергин В.С. Определение поля концентрации пассивной примеси по начальным данным на основе решения сопряженных задач // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа. Севастополь: НПЦ «ЭКОСИ-Гидрофизика». 2011. Вып. 25, том 2. С. 270-376.
- 3. *Harten A.* High resolution schemes for hyperbolic conservation laws // I. Comput. Phys. 1983. Vol. 49. P. 357-393.
- 4. *Pietrzak J.* The use of TVD limiters for forward-time upstream-biased advection schemes in ocean modeling // Mon. Wea. Rev. 1998. Vol. 126. P. 812-830.
- Иванов В.А., Фомин В.В. Математическое моделирование динамических процессов в зоне моря-суша. – Севастополь: НПЦ «ЭКОСИ-гидрофизика», 2008. – 363 с.

Материал поступил в редакцию 17.10.2012 г.

АНОТАЦІЯ На основі рішення серії сполучених задач здійснена оцінка поля концентрації пасивної домішки в Азовському морі. Алгоритм реалізований на многопроцессорной системі.

ABSTRACT On the basis of the decision of the series of the adjoint problem the assessment of concentration fields of passive admixture in Azov sea was done. The algorithm is implemented on a multiprocessor system.