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Optimality of the minimum VaR portfolio using CVaR 
as a risk proxy in the context of transition to Basel III: 

methodology and empirical study

Abstract. The transition to the new standards in risk management announced by the Basel Committee (Basel III) leads to a 
change in the instrument of portfolio risk calculation. Such a transition, in particular, may lead to a loss of optimality of already 
formed portfolios and consequently to the necessity of portfolio restructurization. It should be noted that the process of portfolio 
restructurization is often quite costly not only in terms of financial costs but also in terms of time consuming. Therefore, an actual 
problem is the construction of tools that confirm the necessity of portfolio restructurization and, consequently, the expediency 
of investing resources in this process. Different statistical tests are often used to solve this problem. We are interested in tests 
for significance of the differences between the main characteristics of optimal portfolios obtained under different risk measures, 
in our case VaR and CVaR.
The paper suggests a method for testing the minimum VaR portfolio for optimality in the case when CVaR is used as a measure for 
risk calculation. Sample estimators of two differences between the expected returns of the minimum VaR and the minimum CVaR 
portfolios and between the corresponding coefficients of investor risk aversion are considered. The asymptotic distributions of 
these estimates are provided. 
For empirical research, we select the daily returns of assets from the Dow Jones Industrial Average (DJIA) list that contains 
information on the prices of assets of 30 companies for the period from 01.September 2017 to 31. August 2018 (a total of 
252 observations). We provide the Kolmogorov-Smirnov test about the normality of distribution of all the 30 asset returns, 
and for our analysis we choose only those assets for which the null hypothesis cannot be rejected at the 5% level of 
significance. We got 10 assets: the Coca-Cola Company; the Walt Disney Company; the Boeing Company; Johnson & 
Johnson; the Goldman Sachs Group; Apple Inc.; the Home Depot Inc.; Verizon Communication Inc.; UnitedHealth Group; 
DowDuPont Inc.
Using simulation studies based on empirical data, we show that empirical distributions of the sample estimator of the difference 
between the expected returns of the minimum VaR and the minimum CVaR portfolios even for a small number of assets in 
portfolio (k=5) are significantly asymmetric and biased, and their convergence rate to the asymptotic distribution is rather slow. 
Instead, the properties of the sample estimator of the difference between the corresponding coefficients of investor risk aversion 
are significantly better. Moreover, an adjusted estimator for this difference is constructed. It is shown that for this estimator the 
convergence rate of empirical variances to the asymptotic one is slightly slower than for sample estimator while the empirical 
biases are close to zero. This fact justifies the possibility of using this estimator in practice.
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1. Introduction 
Every financial institution planning its own activity faces 

the problem of financial risk estimation. From the theory and 
practice of finance, it is well known that investments in one 
asset are rather risky and the risk estimation process for each 
asset takes a lot of time. Therefore, financial asset portfolios 
are often used in practice.

2. Brief Literature Review 
Markowitz’s approach to portfolio construction (Marko-

witz, 1952) is not the only method of choosing an optimal port-
folio structure. For example W. Sharpe (1994) described the 
method of portfolio constructing based on the Sharpe ratio 
maximization. It is easy to show that the resulting portfolio lies 
on the efficient frontier. The main disadvantage of this method 
is that mathematical expectation for the sample estimator of 
the portfolio weights with the maximum Sharpe ratio does not 
exist. In addition, it is shown (Schmid & Zabolotskyy, 2008) 
that it is impossible to construct an unbiased estimator for the 
given portfolio. This fact causes certain warnings concerning 
practical use of this portfolio. Y. Okhrin and W. Schmid (2006) 
considered a method for portfolio constructing based on the 
portfolio expected utility function maximization. The problem 
of determining the investor’s risk aversion is one of the main 
drawbacks of this method. In spite of this, maximum expec ted 
utility optimal portfolios are widely used.

Most works on optimal portfolio construction use port-
folio variance as a risk proxy. However, such a choice of 
risk measure is not optimal, since variance has seve ral 
important disadvantages. In recent years, a risk mea sure 
Value-at-Risk (VaR) became very popular for calcula ting 
portfolio risk. The advantage of VaR over variance is that 
VaR is a quantile-based risk measure (Krokhmal et al., 2011) 
and therefore it takes into account only the positive values 
of the loss function (negative values of asset returns), so the 

 probability of high profits does not affect the risk of loss. 
G. Alexander and M. Baptista (2002) suggested using VaR 
as a risk proxy in the portfolio theory. 

At the end of the last century, P. Artzner et al. (1999) 
formulated four main properties of coherence, which risk 
mea sures should satisfy. These properties are monotonici-
ty, sub-additivity, homogeneity and translational invariance. 
VaR is not sub-additive in the general case (Pflug, 2000). As 
a result, it may happen that the total risk of two assets can 
be greater than the sum of the risks of these assets. This 
fact leads to a contradiction with the basic rule of portfolio 
theory: the use of diversification never leads to higher risks. 
 Another drawback of VaR is that it is not convex in the case 
of discrete distributed asset returns and, consequently, it 
can have many local extremes (Kyshakevych, 2012).

Obviously, the Artzner’s axioms do not describe a single 
risk measure. There are several coherent risk measures, but 
one of the most famous is the so-called conditional VaR (CVaR), 
which is a generalization of VaR. G. Pflug (2000) proved that 
CVaR satisfies all conditions of coherence. G. Alexander and 
M. Baptista (2004) showed that the minimum CVaR portfolio 
lies on the efficient frontier or, in other words, is efficient by 
Markowitz. The expected return of this portfolio lies between 
the expected return of the global minimum variance portfolio 
and the expected return of the minimum VaR portfolio under 
the assumption that asset returns are independent and nor-
mally distributed. The main drawback of CVaR is that it is not 
always possible to calculate its value. For example, assuming 
that the return of some financial asset follows the Cauchy dis-
tribution, we get that CVaR cannot be definite for such an as-
set. It is obvious that VaR is free from such a disadvantage. 

It should be pointed out that VaR has some advanta ges 
over CVaR in terms of practical application in spite of all the 
above-mentioned disadvantages. In particular, calculating 

Анотація. У роботі запропоновано метод тестування портфеля фінансових активів з найменшим рівнем VaR на 
оптимальність за умови, що основною мірою для обчислення ризиків є CVaR. Розглянуто вибіркові оцінки двох різниць 
між очікуваними дохідностями портфелів з найменшим рівнем VaR та CVaR та коефіцієнтами, що описують ставлення 
інвестора до ризику, що відповідають цим портфелям. Знайдено асимптотичні розподіли цих оцінок. На основі емпіричних 
даних показано, що емпіричним розподілам вибіркової оцінки різниці між очікуваними дохідностями портфелів з 
найменшим рівнем VaR та CVaR навіть при невеликій кількості активів у портфелі (k = 5) притаманні істотні асиметрія 
та зміщення, а збіжність їх до асимптотичного розподілу є доволі повільною. Натомість властивості вибіркової оцінки 
різниці між коефіцієнтами, що описують ставлення інвестора до ризику, що відповідають портфелям з найменшим рівнем 
VaR та CVaR, є значно кращими. Крім того, в роботі запропоновано виправлену оцінку для цієї різниці, для якої збіжність 
емпіричних дисперсій до асимптотичної дещо сповільнилася; натомість емпіричні зміщення є близькими до нуля, що 
обґрунтовує доцільність використання цієї оцінки на практиці.
Ключові слова: міра ризику; Value-at-Risk; умовне Value-at-Risk; оптимальний портфель; очікувана дохідність портфеля; 
вибіркова оцінка; коефіцієнт, що описує ставлення інвестора до ризику.
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для исчисления риска в контексте перехода на критерии Базель ІІІ: методология и эмпирическое исследование 
Аннотация. В работе предложен метод тестирования портфеля финансовых активов с наименьшим уровнем VaR на 
оптимальность при условии, что основной мерой для вычисления рисков является CVaR. Рассмотрены выборочные 
оценки двух разниц между ожидаемыми доходностями портфелей с наименьшим уровнем VaR и CVaR и коэффициентами, 
описывающими отношение инвестора к риску, соответствующие этим портфелям. Найдены асимптотические 
распределения этих оценок. На основе эмпирических данных показано, что эмпирическим распределениям 
выборочной оценки разницы между ожидаемыми доходностями портфелей с наименьшим уровнем VaR и CVaR даже 
при небольшом количестве активов в портфеле (k = 5) присущи существенные асимметрия и смещения, а сходимость 
их к асимптотическому распределению есть довольно медленной. Зато свойства выборочной оценки разницы между 
коэффициентами, описывающими отношение инвестора к риску, соответствующим портфелям с наименьшим уровнем 
VaR и CVaR, значительно лучше. Кроме того, в работе предложена исправленная оценка для разницы, для которой 
сходимость эмпирических дисперсий к асимптотической несколько замедлилась. Вместе с тем эмпирическое смещение 
близко к нулю, что обосновывает целесообразность использования этой оценки на практике.
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CVaR is more laborious procedure (Chatterjee, 2014, Saryka-
lin et al., 2008) than calculating VaR. Moreover, VaR is more ro-
bust than CVaR, and CVaR evaluation procedure requires much 
more data and is much more sensitive to estimation error than 
VaR. In addition, the result of a CVaR calculation is reliable on-
ly if a correct model is used to describe the distribution tails. 

The transition to Basel III in risk management leads to a 
change in the instrument of portfolio risk calculation. Such a 
transition, in particular, may lead to a loss of optimality of al-
ready formed portfolios and consequently to the necessity of 
portfolio restructurization. It should be noted that the process 
of portfolio restructurization is often quite costly not only in 
terms of financial costs but also in terms of time consuming. 
Therefore, an actual problem is the construction of tools that 
confirm the necessity of portfolio restructurization and, con-
sequently, the expediency of investing resources in this pro-
cess. Different statistical tests are often used to solve this prob-
lem. We are interested in tests for significance of the differen-
ces bet ween the main characteristics of optimal portfolios ob-
tained under different risk measures in our case VaR and CVaR.

3. Purpose 
The purpose of the paper is a probabilistic analysis of the 

estimators of differences between the portfolio characteristics 
with structures derived under risk measures VaR and CVaR and 
construction of statistical tests for testing the significance of 
values of these differences based on this analysis.

4. Theoretical background 
An important step before portfolio construction is the 

choice of a risk measure to calculate portfolio risks. The most 
popular risk measures are variance, VaR and CVaR. Let us con-
sider them in more detail.

Let Pt be the price of some financial asset at the time 
point t. We define the return of this asset as follows: 
Xt =  100ln (Pt / Pt-1). The main properties of log returns can 
be found in (Fan & Yao, 2015). 

By the mid-1990s, the variance was the basis for the risk 
calculation. Nowadays, it is considered that better mea sures 
for practical use are measures that calculate the risk based 
on the corresponding quantiles of the loss function (Krokhmal 
et  al.,  2011). The most popular and most commonly used 
measures are Value-at-Risk (VaR) and its extension to a co-
herent measure - Conditional Value-at-Risk (CVaR).

Let us include k assets in the portfolio. Denoted by 
Xt =  (X1t, X2t, …, Xkt )ʹ, the k -dimensional vector of asset re-
turns is included in the portfolio. The fraction of i -th asset in 
a portfolio is denoted by wi and the portfolio - the vector of 
fractions w = (w1, w2, …, wk )ʹ. We assume that the vector Xt fol-
lows a k -dimensional normal distribution with the mean vec-
tor E(Xt) = μ and covariance matrix  = D(Xt). The main cha-
racteristics of the portfolio can be calculated as follows: ex-
pected return Rw = E(Xwt) = μʹw , variance Vw = D(Xwt) = wʹ w , 
where Xwt - portfolio return at time point t . Note that the as-
sumption of normality of the distribution of the asset returns 
vector Xt is one of the main in the classical portfolio theory. 
Despite criticism of this assumption in recent decades, it is 
often used not only in practice, but also in theoretical works. 
This is because the normal distribution has attractive theore-
tical properties: consistency with the classical portfolio  theory 
and with the assumptions of CAPM; the equivalence of the 
rules of decision-making in one and many periodic cases 
(Markowitz, 1991). In addition, for low-frequency returns, for 
example, monthly and annual asset returns, the assumption 
of normality of their distribution, are consistent with practical 
observation (Fama, 1976). Moreover, the calculating methods 
for VaR in Basel II or CVaR in Basel III are based on the as-
sumption that asset returns are normally distributed.

An important role in portfolio theory plays unconditio-
nal with respect to the portfolio expected return minimization 
problem of portfolio variance:

The solution of the problem (1) can be written in the fol-
lowing form:

where: 
1 - k -dimensional vector of ones.

The portfolio of financial assets with the structure wGMV is 
commonly used in the financial literature. It is known as the 
global minimum variance (GMV) portfolio. The characteristics 
of this portfolio can be calculated from:

The structure of the minimum VaR portfolio is observed 
from the following optimization problem (Alexander & Baptis-
ta, 2002):

It should be noted that we do not impose the condition of 
positive portfolio weights as in the case of the GMV portfolio. 
G. Alexander and M. Baptista (2002) solved the problem (4). 
The minimum VaR portfolio structure and its characteristics 
using our denotation can be written:

where: 
MVaR denotes the VaR of portfolio with the structure wVaR ,  

The necessary and sufficient condition to solve the prob-
lem (4) is:

T. Bodnar et al., 2012 analyzed the condition (9) using the 
data on daily stock prices from the Dow Jones list and showed 
that at statistically reasonable confidence levels (  ≥ 0.9) an 
investor has a possibility to construct the minimum VaR port-
folio with high probability (> 0.999).

Using CVaR as a risk proxy, the problem of the minimum 
CVaR portfolio construction has the form (Alexander & Bap-
tista, 2004):

G. Alexander and M. Baptista (2004) proved that  is 
the necessary and sufficient condition for the existence of 
the solution of the problem (10). It can be easily shown that 
we get  in the case of continuous distributions of as-
set returns. This implies that the minimum CVaR portfolio can 
be construc ted when the minimum VaR portfolio can be con-
structed with the same assets.

G. Alexander and M. Baptista,(2004) presented the weights 
and the characteristics of the minimum CVaR portfolio:(1)

(9)

(2)

(10)

(4)

(3)

(5)

(6)

(8)

(7)

(11)
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Since  for every confidence level  satisfies (9), 
we get RGMV ≤ RCVaR ≤ RVaR . Moreover, the inequalities are strict 
for all acceptable values of  < 1. Instead, all the portfolios 
with minimal risk coincide for  = 1.

In 2019, Basel III should be finally implemented. The impor-
tant difference between Basel II and Basel III is the proposed 
risk measures. In Basel II recommendations, VaR is a risk proxy 
instead of Basel III – CVaR. For continuous distributions at the 
same level of confidence, the value of CVaR is greater than the 
value of VaR. The question arises: how the expected returns of 
the minimum VaR and the minimum CVaR portfolios differ at the 
same confidence level. From (6) and (12), we obtain:

Note that the equality (15) remains correct under the as-
sumption that vector of asset returns Xt follows the k -dimen-
sional conditional normal distribution with the parameters μt 
and t .

The universal method for the efficient frontier construction 
is the method of maximization of the portfolio expected utility. 
In the portfolio theory, the portfolio with expected quadratic 
utility is determined as follows: 

where  denotes the coefficient of investor’s risk aver-
sion. We get the weights of the optimal portfolio with the ma-
ximum expected quadratic utility from the following optimiza-
tion problem:

.

They can be written as follows:

Y. Okhrin and W. Schmid (2006) pointed out that by 
changing values of investor’s risk aversion coefficient from 
0 to +∞ we can get an arbitrary portfolio from Marko witz’s 
efficient frontier. G. Alexander and M. Baptista (2004) 
proved that the minimum VaR and the minimum CVaR port-
folios are efficient by Markowitz. It means that it is possible 
for investors who construct their portfolio by its risk mini-
mization to define the risk aversion coefficient (Das et al, 
2010, Alexander & Baptista, 2011). We are interested on-
ly in cases when VaR and CVaR are used as risk measures. 
Equating the expressions for the minimum VaR and the 
minimum CVaR portfolio weights (5) and (11) with 
the weights of the maximum expected utility portfo-
lio (16) and solving the equation with respect to cor-
responding coefficients of investor’s risk aversion 
we get the following:
• for investors who constructs their portfolio by VaR 

minimization, the risk aversion coefficient is equal to

• for investors who construct their portfolio by CVaR minimiza-
tion, the risk aversion coefficient is equal to: 

Hence, the difference between the presented above coeffi-
cients of investor’s risk aversion is equal to

We have shown that changing the risk proxy from VaR to 
CVaR with the same confidence level we get different mini-
mum risk portfolios. However, the Basel II and Basel III re-
commendations suggest different confidence levels for risk 
measures. For VaR the recommended level is 99% while for 
CVaR it is 99.9%. It should be noted that such a high confi-
dence level for CVaR causes a negative reaction from prac-
titioners. In a general case, we agree with such a reaction 
because we could not find any reasonable explanation of 
the choice of the confidence level for CVaR. From inves-
tors’ point of view the new confidence level for CVaR should 
satisfy the following: the minimum CVaR portfolio with a 
new confidence level should be equivalent to the minimum 
VaR portfolio with  = 99%. We will find a relation between 
confidence levels for VaR and CVaR under which the cor-
responding portfolios with the minimal risk are equivalent. 
Since portfolios with the minimum VaR and the minimum 
CVaR are efficient by Markowitz, the necessary and suffi-
cient condition for these portfolios to be equivalent is the 
coincidence of their expected returns. Consequently, by 
equating (6) and (12) we get that for a certain confidence 
level for VaR the confidence level for CVaR should satisfy the 
following equation:

The equation (18) could not be solved analytically with re-
spect to the confidence level for CVaR. We use the values for 
confidence level VaR which are commonly used in practice, 
namely {0.9, 0.95, 0.99, 0.999} and solve (18) with respect to 

CVaR . The results are presented in Table 1.
The results in Table 1 show us that under our assump-

tion of equivalence of portfolios with the minimal risk we 
need to reduce the confidence level for CVaR, that is, increa-
sing accuracy in risk treatment decreases its confidence. For 
example, to get equivalent the minimum VaR and the mini-
mum CVaR portfolios for VaR = 99% we should choose CVaR 
equal to 97.5%. The natural question arises: for which va-
lues of VaR the value of CVaR still statistically reasonable i. e. 
greater than 90%. Putting CVaR = 0.9 and solving the equa-
tion (18) with respect to VaR we get VaR = 0.960355. Conse-
quently, if an investor constructs his/her portfolio by minimi-
zing its VaR at a confidence level less than 0.96, then there is 
no equivalent minimum CVaR portfolio at a confidence level 
greater than 90%.

We are not able to use the previous results concer ning 
parameters Δ and Δra in practice because they depend on 
unknown parameters of distribution of asset returns vec-
tor Xt – μ and . Firstly, we need to estimate these parame-
ters. The most used method of the parameter estimation is the 

(16)

(18)

(17)

(12)

(13)

(14)

(15)

Tab. 1: Relation between confidence levels for VaR and CVaR 
under which the corresponding portfolios 

with the minimal risk are equivalent

Source: Developed by the authors in program R
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 historical method. Let us have a sample of previous values of 
vectors of asset returns X1, X2,…Xn. Based on this sample, we 
construct the following estimators of unknown parameters of 
distribution of Xt :

Inserting the estimators (19) instead of unknown parame-
ters μ and  in expressions for Δ and Δra (15), (17) we get the 
sample estimators of these parameters. Let us denote them 
by using a symbol , i. e.:

It is clear that we should interpret the estimators (20) as 
random values (not as constants) because the estimators of 
the parameters of distribution of the vector Xt - μ and  are 
random values. Therefore, to get the maximum information 
about the estimators of differences Δ and Δra , we should in-
vestigate their distributions.

Let us denote  - a vector of unknown pa-
rameters and  - a sample estimator of . 
The operator vech is definite for an arbitrary square sym-
metric matrix А = (aij) of dimension k × k and trans-
forms it onto k(k+1)/2 - dimension vector by the rule vech 
(A) = (a11,…,ak1,…,aii,…,aki,…,akk)ʹ. The main properties of ma-
trix operators can be found in (Harville, 2008).

Since parameters Δ and Δra can be treated as functions 
of ,   i. e. Δ = f( ) and Δra  = g( ), then from the delta-method 
(Brockwell and Davis, 2006) we get:

where the vectors G1 and G2 of dimension 1×k(k+3) / 2  formed 
from partial derivatives of functions f and g respectively by the 
vector of parameters θ, i. e. G1= (∂Δ/∂μ, ∂Δ/∂vech( ))ʹ and 
G2 = (∂Δra/∂μ, ∂Δra/∂vech( ))ʹ and the matrix  can be found in 
(Brockwell & Davis, 2006).

On the other hand, we can treat the parameters Δ and 
Δra as functions of parameters of the efficient frontier RGMV, 
VGMV ,s, i. e. Δ = f1(RGMV , VGMV,s) and Δra = f2(RGMV , VGMV,s). We get:

The previous equality implies the following:

Analogical equality we get also for Gʹ2 G2.
From (Bodnar & Schmid, 2009) we get:

Taking into account that:

where:

we are able to find asymptotic distributions of sample estima-
tors of parameters Δ and Δra. The next theorem summarizes 
the previous findings.

Theorem 1. Let us form a portfolio within k assets, denoted 
by Xt – k -dimensional vector of asset returns inclu ded into port-
folio at time point t . Let us assume that Xt follows k -dimensional 
normal distribution with the parameters μ and   . Also, we as-
sume that  and k<n . Then for n ∞ :

where:

aks, bks, cks - are given in (21).
In practice, we have to use the estimators of variances 

1 and 2, i. e.:

Taking into account Theorem 1.14 in DasGupta (2008) and 
the proof of Theorem 1, we get that the previous estimators 
for 1 and 2 are consistent, i. e. for n ∞ :

 and 

From the result of Theorem 1, we get one- and two-sided 
(1– ) confidence intervals for values of Δ and Δra:
• the two-sided (1– ) confidence interval for Δ:

;

• the two-sided (1– ) confidence interval for Δra:

;

•  the one-sided (1– ) confidence intervals for Δ:

; ;

•  the one-sided (1– ) confidence intervals for Δra:

,

where z  denotes the  quantile of the standard normal 
distribution.

The constructed confidence intervals give us the possi-
bility to use statistical tests to check whether obtained va lues 
of differences between selected characteristics of portfolios 
significantly differ from some desired values. In particular, if 
some confidence interval contains a zero value then a value 
obtained for the corresponding estimator does not differ sig-
nificantly from zero, and therefore the corresponding portfo-
lio remains optimal under CVaR as a new risk measure. This 
implies that there is no necessity in restructurization of this 
portfolio.

5. Results 
As noted before, an investor should interpret the esti-

mators of unknown parameters as random values. Accor-
dingly, the decision-making process based on one value of 
some estimator is not efficient because in the case of con-
tinuously distributed asset returns the set of possible values 
of the estimator is infinite. It is clear that the use of additio-
nal information about a random variable that reflects some 
of its characteristics will lead to the improvement in the 

(20)

(21)

(19)
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 efficiency of the decision-making process. From the pro-
bability theory and mathematical statistics, it is known that 
the maximum information about a random variable is pro-
vided by its distribution function or density. Unfortunately, it 
is not always possible to obtain exact distribution or densi-
ty functions, therefore it is often suggested to consider asy-
mptotic properties of an estimator (Ling & McAleer, 2003). 
The convergence of the empirical distributions obtained by 
simulations to the asymptotic one depends on the prop-
erties of estimators of unknown parameters under speci-
fied assumptions about the behaviour of the asset returns 
and is not always fast. We investigate the convergence rate 
of empirical distributions of estimators of the parameters Δ 
and Δra to the corresponding asymptotic distributions found 
in Theorem 1. For this purpose, we select the daily returns 
of assets from the Dow Jones Industrial Average (DJIA) list 
that contains information on the prices of assets of 30 com-
panies for the period from 01 September 2017 to 31 August 
2018 (a total of 252 observations). We apply the Kolmogo-
rov-Smirnov test about the normality of distribution of all 
the 30 asset returns and choose only that asset for which 
the null hypothesis cannot be rejected at the 5% level of 
significance. We get 10 assets: 

1) the Coca-Cola Company (KO, 0.210);
2) the Walt Disney Company (DIS, 0.111); 
3) the Boeing Company (BA, 0.158); 
4) Johnson & Johnson (JNJ, 0.179); 
5) the Goldman Sachs Group (GS, 0.604); 
6) Apple Inc. (AAPL, 0.151); 

7) the Home Depot Inc. (HD, 0.101); 
8) Verizon Communication Inc. (VZ, 0.220); 
9) UnitedHealth Group (UNH, 0.343);
10) DowDuPont Inc. (DWDP, 0.758). 
In brackets, we give the abbreviations of the compa-

nies’ names and the p -values of the Kolmogorov-Smirnov 
test. Let us consider two cases: k = 5 (the portfolio includes 
5 assets: KO, DIS, BA, JNJ, GS); k = 10 (the portfolio in-
cludes ten assets). Using selected asset returns as a sam-
ple from historical data, we estimate the parameters of the 
normal distribution according to (19) and assume that the 
obtained values are precise. Consequently, we obtain the 
precise values of the parameters Δ and Δra:

k = 5: Δ = 0.00097598 and Δra = 0.5665;

k = 10: Δ = 0.0029303 and Δra = 0.5986.

Using previous values and the results of Theorem 1, we 
are able to construct the asymptotic densities of the esti-
mators of parameters Δ and Δra for k = 5 and k = 10.  Using 
the simulation method with the number of repetitions 
equal to 100,000 and for different values of sample size 
n = {250, 500, 1000, 2000} we provide the empirical densities 
of sample estimators of the unknown parameters and esti-
mate their means and variances. The results of the simula-
tion study are presented in Fig. 1 for for estimator of Δ and in 
Fig. 2 for estimator of Δra. We observe that convergence rate 
of empirical distributions to asymptotic one is  satisfactory 

Fig. 1: Empirical and asymptotic densities of  for k=5 (left) and k =10 (right) and 
n = {250, 500, 1000, 2000}.

Source: Developed by the authors based on data from finance.yahoo.com in program R

Fig. 2: Empirical and asymptotic densities of  for k=5 (left) and k =10 (right) and 
n = {250, 500, 1000, 2000}.

Source: Developed by the authors based on data from finance.yahoo.com in program R
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for the estimator of Δra and unsatisfac-
tory for the estimator of Δ. Even for k = 5 
and n = 2000 empirical density of sample 
estimator of Δ is obviously asymmetric 
and significantly biased (with respect to 
the precise value). It is not surpri sing be-
cause the properties of the random va-
riable  that has an inverse  dis-
tribution are better than the pro perties 
of  which distribution is unknown 
and the unconditional expectation does 
not exist. The values of asym ptotic and 
empirical means and varian ces presen-
ted in Tables 2-3 confirm the above ob-
servations. In addition, we conclude that 
increasing the number k of assets in the 
portfolio decrea ses the convergence 
rate of the empi rical charac teristics of 
the investigated quantities to the asym-
ptotic ones. This implies that increasing 
the number of assets in the portfolio re-
quires a proportional increase in the size of the sample of 
historical values.

Using the described simulation algorithm, we consi-
der the properties of the adjusted estimator of Δra. The em-
pirical and asymptotic densities of the random variable 

are presented in Figure 3. We present the 
empirical and asymptotic means and variances in Table 4. 
The results are expected as follows: the convergence rate 
of empirical variances to the asymptotic one is slightly slo-
wer than for sample estimator while the empirical means are 
close to zero.

Note that using the results presented in Zabolotskyy 
(2017), we are able to construct adjusted estimator of pa-
rameter Δra : 

.

Taking into account the results of the simulation study, 
we conclude that it is appropriate to use 
the estimator of parameter Δra and its 
characteristics to compare the minimum 
VaR and the minimum CVaR portfolios. 
Moreover, in the case of a sample esti-
mator, its bias should be taken into ac-
count, and it can be omitted by using the 
adjusted estimator ra.

Remark 1. We have noted that the 
observed results are true under the fol-
lowing conditions  and . It is 

Tab. 2: Empirical and asymptotic means and variances of  and  
for n = {250, 500, 1000, 2000, 3000} and k = 5

Source: Developed by the authors based on data from finance.yahoo.com in program R

Tab. 3: Empirical and asymptotic means and variances of  and  
for n = {250, 500, 1000, 2000, 3000} and k = 10

Source: Developed by the authors based on data from finance.yahoo.com in program R

Fig. 3: Empirical and asymptotic densities of  for k=5 (left) and k =10 (right) and 
n = {250, 500, 1000, 2000}.

Source: Developed by the authors based on data from finance.yahoo.com in program R

shown by Bodnar et. al (2013) that under the condition  
the inequality holds asymptotically with probability 1. It 
implies that the results presented in the paper concerning the 
unconditional asymptotic analysis of sample estimators of 
the parameters Δ and Δra are correct.

Remark 2. All the presented results concerning the es-
timators of the parameters Δ and Δra remain correct for the 
comparison of the minimum VaR and the minimum CVaR 
portfolios even for different confidence levels. It can be 
reached by changing the corresponding quantiles in the cor-
responding expressions.

6. Conclusions
The paper examines the problem of decision-making 

on the necessity of portfolio restructurization after chan-
ging the risk proxy from VaR to CVaR. Taking into account 
the new standards in risk management announced by the 
Basel Committee (Basel III) which should be finally imple-
mented in 2019 this could lead to the loss of optimality of 
existing portfolios and consequently the necessity of their 

Tab. 4: Empirical and asymptotic means and variances of  
for n = {250, 500, 1000, 2000, 3000} and k = 5, 10

Source: Developed by the authors based on data from finance.yahoo.com in program R
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 restructurization. The portfolio restructurization process is 
rather costly, both in terms of financial costs and in time 
consuming. That is why the actual problem is to explore the 
tools that confirm the necessity of portfolio restructuriza-
tion and the rationale of investing resources in this process. 
On the other hand, these tools give the possibility to decide 
that changes in portfolio characteristics are not significant 
and there is no need for portfolio restructurization that will 
save resources.

In the paper, the difference between the main charac-
teristics of the minimum VaR and the minimum CVaR portfo-
lios is calculated and appropriate sample estimates of these 
indicators are constructed. Taking into consideration that 
sample estimators are random variables, we investigate the 
probabilistic properties of the estimators of the differences 
between the main characteristics of the minimum VaR and 
the minimum CVaR portfolios. We find the asymptotic dis-
tributions of these estimators and justify the correctness of 
the use of sample estimators of the asymptotic variances for 
these distributions. Based on the constructed distributions, 
we develop a toolkit for testing the significance of value of 
differences between the considered characteristics of the 
minimum VaR and the minimum CVaR portfolios. By means of 
a simulation study, we show that both sample estimators are 

biased. In the case of a sample estimator of the difference 
between the expected returns of portfolios, we find that the 
use of this estimator is correct only with large sample sizes. 
Thus, we show that with the number of assets in the port-
folio k = 5 and the size of the sample of historical values 
of n = 2000 the empirical density is significantly asymmetric 
and biased. Instead, the sample estimator of the difference 
between the investors’ risk aversion coefficients that cor-
responds to each portfolio does not have such drawbacks. 
The convergence rate of empirical distributions to the asym-
ptotic one is satisfactory, and the bias is not large compared 
to the exact value. Moreover, we construct an adjusted es-
timator for this difference for which the convergence rate of 
empirical variances to the asymptotic one is slightly slower 
while the empirical biases are close to zero.

We conclude that to testing the optimality of the minimum 
VaR portfolio under CVaR as a risk proxy and make a deci-
sion on the necessity of portfolio restructurization the estima-
tor of the difference between investor’s risk aversion coeffi-
cients that correspond to the minimum VaR and the minimum 
CVaR portfolios is appropriate. It should be noted that if one 
uses the sample estimator, then its bias should be taken  into 
account. We can avoid this by using the adjusted estimator 
presented in the paper.
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