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Contemporary insurance market is full of uncertainty. 
There is a great need in measuring, predicting and 
minimizing uncertainties Insurance services are one of the 
industries, which permanently experience risks of 
bankruptcy. That is why calculating the ruin probabilities 
for insurance companies are one of the problems that need 
well-developed mathematical models [1, p. 179].  

Nowadays Ukrainian insurance companies are 
searching for new ways of profitability and 
competitiveness. Western European insurance companies 
have an option of investing their fund for additional profit. 
That is way there is a great necessity of creation and 
development of the bayesian networks for Ukrainian 
insurance to provide them the possibility of investing their 
fund for additional profit. 

One of the first studies in this area was conducted in 
the beginning of the twentieth century. Since then, the 
mathematical methods of ruin probability calculation 
developed and accumulated a great variety of models and 
approaches. While the permanent growing of economic 
needs, insurance services increase steadily in the 
economies of all developed countries. Insurance services 
are one of the youngest industries any economy, which 
experience a stage of active development. In global 
practice of developed countries, well organized insurance 
services are involved in many economic sectors like 
investment activity of insurance companies. This article 
studies how the actuarial mathematical tools can 
positively affect the theoretical and practical development 
of insurance.  

The development of theoretical, methodological, 
organizational and legal bases of  insurance market have 
been contributed by many economists, such as: 
Alexandrova M.,  Alexandrova T., ArtyukhT., Bazylevych V., 
Baranovsky A. , Osadets S, Zaruba A., Kolomin E., 
Klapkiv M., Shah E., Reytman L., Slusarenko E, Yakovlev T., 
Facil M. and others. 

One of the main problems at present for actuarial 
analysis of the Ukrainian insurance market is the lack of 
large statistical base, which is necessary for any 
econometric modeling. That is way there is a great 
necessity of actuarial models that involve fewer statistical 
information. We analyze methods of calculation of ruin 
probabilities for insurance company in presents of its 
investing activity. We consider an insurance company in 
the case when the premium rate is a bounded by some 
nonnegative random function and the capital of the 
insurance company is invested in a risky asset whose price 
follows a geometric Brownian. 

The goal of the article is creation new types of actuarial 
models of the analysis of ruin probabilities that can be 
helpful for Ukrainian insurance companies under presence 
of their investment activities. There are different methods 
for approximating the distribution of aggregate claims and 
their corresponding stop-loss premium by means of a 
discrete compound Poisson distribution and its 
corresponding stop-loss premium. This discretization is an 
important step in the numerical evaluation of the 
distribution of aggregate claims, because recent results on 
recurrence relations for probabilities only apply to 
discrete distributions. The discretization technique is 
efficient in a certain sense, because a properly chosen 
discretization gives raise to numerical upper and lower 
bounds on the stop-loss premium, giving the possibility of 
calculating the numerically estimates for BNs correspond 
to another GM structure known as a directed acyclic graph 
(DAG) that is popular in the statistics, the machine 
learning, and the artificial intelligence societies. BNs are 
both mathematically rigorous and intuitively 
understandable.  

They enable an effective representation and 
computation of the joint probability distribution (JPD) 
over a set of random variables. The structure of a DAG is 
defined by two sets: the set of nodes (vertices) and the set 
of directed edges. The nodes represent random variables 
and are drawn as circles labeled by the variable names. An 
extension of these genealogical terms is often used to 
define the sets of “descendants” – the set of nodes that can 
be reached on a direct path from the node, or “ancestor” 
nodes – the set of nodes from which the node can be 
reached on a direct path.  

The structure of the acyclic graph guarantees that 
there is no node that can be its own ancestor or its own 
descendent. Such a condition is of vital importance to the 
factorization of the joint probability of a collection of 
nodes as seen below. Note that although the arrows 
represent direct causal connection between the variables, 
the reasoning process can operate on BNs by propagating 
information in any direction.  

A BN reflects a simple conditional independence 
statement. Namely, that each variable is independent of its 
non-descendents in the graph given the state of its parents. 
This property is used to reduce, sometimes significantly, 
the number of parameters that are required to 
characterize the JPD of the variables. This reduction 
provides an efficient way to compute the posterior 
probabilities given the evidence. In addition to the DAG 
structure, which is often considered as the “qualitative” 
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part of the model, one needs to specify the “quantitative” 
parameters of the model.  

The parameters are described in a manner which is 
consistent with a Markovian property, where the 
conditional probability distribution (CPD) at each node 
depends only on its parents. For discrete random 
variables, this conditional probability is often represented 
by a table, listing the local probability that a child node 
takes on each of the feasible values – for each combination 
of values of its parents.  

The joint distribution of a collection of variables can be 
determined uniquely by these local conditional probability 
tables (CPTs). Following the above discussion, a more 
formal definition of a BN can be given. A Bayesian network 
is an annotated acyclic graph that represents a JPD over a 
set of random variables. The graph encodes independence 
assumptions, by which each variable Xi is independent of 
its non-descendents. The second component denotes the 
set of parameters of the network.  

It is well-known that the analysis of activity of an 
insurance company in conditions of uncertainty is of great 
importance [2, p. 14-17]. Starting from the classical papers 
of Cramer and Lundberg which first considered the ruin 
problem in stochastic environment, this subject has 
attracted much attention. Recall that, in the classical 
Cramer-Lundberg model satisfying the Cramer condition 
and, the positive safety loading assumption, the ruin 
probability as a function of the initial endowment 
decreases exponentially [3, p. 47-48]. The problem was 
subsequently extended to the case when the insurance risk 
process is a general Levy process. 

It considers a person who might suffer from a back 
injury, an event represented by the variable Back (denoted 
by B). Such an injury can cause a backache, an event 
represented by the variable Ache (denoted by A). The back 
injury might result from a wrong sport activity, 
represented by the variable Sport (denoted by S) or from 
new uncomfortable chairs installed at the person’s office, 
represented by the variable Chair (denoted by C). In the 
latter case, it is reasonable to assume that a co-worker will 
suffer and report a similar backache syndrome, an event 
represented by the variable Worker (denoted by W). All 
variables are binary; thus, they are either true (denoted by 
“T”) or false (denoted by “F”).  

The CPT of each node is listed besides the node. In this 
example the parents of the variable Back are the nodes 
Chair and Sport. The child of Back is Ache, and the parent 
of Worker is Chair. Following the BN independence 
assumption, several independence statements can be 
observed in this case. For example, the variables Chair and 
Sport are marginally independent, but when Back is given 
they are conditionally dependent. This relation is often 
called explaining away.  

When Chair is given, Worker and Back are 
conditionally independent. When Back is given, Ache is 
conditionally independent of its ancestors Chair and Sport. 
The conditional independence statement of the BN 
provides a compact factorization of the JPDs. Note that the 
BN form reduces the number of the model parameters, 
which belong to a multinomial distribution in this case, 
from 25 − 1 = 31 to 10 parameters. Such a reduction 
provides great benefits from inference, learning 
(parameter estimation), and computational perspective. 
The resulting model is more robust with respect to bias-
variance effects. A practical graphical criterion that helps 
to investigate the structure of the JPD modeled by a BN is 
called d-separation.  

It captures both the conditional independence and 
dependence relations that are implied by the Markov 
condition on the random variables. Inference via BN Given 
a BN that specified the JPD in a factored form, one can 
evaluate all possible inference queries by marginalization, 
i.e. summing out over “irrelevant” variables. Two types of 
inference support are often considered: predictive support 
for node Xi , based on evidence nodes connected to Xi 
through its parent nodes (also called top-down reasoning), 
and diagnostic support for node Xi , based on evidence 
nodes connected to Xi through its children nodes (also 
called bottom-up reasoning).   

One might consider the diagnostic support for the 
belief on new uncomfortable chairs installed at the 
person’s office, given the observation that the person 
suffers from a backache. In many practical settings the BN 
is unknown and one needs to learn it from the data. This 
problem is known as the BN learning problem, which can 
be stated informally as follows: Given training data and 
prior information, estimate the graph topology (network 
structure) and the parameters of the JPD in the BN.  

Learning the BN structure is considered a harder 
problem than learning the BN parameters. Moreover, 
another obstacle arises in situations of partial 
observability when nodes are hidden or when data is 
missing.  

In general, four BN learning cases are often considered, 
to which different learning methods are proposed. The log-
likelihood scoring function decomposes according to the 
graph structure; hence, one can maximize the contribution 
to the log-likelihood of each node independently. Another 
alternative is to assign a prior probability density function 
to each parameter vector and use the training data to 
compute the posterior parameter distribution and the 
Bayes estimates.  

To compensate for zero occurrences of some 
sequences in the training dataset, one can use appropriate 
(mixtures of) conjugate prior distributions, Such an 
approach results in a maximum a posteriori estimate and 
is also known as the equivalent sample size (ESS) method.  

Let us investigate the problem of consistency of risk 
measures with respect to usual stochastic order and 
convex order. It is shown that under weak regularity 
conditions risk measures preserve these stochastic orders. 
This result is used to derive bounds for risk measures of 
portfolios.  

As a by-product, we extend the characterization of 
coherent, law-invariant risk measures with the property to 
unbounded random variables. A surprising result is that 
the trading strategy yielding the optimal asymptotic decay 
of the ruin probability simply consists in holding a fixed 
quantity (which can be explicitly calculated) in the risky 
asset, independent of the current reserve. This result is in 
apparent contradiction to the common believe that ‘rich’ 
companies should invest more in risky assets than `poor' 
ones. The reason for this seemingly paradoxical result is 
that the minimization of the ruin probability is an 
extremely conservative optimization criterion, especially 
for ‘rich' companies [2, p. 351]. 

In general, the other learning cases are 
computationally intractable. In the second case with 
known structure and partial observability, one can use the 
EM (expectation maximization) algorithm to find a locally 
optimal maximum-likelihood estimate of the parameters. 
MCMC is an alternative approach that has been used to 
estimate the parameters of the BN model. In the third case, 
the goal is to learn a DAG that best explains the data. This 
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is an NP-hard problem, since the number of DAGs on N 
variables is super-exponential in N. One approach is to 
proceed with the simplest assumption that the variables 
are conditionally independent given a class, which is 
represented by a single common parent node to all the 
variable nodes.  

This structure corresponds to the naive BN, which 
surprisingly is found to provide reasonably good results in 
some practical problems. To compute the Bayesian score 
in the fourth case with partial observability and unknown 
graph structure, one has to marginalize out the hidden 
nodes as well as the parameters. Since this is usually 
intractable, it is common to use an asymptotic 
approximation to the posterior called Bayesian 
information criterion (BIC) also known as the minimum 
description length (MDL) approach. In this case one 
considers the trade-off effects between the likelihood term 
and a penalty term associated with the model complexity.  

An alternative approach is to conduct local search 
steps inside of the M step of the EM algorithm, known as 
structural EM, that presumably converges to a local 
maximum of the BIC score. BN and Other Markovian 
Probabilistic Models It is well known that classic machine 
learning methods like Hidden Markov models (HMMs), 
neural networks, and  filters can be considered as special 
cases of BNs Specific types of BN models were developed 
to address stochastic processes, known as dynamic BN, 
and counterfactual information, known as functional BN.  

However it is not always possible to produce absolute 
bounds. 

The surplus process of an insurance portfolio is 
defined as the wealth obtained by the premium payments 
minus the reimbursements made at the times of claims. 
When this process becomes negative (if ever), we say that 
ruin has occurred. The general setting is the Gambler's 
Ruin Problem. We address the problem of estimating 
derivatives (sensitivities) of ruin probabilities with respect 
to the rate of accidents. Estimating probabilities of rare 
events is a challenging problem, since naive estimation is 
not applicable. 

It is clear that, risky investment can be dangerous: 
disasters may arrive in the period when the market value 
of assets is low and the company will not be able to cover 
losses by selling these assets because of price fluctuations. 
Regulators are rather attentive to this issue and impose 
stringent constraints on company portfolios. Typically, 
junk bonds are prohibited and a prescribed (large) part of 
the portfolio should contain non-risky assets (e.g., 
Treasury bonds) while in the remaining part only risky 
assets with good ratings are allowed. The common notion 
that investments in an asset with stochastic interest rate 
may be too risky for an insurance company can be justified 
mathematically. 

Solution approaches are very recent, mostly through 
the use of Importance Sampling techniques. Sensitivity 
estimation is an even harder problem for these situations. 
We study different methods for estimating ruin 
probabilities: one via importance sampling (IS), and two 
others via indirect simulation: the storage process (SP), 
which restates the problems in terms of a queuing system, 
and the convolution formula (CF).  

The weak development of insurance market in Ukraine 
is explained by the low incomes of Ukrainians and their 
disinterest in spending money on insurance, although 
some cases. The analyzed  economic and mathematical 
models are recommended to be used in for Ukrainian 
insurance companies for increasing profitability and 

diversification of ruin risks. Although there are several 
methods for calculation the ruin probabilities for 
insurance companies, this study may enrich existing 
methods, for cases of investment activities for Ukrainian 
insurance companies. 
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РЕЗЮМЕ 

Іллічевський Сергій 
Аналіз українського страхового ринку за 
допомогою байєсівських мереж 
Стаття присвячена дослідженню і розробці нових 
методів розрахунку ймовірності розорення страхової 
компанії на основі  байєсівських мереж. Новизна даної 
статті полягає в тому, що ми використовуємо 
байєсівської мережі для вимірювання ймовірності 
банкрутства страхової компанії. 

 
РЕЗЮМЕ 

Илличевский Сергей 
Анализ украинского страхового ринка с помощью 
байесовский сетей. 
Статья посвящена исследованию и разработке новых 
методов расчета вероятности разорения страховой 
компании на основе байесовских сетей. Новизна 
данной статьи состоит в том, что мы используем 
байесовской сети для измерения вероятности 
банкротства страховой компании. 
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